

Implementing GitOps
with Kubernetes

Automate, manage, scale, and secure infrastructure
and cloud-native applications on AWS and Azure

Pietro Libro

Artem Lajko

Implementing GitOps with Kubernetes
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.
The authors acknowledge the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing
the language and clarity within the book, thereby ensuring a smooth reading experience for readers.
It's important to note that the content itself has been crafted by the author and edited by a professional
publishing team.
Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Preet Ahuja
Publishing Product Manager: Surbhi Suman
Book Project Manager: Srinidhi Ram
Senior Editor: Adrija Mitra
Technical Editor: Yash Bhanushali
Copy Editor: Safis Editing
Proofreader: Adrija Mitra
Indexer: Hemangini Bari
Production Designer: Prafulla Nikalje
DevRel Marketing Coordinator: Rohan Dobhal

First published: August 2024
Production reference: 1260724

Published by Packt Publishing Ltd.

Grosvenor House
11 St Paul’s Square
Birmingham
B3 1RB, UK

ISBN 978-1-83588-422-5
www.packtpub.com

http://www.packtpub.com

To my wife and life partner, Eleonora, who supports my follies, encourages me, and allows me to
move forward.

To my daughter, Giulia, who sacrificed spending part of her time with me to allow me to write
this book.

To my parents, Filomena and Antonino, who enabled me to study.

To everyone who has believed in me.

– Pietro Libro

To my girlfriend, my family, and my friends, who put up with me through countless nights and
weekends as I crafted this book!

To my sparring partner, Steve Golling, who co-created the craziest solutions with me and inspired me
over the years!

And to everyone I've had the pleasure of working with over the past years, whose impact through our
exchanges and collaborations has been invaluableyou know who you are (and if you don't, just assume

I mean you!). Thank you!

 – Artem Lajko

Contributors

About the authors
Pietro Libro is a tech enthusiast with over two decades of experience in software development and
software architecture. His pragmatic problem-solving skills have been honed through work in the
public administration, finance, and automation industries. He holds a master’s degree in computer
science from the University of Rome, La Sapienza. Over the years, Pietro has transitioned from
software development to a solution and cloud architect role. He is currently awaiting the defense of
his PhD in bioinformatics at the University of Tuscia. Pietro’s dedication to learning is evident through
his numerous certifications and his role as a technical speaker. Specializing in various technologies,
especially software and cloud architecture, he relocated from Italy to Switzerland. Currently serving
as a cloud solution architect in Zürich, Pietro lives with his wife, Eleonora, his daughter, Giulia, and
their cat, “Miau”. In his free time, Pietro enjoys biking, practicing taekwondo, watching science fiction
movies and series, and spending time with his family.

Artem Lajko is a passionate and driven platform engineer and Kubestronaut, boasting over eight
years of IT experience, backed by a master’s degree in computer science. His track record showcases
expertise in designing, developing, and deploying efficient and scalable cloud infrastructures. As a
curious and continuous learner, Artem holds certifications in Azure, AWS, Kubernetes, and GitOps.
Currently, he’s playing a pivotal role in enhancing innovation and application management at the Port
of Hamburg. His technical acumen spans cloud infrastructures, cross-cloud solutions, and DevOps
practices. He is also passionate about blogging and networking with manufacturers to craft top-notch
solutions using market-available tools.

About the reviewers
Chen Fliesher has worked in the IT industry for over 20 years, with more than 7 years of experience as
a DevOps engineer specializing in CI/CD and the cloud. For the last five years, he has been dedicated
to implementing the GitOps methodology at AT&T. He serves as a developer, DevOps engineer, and
architect on IoT, AI, and other projects.

Chen received his BSc in Mathematics and Computer Science (cum laude) from Bar-Ilan University.
He is currently employed by AT&T as a DevOps Tech Lead in the software delivery service. In this
role, he assists the development team in accelerating the migration of both legacy and new services
from on-premises to the cloud. Additionally, he has given several talks at events such as Kubernetes
Community Days and Jenkins User Conference, and he mentors and teaches at AT&T.

I’d like to thank my family and friends, who understand the time and commitment it takes me to
become a subject matter expert in the field of software delivery and the cloud.

I thank my wife, Nili, and my three daughters, who allowed me the time to learn, research, and
practice in the field of progressive delivery.

Thanks to all my peers who assist me in delivering talks on KCD, JUC, and others.

Never stop learning.

Dhirendra Kumar is a cloud (certified) Kubernetes and platform architect. He has a master’s degree in
computer science and has worked with many global tech companies (IBM, HPE, Medidata, and so on)
for the past 20+ years. Dhirendra has helped design, develop, and deploy many solutions and advise
companies as they navigate the challenges of moving cloud projects from concept to production. This
gives him a rare mix of knowledge in both the development and cloud computing spaces.

Prasanna Jatla is currently working as a senior software engineer at American Express, leveraging
over 11 years of extensive experience in the financial industry. His expertise lies in the development
of scalable, distributed software applications. He has spearheaded numerous modernization projects
and automation initiatives. His skill set extends to the development of event-driven applications and
batch-processing systems, where he has demonstrated proficiency in driving efficiency and performance.

Preface xv

Part 1: Understanding GitOps via Uncomplicated
Orchestrations/ Kubernetes

1
An Introduction to GitOps 3

Technical requirements 3
GitOps unveiled – reshaping
development culture and practices 3
Traditional CI/CD with DevOps against GitOps 4

The fundamentals of GitOps and
the advantages of adopting it for
platform engineering 8
Why GitOps? 10

The integration between GitOps, IaC,
and Kubernetes 12
GitOps and IaC 12
GitOps and Kubernetes 13
Kubernetes and Argo CD 15
Kubernetes and Flux CD 16

Summary 17
Further reading 18

2
Navigating Cloud-native Operations with GitOps 19

Technical requirements 19
An overview of the integration
of GitOps and
cloud-native technology 20
An introduction to Kubernetes 20
What is Kubernetes? 21
Kubernetes architecture 21

Exploring K3s as a lightweight
Kubernetes distribution 24
Local cluster setup 25
K3s setup and installation verification 27
Kubernetes manifest 33
Our first deployment with K3s 33
Port forwarding 37

Table of Contents

Table of Contentsviii

Getting started with containers 39
Docker setup 39
Docker alternatives 41
Dockerfile 42

Sample workflow – effortless CD
with Docker and K3s 45

Local development 46
Dockerizing the application and
running it locally 46
Publishing the image to a container registry 47
Deploying to K3s 48

Summary 50
Further reading 50

3
Version Control and Integration with Git and GitHub 51

Technical requirements 51
Exploring version control systems –
local, centralized, and distributed 52
Why Git? 54
Git setup 55
Creating and cloning a Git repository 56
The basics of Git 58

Exploring GitHub 61
GitHub’s ecosystem 62
GitHub flow 63

Integrating GitOps and GitHub 68
Summary 71
Further reading 71

4
Kubernetes with GitOps Tools 73

Technical requirements 73
Overview of popular GitOps tools 74
A deep dive into Helm and Kustomize 75
Helm 75
Kustomize 80

Argo CD integration with Kubernetes 86

Argo CD setup 87

Flux integration with Kubernetes 94
Flux setup 96
Deploying to Kubernetes with Flux 96

Comparing Argo CD and Flux 98
Summary 99

Table of Contents ix

Part 2: Harnessing Advanced Orchestrations,
Culture, and Control in GitOps Practices

5
GitOps at Scale and Multitenancy 103

Technical requirements 104
Traditional CI/CD versus GitOps CD 105
Platform engineering versus IDPs 106
Understanding the App of
Apps approach 106
Use cases of App of Apps
combined with examples 109
The ApplicationSets approach 110
Which approach should be used? 114

Understanding multi-cluster
management 115
One cockpit to rule them all 116
One cockpit – multiple fleet and
commander concept 117

Understanding effective Git
repository strategies 119
Environment branches 120
Environment per Git 121

Folders for environments 121
Scaling with ApplicationSet generators 127

Building a service catalog
for Kubernetes 129
Building the service catalog 131

Exploring native multitenancy
with Argo CD 136
Exploring multitenancy with
vCluster and Argo CD 141
Bonus – simplified connection to multiple
vClusters – a handy bash script 146
Limitations solved in multitenancy with
GitOps – a review 146

Wrapping up – insights and lessons
from multitenancy experiences 147
Summary 149
References 149

6
GitOps Architectural Designs and Operational Control 151

Exploring diverse GitOps
architectural frameworks for
Kubernetes environments 152
Examining the impact of
architectural choices on
GitOps’ effectiveness 154
Architectural choices impacting GitOps 154

Making informed architectural decisions 155

Tailoring designs for scalability,
resilience, and efficiency in cloud-
native deployments 155
Scalability in cloud-native architectures 155
Resilience through redundancy and isolation 156

Table of Contentsx

Efficiency with proactive optimization 156
Tailoring designs with GitOps 156

Centralized control – managing
clusters with a solo Argo instance 157
The approach – centralized control 158
When to use the centralized control approach 161
When to avoid the centralized
control approach 161

Dedicated instances – instance per
cluster with Argo CD 161
When to use dedicated Argo CD instances 163
When to avoid dedicated Argo CD instances 163

Dedicated instances – instance per
cluster with Flux CD 164
The middle way – instance per
logical group with Argo CD 166
When to use the middle-way approach 169
When not to use the middle-way approach 169

The cockpit and fleet approach
with Argo CD 170

Delving deeper into the approach 171
Operational dynamics 171
When to use the cockpit and fleet approach 172
When not to use the cockpit and
fleet approach 172
Choosing the right approach for your
GitOps needs 173

Centralized Kubernetes cluster
creation – leveraging Cluster API
and Argo CD for streamlined
cluster deployment 176
Introduction to Cluster API 176
How Cluster API is leveraged by
different companies 178

A deep dive into Cluster API and
GitOps – hands-on 180
Initializing the management cluster 181
Creating your first workload cluster 183

Summary 187
References 189

7
Cultural Transformation in IT for Embracing GitOps 191

Treating infrastructure as an
application 192
Understanding IaC 192
Understanding infrastructure as applications
in Argo CD’s GitOps framework 194
Embracing infra-as-apps – bridging GitOps
and infrastructure management 194
How IaC can be used to deploy infrastructure 195
Why infra-as-apps is a game-changer? 201

Understanding the principles of
immutable infrastructure 202
The essence of immutable infrastructure 202

Integrating immutable infrastructure
with GitOps 203

Introducing DORA metrics 208
Understanding the need for
continual improvement in GitOps 210
Overcoming cultural barriers to
adopt GitOps 211
A project’s story – exchange, experiences, and
learnings 211
Essential Q&A from another recent project 214

Summary 215
References 216

Table of Contents xi

Part 3: Hands-on Automating Infrastructure and
CI/CD with GitOps

8
GitOps with OpenShift 219

Technical requirements 220
Introduction to Red Hat OpenShift 220
Red Hat OpenShift environment setup 221
Troubleshooting OpenShift CRC setup issues 224

Setting Up GitOps in
Red Hat OpenShift 225
Leveraging Red Hat OpenShift’s CI/
CD for GitOps 231

Automation and configuration
best practices 237
A comparison of Kubernetes
Red Hat OpenShift 239
Summary 240

9
GitOps for Azure and AWS Deployments 241

Technical requirements 242
Azure and AWS accounts 242

Cloud GitOps essentials – Azure
and AWS 242
Azure GitOps essentials 243
AWS GitOps essentials 253

GitOps applications in
cloud environments 267

Cross-cloud strategies 267

GitOps strategies for Azure and
AWS deployments for Kubernetes 268
Azure GitOps strategies 269
AWS GitOps strategies 269

Summary 270

10
GitOps for Infrastructure Automation – Terraform and Flux CD 271

Technical requirements 272
Introducing infrastructure
automation with Terraform and
Flux CD 272

Setting up Terraform in a
GitOps workflow 274
Tofu Controller
(formerly Weave TF-Controller) 275

Table of Contentsxii

Getting started with the setup 276

Exploring Flux CD – enabling
CD in Kubernetes 281
Combining Terraform and Flux CD
for enhanced automation 284
Providing new infrastructure by updating
Terraform files 285
Enhanced disaster recovery capabilities 286
Creating and managing
multi-stage environments 286

Version control and automation with
Terraform and Flux CD 287

Security and best practices with Terraform
and Flux CD 287
Best practices for configuration
and maintenance 287
Best practices for managing multi-
environment configurations 288
Git workflow strategies 288

Multi-environment management
with Terraform and Flux CD 289
Summary 294

11
Deploying Real-World Projects with GitOps on Kubernetes 295

Technical requirements 295
Establishing a GitOps and
Kubernetes
development environment 296
Implementing CI/CD with GitOps 297
Final objective and implementation 298
CI/CD pipeline using GitHub Actions
and Terraform 299
Using Argo CD for the
continuous deployment 304

Designing for scalability
and efficiency 308
Architectural principles 308
Resource management 309

Testing for scalability 310

Resources management
and scalability 310
Optimizing resource usage 311
Implementing the HPA 312
Testing for scalability – an example 313

Monitoring and securing
your application 315
Monitoring 316
Setting up Prometheus and Grafana 316
Understanding Kubernetes security 318

Summary 322

Table of Contents xiii

Part 4: Operational Excellence Through GitOps
Best Practices

12
Observability with GitOps 325

Exploring the fundamentals of SRE
for GitOps and Kubernetes 326
The intersection of SRE with GitOps 326
SRE principles in a Kubernetes context 327

Understanding internal
(white box) versus external
(black box) observability 328
Internal or white box observability explained 328
External or black box observability defined 330
Balancing internal and external observability 333

Exploring SLO-driven multi-stage
performance with DORA 333
Integrating SLOs with DORA metrics 334
Applying a multi-stage approach 335

Implementing distributed tracing in
GitOps with Linkerd 335
Implementing monitoring in GitOps
with tools such as Uptime Kuma
and OpenTelemetry 338

Uptime Kuma – the external watchdog for
your online services 338
OpenTelemetry – a unified
observability framework 340

Looking at alerting strategies in a
GitOps framework 342
Some relevant alerting rules 343
Diving deeper into node
overcommitment in Kubernetes 344

Scaling observability with GitOps 345
Scaling observability components 345
Organizational strategies for
effective observability 346
Selecting the right observability tools for
specific use cases 347
Enterprise-level best practices with
observability and GitOps 350

Summary 351
References 352

13
Security with GitOps 353

Hardening declarative GitOps
CD on Kubernetes 354
Addressing configuration vulnerabilities 354
Enhancing password management and RBAC 355

Committing everything to Git? What
about Secrets? 361
Sealed Secrets 361
External Secrets 362

Table of Contentsxiv

Leveraging a policy engine for
policy-as-code practices 364
Integrating Kyverno and OPA 364
Hands on – let’s put theory into practice [6] 366

Automating security scanning
and compliance 369

KubeClarity 369
Falco 370

Keeping your platform
catalog up-to-date 371
Summary 372
References 373

14
FinOps, Sustainability, AI, and Future Trends for GitOps 375

Covering the fundamentals
of FinOps 376
Forecasting and monitoring costs
with GitOps 377
How GitOps complements FinOps 378
Utilizing GitOps with FinOps 378
OpenCost versus Kubecost with GitOps 379

Optimization techniques for
cloud spend 383
Combining GitOps and Kubecost
for cloud spend optimization 383

Assessing carbon footprint and
promoting green operations 385

Assessing carbon footprint with kube-green 386
Promoting green operations with Armada 386
Assessing carbon footprint by integrating
with GitOps 386

Looking at GitOps and
AI-driven automation 387
Robusta.dev 387

Future challenges and
opportunities in GitOps 400
The role of GitOps in
emerging technologies 400
Summary 401
References 402

Index 403

Other Books You May Enjoy 418

Preface

Hello there!

In the rapidly evolving world of software development, maintaining consistency, scalability, and
reliability in deployments is a significant challenge. GitOps has emerged as a revolutionary approach
to bridge the gap between development and operations, especially in Kubernetes environments. By
using Git as the single source of truth for system and application configurations, GitOps automates
and standardizes deployments, ensuring they are consistent, auditable, and efficient.

GitOps leverages the principles of version control, infrastructure as code, and continuous deployment
to create a seamless, transparent workflow. This methodology not only simplifies operations but also
enhances collaboration and accelerates delivery times, allowing teams to focus more on innovation
rather than firefighting.

This book, Implementing GitOps with Kubernetes: Automate, manage, scale, and secure infrastructure
and cloud-native applications on AWS and Azure, aims to provide a comprehensive guide to mastering
GitOps. Through practical examples, step-by-step tutorials, and insights from industry experts, we
will explore how to effectively implement GitOps practices in your Kubernetes deployments.

Our journey begins with an introduction to the core concepts and principles of GitOps. We will
delve into the technical intricacies of tools such as Argo CD, Flux CD, Helm, and Kustomize, and
how they integrate with Kubernetes. From there, we will tackle advanced topics such as multi-cluster
management, security, and scalability, ensuring you have a holistic understanding of GitOps.

Drawing from our extensive experience in cloud architecture and DevOps practices, we will share
real-world scenarios and best practices that have been tested and validated in various industries. By the
end of this book, you will be equipped with the knowledge and skills to implement GitOps strategies in
your current or future Kubernetes deployments, ensuring reduced complexity and increased scalability.

Whether you are a DevOps engineer, site reliability engineer, platform engineer, or cloud architect,
this book will provide you with the tools and insights needed to succeed in today’s cloud-native
landscape. Let’s embark on this journey together and unlock the full potential of GitOps for your
Kubernetes deployments.

Prefacexvi

Who this book is for
Implementing GitOps with Kubernetes: Automate, manage, scale, and secure infrastructure and cloud-
native applications on AWS and Azure is designed for professionals looking to enhance their skills in
deploying and managing Kubernetes environments using GitOps principles.

The primary audience of this book includes the following:

• DevOps engineers: Professionals responsible for managing and automating the deployment of
applications and infrastructure. This book will provide them with advanced GitOps techniques
to streamline their workflows, reduce deployment errors, and ensure consistency across
environments.

• Site reliability engineers (SREs): Engineers focused on maintaining the reliability and
performance of applications. This book will offer insights into integrating GitOps for better
observability, automated recovery, and efficient scaling of Kubernetes clusters.

• Platform engineers: Individuals who build and maintain the underlying platforms that support
application development and deployment. They will learn how to implement GitOps to manage
infrastructure as code, ensuring their platforms are robust, scalable, and secure.

• Cloud engineers: Engineers working with cloud platforms who need to manage complex
Kubernetes environments. This book will teach them how to leverage GitOps to automate
deployments, manage multi-cloud setups, and optimize cloud resource utilization.

• Software engineers: Developers who are looking to understand the deployment process
better and contribute to infrastructure management. This book will provide them with a
comprehensive understanding of GitOps practices, enabling them to collaborate more effectively
with operations teams.

• Solution architects: Professionals responsible for designing and implementing technical
solutions. They will gain a deeper understanding of how to incorporate GitOps into their
architecture designs, ensuring scalable and maintainable solutions.

• IT leaders and managers: Leaders who oversee the implementation of DevOps and cloud-
native strategies within their organizations. This book will help them understand the benefits
of GitOps, guiding them in making informed decisions about adopting and scaling GitOps
practices in their teams.

The target audience of this book should ideally have the following background:

• Knowledge of cloud computing: Readers should have a foundational understanding of cloud
computing concepts and environments, as GitOps practices often involve deploying applications
on cloud platforms.

• Familiarity with continuous integration and continuous deployment (CI/CD) principles:
A basic grasp of CI/CD principles is essential, as GitOps builds upon these methodologies to
automate and streamline deployments.

Preface xvii

• Basic Kubernetes understanding: Prior experience with Kubernetes is highly beneficial, as
this book delves deep into integrating GitOps with Kubernetes environments. Readers should
be familiar with Kubernetes fundamentals such as pods, services, and deployments.

• Experience with version control systems: Since GitOps relies heavily on Git for version control,
readers should have experience with Git or similar version control systems. This includes
understanding branching, merging, and managing repositories.

• DevOps tools and practices: Familiarity with DevOps tools such as Docker, Helm, and other
orchestration utilities will help readers grasp the advanced topics discussed in the book more
efficiently.

By the end of this book, readers will be equipped with the knowledge and practical skills needed to
implement GitOps strategies effectively in their Kubernetes deployments, ensuring reduced complexity,
increased scalability, and improved operational efficiency.

What this book covers
Chapter 1, An Introduction to GitOps, provides a foundational understanding of GitOps, exploring its
principles and how it transforms culture, workflows, and mindsets in modern software development.

Chapter 2, Navigating Cloud-Native Operations with GitOps, delves into building and managing
containerized applications using GitOps practices, covering topics such as Kubernetes fundamentals,
container image optimization, and cloud-native pipelines.

Chapter 3, Version Control and Integration with Git and GitHub, explains the pivotal role of Git and
GitHub in GitOps, offering insights into effective version control and collaborative development practices.

Chapter 4, Kubernetes with GitOps Tools, explores various GitOps tools such as Helm, Kustomize, Argo
CD, and Flux CD, detailing their integration with Kubernetes and providing a comparative analysis
to help choose the right tool for specific needs.

Chapter 5, GitOps at Scale and Multitenancy, discusses advanced GitOps practices for scaling deployments
and managing multi-cluster environments, including strategies for effective Git repository management
and building a service catalog for Kubernetes.

Chapter 6, GitOps Architectural Designs and Operational Control, focuses on architectural frameworks
and operational methodologies for GitOps, emphasizing scalability, resilience, and efficiency in
cloud-native deployments.

Chapter 7, Cultural Transformation in IT for Embracing GitOps, highlights the cultural shift required
to adopt GitOps, discussing principles of infrastructure as code, immutable infrastructure, DORA
metrics, and overcoming organizational resistance.

Chapter 8, GitOps with OpenShift, provides an in-depth exploration of applying GitOps principles
within the Red Hat OpenShift environment, including setting up GitOps workflows, leveraging
OpenShift’s CI/CD tools, and securing GitOps pipelines.

Prefacexviii

Chapter 9, GitOps for Azure and AWS Deployments, covers the implementation of GitOps practices
within Azure and AWS ecosystems, detailing the integration of cloud-native tools and services to
streamline application and infrastructure management.

Chapter 10, GitOps for Infrastructure Automation – Terraform and Flux CD, delves into the integration
of Terraform and Flux CD for automating infrastructure management, covering version control,
multi-environment management, and advanced automation techniques.

Chapter 11, Deploying Real-World Projects with GitOps on Kubernetes, provides a hands-on guide to
executing real-world projects using GitOps and Kubernetes, from setting up development environments
to designing, developing, and deploying scalable applications.

Chapter 12, Observability with GitOps, explores the integration of observability practices into GitOps
workflows, covering SRE principles, internal versus external observability, SLO-driven performance,
and advanced monitoring techniques.

Chapter 13, Security with GitOps, discusses the security aspects of GitOps, including hardening
declarative CD, implementing policy-as-code, managing secrets, maintaining platform catalogs, and
automated security scanning.

Chapter 14, FinOps, Sustainability, AI, and Future Trends for GitOps, highlights the fusion
of FinOps with GitOps for sustainable and cost-effective operations, covering cost forecasting,
optimization, carbon footprint assessment, AI-driven automation, and future trends in GitOps.
To get the most out of this book

To get the most out of this book, readers should have a foundational understanding of cloud computing
and DevOps principles. Familiarity with Kubernetes and containerization technologies, such as Docker,
is essential. Experience with version control systems, particularly Git, will be beneficial as GitOps
heavily relies on these tools. Basic knowledge of CI/CD pipelines and infrastructure as code concepts
will also help readers grasp the advanced topics covered in the book.

Software/hardware mentioned in this book OS requirements

Kubernetes Windows, macOS, or Linux

Git Windows, macOS, or Linux

Docker Windows, macOS, or Linux

Argo CD Windows, macOS, or Linux

Flux CD Windows, macOS, or Linux

Helm Windows, macOS, or Linux

Kustomize Windows, macOS, or Linux

Preface xix

Software/hardware mentioned in this book OS requirements

Terraform Windows, macOS, or Linux

Azure Kubernetes Service (AKS) Windows, macOS, or Linux

AWS Elastic Kubernetes Service (EKS) Windows, macOS, or Linux

OpenShift Windows, macOS, or Linux

This book includes all the necessary instructions to work through each chapter. Step-by-step guides
are provided to ensure a smooth setup and implementation process. The source code for the examples
and projects discussed in the book is available in a public repository. Please refer to the next page for
the repository link and further details.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Implementing-GitOps-with-Kubernetes. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “There
are globally defined values under optimization/opencost, and then there’s a custom pricing
model for each specific country.”

A block of code is set as follows:

helm repo add sealed-secrets https://bitnami- labs.github.io/
sealed-secrets
helm install sealed-secrets sealed-secrets/sealed-secrets
#Install e.g. CLI on MacOS
brew install kubeseal

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Prefacexx

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

clusterName: "aks-excelsior-development-2"
globalConfig:
 chat_gpt_token: sk-dw******
 signing_key: ea657a******
 account_id: 7935371f******
sinksConfig:
- slack_sink:
 name: main_slack_sink
 slack_channel: pocs
 api_key: xoxb******
- robusta_sink:
 name: robusta_ui_sink
 token: eyJhY2NvdW******
enablePrometheusStack: true
This part is added to the default generated_values.yaml
enablePlatformPlaybooks: true
runner:
 sendAdditionalTelemetry: true
rsa:
 private: ******
 public: ******

This part is added to the default generated_values.yaml
playbookRepos:
 chatgpt_robusta_actions:
 url: "https://github.com/robusta-dev/kubernetes-chatgpt-bot.git"

This part is added to the default generated_values.yaml
customPlaybooks:
Add the 'Ask ChatGPT' button to all Prometheus alerts
- triggers:
 - on_prometheus_alert: {}
 actions:
 - chat_gpt_enricher: {}

Any command-line input or output is written as follows:

$ aws eks --region eu-central-1 update-kubeconfig --name
eksgitopscluster

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “When a Common Vulnerabilities
and Exposures (CVE) is revealed, and you opt for the cockpit and fleet approach, adopting GitOps
at scale also facilitates a vulnerability management at scale strategy.”

Preface xxi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Implementing GitOps with Kubernetes, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1835884237
https://packt.link/r/1835884237

Prefacexxii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835884225

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835884225

Part 1:
Understanding GitOps

via Uncomplicated
Orchestrations/ Kubernetes

In this part, you will explore the foundational aspects of GitOps. Starting with a broad overview, you will
understand how GitOps has emerged as a key practice in modern software development and platform
engineering. We will delve into navigating cloud-native operations, emphasizing the integration of
Git and GitHub for effective version control. Additionally, you will utilize Kubernetes with various
GitOps tools to streamline deployment processes, offering a comprehensive understanding of how
these technologies interconnect to simplify and enhance software deployment and management.

This part includes the following chapters:

• Chapter 1, An Introduction to GitOps

• Chapter 2, Navigating Cloud-Native Operations with GitOps

• Chapter 2, Version Control and Integration with Git and GitHub

• Chapter 4, Kubernetes with GitOps Tools

1
An Introduction to GitOps

In this opening chapter, we’ll delve into GitOps, an innovative approach that’s revolutionizing
software development and operations. This chapter begins with the tale of GitOps, focusing on its
transformative effect on organizational culture and workflows. The Fundamentals of GitOps section
outlines its core principles, such as the centralization of Git, its declarative approach, and automated
synchronization. Traditional CI/CD with DevOps against GitOps traces the evolution of software
deployment, contextualizing GitOps in the broader history of the field. This chapter will also contrast
traditional CI/CD and DevOps methodologies with GitOps, highlighting GitOps as an evolution
in managing complex systems. We’ll conclude by discussing the advantages of adopting GitOps for
platform engineering while illustrating its efficiency, consistency, and adaptability.

In this chapter, we’ll cover the following topics:

• GitOps unveiled – reshaping development culture and practices

• The fundamentals of GitOps and the advantages of adopting it for platform engineering

• Why GitOps?

• The integration between GitOps, IaC, and Kubernetes

Technical requirements
To follow along with this chapter, you need to have basic knowledge of version control, Infrastructure
as Code (IaC), continuous integration (CI), continuous delivery (CD), and Kubernetes. Basic
knowledge of major cloud providers, such as Google Cloud Platform (GCP), AWS, and Azure, will
be beneficial.

GitOps unveiled – reshaping development culture and
practices
In the realm of modern software development and operations, GitOps emerges as a confluence of
ideas and practices, redefining the approach to managing complex systems.

An Introduction to GitOps4

The term GitOps was first introduced by Alexis Richardson, the co-founder of Weaveworks, in August
2017 through a series of blog posts. Richardson described GitOps as a methodology where developer
tools are pivotal in driving operational procedures. This approach emphasized the significance of
using declarative tools and advocated for the best practices wherein configurations are treated as
code. Consequently, these configurations should be subject to version control, aligning with the core
principles of GitOps.

This innovative concept marked a shift in how software development and IT operations teams
approach how infrastructure and applications are managed and deployed, promoting a more efficient,
transparent, and reliable process.

GitOps is a paradigm that represents a breakthrough in how software development and operations
teams manage and deploy applications and infrastructure. It revolves around the idea of using Git,
a widely used version control system, as the single source of truth for declarative infrastructure
and applications.

Version control, also known as source control, is a system that records changes to a file or set of
files over time so that you can recall specific versions later. It allows multiple people to work on a
document simultaneously, and version control systems provide a way to manage these changes among
multiple people.

Traditional CI/CD with DevOps against GitOps

In traditional IT operations, as shown in Figure 1.1, the development team periodically hands over
new software versions to a quality assurance (QA) team. This team tests the software and passes it
to the operations team for deployment.

As software release cycles become shorter, traditional operations models struggle to keep up. The
operations team oversees configuring the infrastructure for new software versions while focusing on
system reliability, resilience, and security:

Figure 1.1 – Example of a traditional IT operations workflow

Managing infrastructure without advanced frameworks can be complex and requires specialized
knowledge. IT operations encompass all processes and services provided by IT staff to meet a business’s
technological requirements. This includes handling maintenance work and responding to customer
issues. In traditional models, development, QA, and operations teams often work under different
management structures, so detailed handoff processes and thorough documentation are crucial:

GitOps unveiled – reshaping development culture and practices 5

Figure 1.2 – Traditional organization model with separated teams

The traditional organizational model, which is characterized by distinct, separated teams, tends to
complicate the delivery process. This separation often leads to slower deployments and reduced
deployment frequencies. Additionally, the need to transition tasks between teams heightens the risk
of miscommunication, which can result in testing oversights and deployment errors.

Most development teams use automated build systems and CI to compile, test, and produce
deployable artifacts.

CI is a foundational process in modern software development that automates building, testing, and
packaging applications, as shown in Figure 1.3:

Figure 1.3 – Example of a CI workflow

In this system, software engineers frequently commit code changes to a central repository (for example,
a Git repository), where these changes are automatically built, tested, and prepared for integration
with the main code branch. This approach ensures that the software is always in a state ready for
production deployment, highlighting the importance of CI in maintaining the continuous flow of
software development.

An Introduction to GitOps6

CI’s automated processes are crucial for ensuring the quality and integrity of code before it merges
with the main branch. By automating these stages, CI minimizes the risks associated with human
error and speeds up the development cycle. However, the process often halts at the deployment stage,
which is still predominantly manual in many organizations. This manual deployment can involve
complex procedures or semi-automated scripts and often requires operations engineers to physically
transfer and restart applications on servers. Such manual interventions are prone to errors and lack
robust control mechanisms, making them inefficient and risky.

Building on the foundations of CI, CD takes automation a step further:

Figure 1.4 – Example of a CD workflow

CD is a practice where code changes, once they pass through CI’s build and testing phases, are
automatically prepared and ready for release to a production environment. It always keeps the software
in a release-ready state, dramatically simplifying the process of releasing updates and new features.

CD versus continuous deployment
CD and continuous deployment are closely related practices in software development that
streamline the release process. CD ensures every code change is automatically built, tested, and
prepared for release, allowing for manual deployment to production. Continuous deployment
goes a step further by automatically deploying every change that passes testing directly into
production, eliminating manual steps. This accelerates the release process but demands high
confidence in automation and testing protocols.

CD not only reduces the risks associated with deploying releases by enabling smaller and more
frequent updates that are easier to manage than larger, infrequent ones, but it also significantly
shortens prolonged testing cycles typically necessary for extensive code changes. This method enhances
collaboration among development, operations, and other teams, aligning all parties toward the shared
goal of rapidly and efficiently delivering high-quality software. CD efficiently manages and mitigates
potential risks associated with large-scale code modifications, fostering a more agile and responsive
software development life cycle.

CD empowers businesses to quickly adapt to market changes and customer feedback, maintaining a
competitive edge in innovation and customer satisfaction.

GitOps unveiled – reshaping development culture and practices 7

DevOps marks a significant shift in both organizational framework and mindset, placing a strong
emphasis on automation. DevOps, in essence, acts as the glue that binds the technical efficiencies of
CI/CD with the strategic goals of the organization. It emphasizes continuous feedback, monitoring, and
optimization throughout the development process, ensuring continuous improvement post-deployment.
This approach ensures that software development is not just a linear process ending with deployment
but a cyclical one, where feedback and performance data feed back into the development process.

GitOps is an influential operational model that builds upon the core practices of DevOps, which
are widely adopted in application development, and applies them to infrastructure automation. It
integrates essential principles such as version control, collaborative work, adherence to compliance
standards, and the use of CI/CD tools. This strategy facilitates effective and dependable management
of IaC processes.

By integrating DevOps into the CI/CD pipeline, organizations can create a more holistic, efficient,
and collaborative environment. This not only accelerates the pace of innovation and delivery but
also significantly enhances product quality and customer satisfaction, positioning the organization
competitively in an ever-evolving digital landscape.

In this model, the traditional roles of deployment and operations are transferred from the operations
team to the development team of the application. DevOps integrates software development (Dev)
with IT operations (Ops), aiming to reduce the overall system development life cycle. This integration
facilitates frequent delivery of features, fixes, and updates, ensuring they align closely with business goals.

The following are some key advantages of adopting DevOps:

• Enhanced collaboration between the development and operations teams

• Improvement in the quality of the products developed

• An increase in the frequency of releases

• A reduction in the time needed to bring new features to market

• Lower costs in design, development, and operational processes

• Reduced mean time to recovery (MTTR), enhancing system resilience and minimizing the
impact of disruptions

The evolution from DevOps to GitOps represents a natural progression in the quest for more efficient
and reliable software development and operations practices. While DevOps focuses on breaking down
the barriers between software development and operations while fostering a culture of collaboration
and continuous improvement, GitOps takes this a step further by centering the entire operational
workflow around the Git version control system. GitOps leverages Git as the single source of truth
for declarative infrastructure and application.

An Introduction to GitOps8

Reduced MTTR
Reducing the MTTR refers to improving one of the key DevOps Research and Assessment
(DORA) metrics, which is the average time it takes to recover from a failure or outage in a
system or service. This metric is crucial in understanding and enhancing the resilience and
reliability of IT operations. By reducing the MTTR, organizations can ensure that their systems
are restored more quickly after a disruption, minimizing the impact on users and business
operations. This improvement is often achieved through more effective incident management
processes, automation, and better preparedness for handling failures.

This approach not only streamlines deployment and management processes but also enhances
transparency, accountability, and reproducibility.

The transition from DevOps to GitOps is driven by the need for greater automation, consistency, and
security in managing complex and dynamic cloud-native environments.

GitOps automates the deployment process using Git’s powerful version control capabilities, which
means every change in the system can be tracked, reversed, and subject to peer review processes,
just like code changes in software development. This shift brings the rigor and precision of software
development to the world of operations, significantly reducing the potential for human error and
improving the stability and security of production environments.

Moreover, GitOps aligns perfectly with the containerized and microservices-oriented architectures that
are prevalent in modern cloud environments, enabling faster and more efficient deployment pipelines
that are crucial for businesses to remain agile and responsive in a rapidly changing digital landscape.

In the following sections of this chapter, we will delve deeper into the benefits of adopting GitOps.
We will explore why it should be used, its integration with Kubernetes, and other tools such as Argo
CD and Flux CD.

The fundamentals of GitOps and the advantages of
adopting it for platform engineering
DevOps emerged as a response to these silos, blending the roles of development and operations. It
extended the principles of CI/CD to include a cultural shift toward collaboration, aiming to break
down the barriers between developers and IT operations. The emphasis was on a holistic approach to
the software life cycle, ensuring that both development and operational considerations were integrated
from the start. DevOps embraced practices such as IaC and monitoring, fostering a more responsive
and agile environment.

GitOps, a more recent innovation, builds upon these foundations but introduces a significant shift: it
takes the principles of DevOps and CI/CD and centralizes them around the Git repository.

The fundamentals of GitOps and the advantages of adopting it for platform engineering 9

In a GitOps story, as illustrated in Figure 1.5, everything begins with a Git repository, where the entire
state of a system – code, configuration, environment settings, and even documentation – is stored and
versioned. This approach allows for a high level of transparency, traceability, and audibility as every
change is recorded and can be traced back to a commit:

Figure 1.5 – Example of a GitOps pipeline embracing DevOps

In GitOps, Git is not just a version control system; it’s the single source of truth for both application
code and infrastructure configuration. This approach leverages the strengths of Git – such as version
control, collaboration features, and the pull request workflow – to manage the entire deployment and
operational process. GitOps emphasizes a declarative approach, where the desired state of the system
is defined in Git and automated processes ensure that the actual state aligns with this desired state.

Everything from application code to infrastructure configuration is stored in Git repositories. This
centralization not only simplifies the process of managing and tracking changes but also ensures
consistency and transparency across all stages of development and deployment.

The workflow in a GitOps scenario is elegantly automated and highly efficient. Developers submit
changes via pull requests, which then undergo automated tests and reviews. Once approved, these
changes are automatically deployed to production environments, aligning with the principles of CI/
CD seen previously.

An Introduction to GitOps10

Pull request
A pull request is a feature in version control systems, particularly in Git, that facilitates
collaboration in software development. Acting as a checkpoint, a pull request allows developers
to inform others about changes they’ve pushed to a repository on a hosting service such as
GitHub or GitLab. After pushing a branch with updates, a developer can initiate a pull request
to merge these changes into the main branch. This process invites review and discussion on
the proposed changes, ensuring that code is vetted and refined collaboratively before being
integrated, thus enhancing code quality and shared understanding among team members.

This automation not only streamlines the deployment process but also significantly reduces the
chances of human error. Moreover, because the entire system state is version-controlled, rolling back
to a previous state in case of an issue is straightforward.

This process, often termed Git-centric, empowers teams to manage infrastructure and applications with
the same tools and processes used in code development, bringing a unified approach to software delivery.

GitOps represents a significant evolution from traditional practices that leverages the strengths of
Git, automation, and declarative models. This methodology provides a framework for realizing the
results of DevOps culture, offering an agnostic approach that can be implemented with various tools,
such as Kubernetes and CI/CD solutions.

The GitOps Working Group, with its defined set of GitOps principles, underpins this approach,
emphasizing the importance of declarative configurations, versioned and immutable states, automatic
pulling, and continuous reconciliation.

As we explore this further, these fundamentals will be illustrated with practical examples, showcasing
the real-world impact and advantages of adopting a GitOps mindset in platform engineering.

Why GitOps?
Adopting GitOps for platform engineering brings a multitude of advantages, reshaping how teams
interact with infrastructure and applications. This methodology leverages the strengths of Git,
automation, and declarative configurations, providing a robust framework for managing complex
systems. Here are some of the key benefits:

• Declarative and immutable nature: GitOps focuses on declaring the desired state of systems
rather than detailing imperative scripts. It adopts an immutable infrastructure approach where
changes are made by replacing resources rather than modifying existing ones, enhancing
consistency and stability.

• Automated synchronization: Central to GitOps is automatically synchronizing the system
state with the configurations described in Git to cover the full life cycle of infrastructure and
applications, including deployment, updates, scaling, and recovery.

Why GitOps? 11

• Pull request workflow integration: Operational processes in GitOps are deeply integrated with a
pull request workflow, embodying the philosophy of treating everything as code. This integration
facilitates code reviews, collaborative discussions, and shared knowledge and responsibility.

• Continuous feedback and monitoring: GitOps emphasizes continuous monitoring to detect
and remedy any divergence from the desired state, promoting ongoing system maintenance
and improvement.

• Enhanced efficiency and productivity: By automating platform engineering aspects, GitOps
reduces manual efforts and human errors, allowing teams to focus more on innovation.

• Improved consistency and reliability: Using Git as the single source of truth with declarative
configurations ensures consistent and reliable infrastructure across different environments.

• Faster recovery and rollback: GitOps enables quick rollbacks to previous states for enhanced
system resilience and faster recovery from failures.

• Collaboration and transparency: The methodology encourages collaborative platform
engineering, with peer reviews and discussions improving knowledge sharing and transparency.

• Streamlined audits and compliance: All changes are tracked in Git, simplifying auditing and
facilitating compliance with regulatory requirements and internal policies.

• Scalability and flexibility: GitOps scales efficiently with organizational needs and adapts to
various types of infrastructure, including cloud, on-premises, and hybrid environments.

• Enhanced security: The use of pull requests and code reviews adds an extra layer of security,
ensuring thorough scrutiny of changes to infrastructure and applications.

• Simplified onboarding and knowledge sharing: The Git repository provides a clear overview of
the system’s current state, aiding in onboarding new team members and fostering an environment
of accessible knowledge sharing.

• Continuous improvement and adaptation: The inherent feedback loops and monitoring in
GitOps enable teams to iteratively improve their systems and adapt to changing requirements.

Adopting GitOps presents various challenges for a company that can impact its transition to this
methodology. Firstly, there’s the learning curve and the need for training in specific tools such as
Kubernetes, Helm, or Argo CD, which can temporarily reduce productivity. Implementing GitOps
also requires a cultural shift toward rigorous code management and CI/CD practices. The initial setup
and integration process can be complex and time-consuming, necessitating significant investments
in time and resources.

Furthermore, organizing the Git repository structure efficiently is crucial as it directly affects
the manageability and scalability of deployments. Mismanagement here can lead to operational
inefficiencies and increased errors. Another critical aspect is secrets management; GitOps workflows
require sensitive data to be handled carefully to prevent security breaches. Proper strategies must be
implemented to securely store, access, and manage secrets within the GitOps processes to ensure that
automated deployments remain secure and efficient.

An Introduction to GitOps12

In this section, we highlighted the significant advantages and challenges of adopting GitOps for
platform engineering. This methodology capitalizes on the strengths of Git, automation, and declarative
configurations to offer a robust framework for managing complex systems. The next section will
introduce the integration between GitOps, IaC, and Kubernetes.

The integration between GitOps, IaC, and Kubernetes
In this section, we’ll delve into the intricate integration of GitOps, IaC, and Kubernetes, along with
key tools such as Argo CD and Flux CD. We’ll explore how this cohesive blend enhances cloud-native
operations, streamlining deployment processes and bolstering security, thereby revolutionizing the way
infrastructure is managed and applications are deployed in modern software development environments.

GitOps and IaC

IaC involves managing and provisioning infrastructure via code rather than manual procedures.
This approach involves creating configuration files that detail your infrastructure requirements, thus
simplifying the process of modifying and disseminating these configurations. IaC guarantees consistent
provisioning of the same environment each time, and at the same time, IaC transforms configuration
specifications into coded documentation, improving configuration management.

This approach helps avoid undocumented and spontaneous configuration alterations.

GitOps extends the familiar Git version control system to infrastructure and deployment management
and aligns closely with the principles of IaC. This integration allows developers to manage infrastructure
configuration and code deployment as they would their software development process, bringing
numerous advantages:

• Accelerated production time: Quicker infrastructure provisioning with reduced human error
leads to more predictable outcomes

• Template-based reusability: Use an IaC configuration file as a template, providing a baseline
for further related configurations

• Uniform deployment: Achieve consistent infrastructure deployment, avoiding minor
discrepancies that could lead to significant future issues

• Traceability and auditability: Integrating IaC with a code repository for source tracking offers
a detailed history of changes, including versioning and audit trails that identify who made
changes and when

• Enhanced organizational knowledge: Versioning documents the rationale behind changes,
creating a valuable resource for both new and existing employees

• Improved disaster recovery: IaC ensures the ability to rapidly reconstruct environments in
the event of a failure, minimizing downtime and business disruption

The integration between GitOps, IaC, and Kubernetes 13

GitOps and Kubernetes

GitOps and Kubernetes (https://kubernetes.io/docs/concepts/overview/)
represent a powerful combination in the realm of modern software development and infrastructure
management. Kubernetes, an open source platform for automating the processes of deployment, scaling,
and operations for application containers across clusters of hosts, provides a robust foundation for
managing containerized applications at scale. GitOps, on the other hand, is an operational framework
that applies the principles of Git – version control, collaboration, and compliance – to infrastructure
automation. When combined, GitOps and Kubernetes offer a highly efficient, scalable, and reliable
system for managing complex applications and infrastructure.

Kubernetes has become essential for orchestrating containerized applications, offering capabilities such
as automated rollouts and rollbacks, service discovery and load balancing (with its ability to assign
IP addresses to Pods and services for load balancing), storage orchestration, secret and configuration
management without exposing secrets or requiring Docker image rebuilds, and self-healing mechanisms
such as restarting failed containers and rescheduling Pods when node issues occur.

Additionally, Kubernetes facilitates horizontal scaling based on CPU usage and operates declaratively.
These features continue to evolve with each Kubernetes release.

The fusion of GitOps with Kubernetes significantly quickens and improves the efficiency of deployment
processes. This combination promotes more frequent deployments by enabling CD automation and
integrating essential feedback and control systems. By using Git’s declarative definitions, developers
can employ well-known workflows, which simplifies the ability to create new development or test
environments and deploy new features to a cluster. Consequently, this leads to an increased daily rate
of changes, accelerating the delivery of new features and functionalities to end users.

GitOps also empowers teams to become more self-sufficient. Traditionally, development teams relied
on operations teams for deploying changes in production. GitOps shifts this dynamic, allowing
development teams to be less dependent on platform and operations teams for deploying and managing
code and configuration changes in production. Simply committing changes to the Git repository and
merging pull requests can trigger the rest of the process through GitOps tools. This self-service nature
enhances efficiency and strategic capability.

GitOps enhances the management of deployments and infrastructure by utilizing Git as the source
of truth for declarative configurations. In a declarative system, the focus is on defining the desired
outcome rather than the steps to achieve it. This approach contrasts with the imperative approach,
which involves specifying a sequence of steps and often adds extra workload for operators. Within
GitOps, every component of the environment can be coded and declared in the Git repository. Once
changes are made and committed to Git, the system automatically processes these declarations to
create or update the necessary objects.

https://kubernetes.io/docs/concepts/overview/

An Introduction to GitOps14

This seamless integration with the declarative nature of Kubernetes is where the power of GitOps truly
shines. Kubernetes operates on a reconciliation loop that continuously adjusts the actual state of the
cluster to match the desired state defined by its configurations. When discrepancies between the current
and desired states are detected, Kubernetes takes automatic action to reconcile these differences. This
could involve creating, updating, or deleting resources to ensure the cluster’s configuration matches
what has been defined in the Git repository.

Together, the combination of GitOps and the Kubernetes reconciliation loop provides a robust framework
for automated system management. This ensures that all system components are deployed consistently
according to the precise configurations defined in Git, adhering to a fully declarative approach that
streamlines operations, enhances reliability, and maintains consistency across development, staging,
and production environments.

Observability is another crucial aspect of GitOps in a Kubernetes environment. It involves continuously
monitoring the actual state present in the cluster and comparing it to the desired state. GitOps aids in
measuring and monitoring what’s running on the cluster, alerting teams to any discrepancies. Modern
GitOps tools come equipped with monitoring and notification capabilities to support this function.

From a compliance and auditing perspective, GitOps offers significant advantages. With Git as the sole
source of truth, auditing becomes straightforward: auditors can assess the desired state by examining
the source code repository and verify the current state by reviewing the underlying infrastructure
provider and the Kubernetes cluster state. This simplifies compliance and auditing processes across
various domains.

For organizations that use multiple Kubernetes clusters for different business and team needs, managing
these clusters and maintaining consistent configuration and security policies is a significant challenge.
GitOps addresses this by allowing GitOps agents running across these clusters to manage everything
on behalf of the Ops team, making it an ideal solution for multi-cluster configuration management.

Disaster recovery (DR) is essential for organizations to recover quickly from incidents that disrupt
business operations, with the primary aim being to rapidly restore critical systems and IT infrastructure.
From the GitOps perspective, DR primarily handles configuration management, not data recovery.
This distinction is crucial because, while configurations are saved in Git, actual data is not. Tools such
as Git are useful for version control of configurations but do not aid in data recovery. For example, if
a database is deleted, Git cannot assist in its recovery; therefore, separate data recovery strategies are
necessary and specifically designed for restoring lost data.

In the Kubernetes ecosystem, the adoption of GitOps for automating infrastructure setup is on the rise.
This includes the creation of deployments, services, and various Kubernetes entities. DevOps and site
reliability engineering (SRE) teams are increasingly turning to GitOps for managing all infrastructure
configuration files as code. This approach leverages the inherent IaC characteristic of GitOps.

The integration between GitOps, IaC, and Kubernetes 15

Furthermore, GitOps enhances security protocols. It uses sophisticated cryptographic methods in Git
for monitoring and managing changes, and it can also authenticate changes to confirm authorship and
source. This practice ensures a securely defined intended state of the cluster. In the event of a security
breach, the immutable and auditable nature of Git’s source of truth is instrumental in reconstructing a
system separate from the compromised one, thereby minimizing downtime and boosting the efficiency
of incident responses.

The practice of separating responsibilities in software packaging and release to production further
adheres to the principle of least privilege, which diminishes the likelihood and severity of security
breaches and offers a smaller attack surface.

GitOps facilitates this by ensuring that the entire infrastructure environment and components are
defined declaratively in the Git repository. In the event of a disaster, recovery becomes a matter of
reapplying the configuration files from Git to quickly restore the ecosystem.

Kubernetes and Argo CD

Argo CD, a GitOps CD for Kubernetes (argo-cd.readthedocs.io), is a declarative tool for
continuous delivery specifically designed for Kubernetes. It functions as a standalone solution or can
be integrated into your existing CI/CD pipeline to efficiently deploy necessary resources across your
Kubernetes clusters.

Integrating GitOps and Kubernetes using Argo CD provides a streamlined approach for managing
cloud-native applications and jobs on Kubernetes. Argo CD, part of the Argo project family, offers a
suite of tools, including Workflows, Events, and Rollouts, that enhance Kubernetes-native application
delivery. This becomes particularly relevant for organizations transitioning to containerized environments
and Kubernetes deployments, where Argo CD can act as a comprehensive solution.

In large-scale deployments typical of big enterprises with numerous developers and a multitude of
microservices, the GitOps methodology shines. However, it often necessitates supplementary tools and
services for effective implementation. It’s not practical for each team in such an organization to operate
independently and manage its Kubernetes cluster. A more efficient strategy is a centralized platform
for operating and maintaining multi-tenant clusters. This setup gives teams the autonomy to manage
their workloads within these clusters, while still providing centralized oversight and maintenance.

Argo CD is instrumental in facilitating this centralized approach to cluster management, promoting
the adoption of GitOps. The following are some key factors to consider if you want to create an effective
GitOps strategy in Kubernetes with Argo CD:

• User onboarding: Simplifying the onboarding process is crucial. Centralizing the installation,
setup, and maintenance of deployment operators can ease the process of transitioning multiple
microservices to Kubernetes, rather than placing this burden on individual teams. Incorporating
single sign-on (SSO) is particularly beneficial in systems with a large user base, streamlining
the introduction of new users.

http://argo-cd.readthedocs.io

An Introduction to GitOps16

• Multi-tenancy and management: In environments with multiple tenants, users need secure
and flexible access to resources. Kubernetes’ role-based access control (RBAC) system is a
powerful feature but might not suffice for managing numerous clusters. Argo CD enhances
this with additional access control features, integrating seamlessly with SSO providers and
facilitating access to multiple clusters.

• Observability: A key feature of an effective CD tool is enabling developers to monitor and
track the state of their applications. Argo CD’s user-friendly interface provides detailed insights
into an application’s configuration, such as sync status with Git, specific out-of-sync elements,
and any operational issues.

In the following section, we will explore Flux CD, a tool that, when integrated with Kubernetes, enables
scalability and ensures consistent environments across various types of deployments.

Kubernetes and Flux CD

Flux (fluxcd.io) is an open and extensible CD solution for Kubernetes and represents a critical
component in the modern DevOps ecosystem.

At the time of writing, Alexis Richardson, CEO of Weaveworks, has announced on LinkedIn that the
company is facing economic challenges and will be closing its doors and shutting down commercial
operations. Weaveworks will be collaborating with a financial trustee, to be announced soon, to
manage the closure process. This decision comes despite the company generating significant revenue
and expanding its customer base, highlighting the financial volatility and strategic challenges faced
in maintaining its operations. The original announcement can be found here: https://www.
linkedin.com/posts/richardsonalexis_hi-everyone-i-am-very-sad-to-
announce-activity-7160295096825860096-ZS67/.

As a GitOps tool, Flux ensures that the state of manifests in a Git repository is consistently synchronized
with what is running in a Kubernetes cluster. GitOps, far from being just another tool, offers a method
for developers to manage operational workflows in Kubernetes using Git. This approach emphasizes
using a version-controlled system such as Git to deploy applications in Kubernetes, allowing developers
to directly push code into production. Changes can easily be tracked and reverted if necessary,
bolstering the reliability of deployments.

The following are the main features of Flux CD:

• Automated synchronization between a version control repository and a cluster

• Instant reflection of repository changes in the cluster

• Direct code deployment into production from repositories

• Version-controlled configuration, ensuring all configurations are up to date

• Disaster recovery capabilities, enabling new clusters to be set up with identical configurations

http://fluxcd.io
https://www.linkedin.com/posts/richardsonalexis_hi-everyone-i-am-very-sad-to-announce-activity-7160295096825860096-ZS67/
https://www.linkedin.com/posts/richardsonalexis_hi-everyone-i-am-very-sad-to-announce-activity-7160295096825860096-ZS67/
https://www.linkedin.com/posts/richardsonalexis_hi-everyone-i-am-very-sad-to-announce-activity-7160295096825860096-ZS67/

Summary 17

In the context of Kubernetes, a robust container orchestration platform, Flux CD plays an instrumental
role. Kubernetes excels in automating and simplifying application deployment and management,
particularly in scaling and maintaining consistent environments across diverse deployments. Flux
CD, adhering to GitOps principles, introduces a layer of automation and security by continuously
synchronizing application and infrastructure states with configurations stored in a Git repository.
This ensures that the actual state aligns with the desired state in a secure and controlled manner. The
synergy between Kubernetes and Flux CD offers several key benefits:

• Automated deployments: Flux CD’s automated updates and configurations are committed
to the Git repository

• Scalability and reliability: Kubernetes’ prowess in handling containerized applications is
complemented by Flux CD’s consistency in configurations

• Enhanced security: Flux CD’s use of Git as the single source of truth adds an extra security layer

• Operational efficiency: The integration streamlines operations, reducing manual intervention
and increasing efficiency

In conclusion, the combination of Kubernetes and Flux CD provides a comprehensive solution for
modern software deployment and management. Their integration enhances automation, scalability,
security, and efficiency, marking them as indispensable tools in cloud-native technologies and
DevOps practices.

Summary
This chapter provided an in-depth introduction to GitOps, exploring its transformative impact on
software development and operations. We began by contrasting GitOps with traditional CI/CD and
DevOps methodologies, highlighting its unique approach and advantages.

Then, we covered the history and evolution of deployment strategies that led to GitOps. Key principles
such as Git centralization, the declarative approach, automated synchronization, and continuous feedback
were discussed, emphasizing GitOps’ role in enhancing efficiency, consistency, and collaboration in
platform engineering.

Additionally, we delved into GitOps’ integration with tools such as Kubernetes, showcasing its scalability
and security advantages in modern cloud environments. We concluded by underscoring the significance
of adopting GitOps for its robust framework and adaptability to evolving technological landscapes.

In Chapter 2, we’ll dive into the practicalities of GitOps in cloud-native environments, examining its
seamless integration with Kubernetes, the architecture of lightweight Kubernetes distributions, and
the design of cloud-native CI/CD pipelines.

An Introduction to GitOps18

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• Argo CD – Declarative GitOps CD for Kubernetes: https://argo-cd.readthedocs.
io/en/stable/

• Flux CD: https://fluxcd.io/

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://fluxcd.io/

2
Navigating Cloud-native

Operations with GitOps

In Chapter 1, we delved into the foundational concepts of GitOps, contrasting its approach with traditional
CI/CD and DevOps methodologies. We explored its historical evolution, key principles such as Git
centralization and automated synchronization, and its integration with Kubernetes. This chapter will
emphasize GitOps’ role in enhancing scalability and security in modern cloud environments. By the
end of this chapter, you will have a comprehensive understanding of GitOps’ transformative impact
on software deployment and operations, setting the stage for its application in cloud-native operations.

In this chapter, we’ll focus on the following key areas:

• GitOps and cloud-native tech

• An introduction to Kubernetes

• Exploring K3s as a lightweight Kubernetes distribution

• Containers

• Sample workflow – effortless CD with Docker and K3s

Technical requirements
To engage with the examples in this chapter, you’ll need a Kubernetes cluster. While we’ll guide you
through how to install K3s in a way that’s suitable for these examples, any Kubernetes setup will suffice.

K3s is optimized for Linux systems, so ensure you have access to a Linux environment. If you’re using
a non-Linux system, consider alternatives such as Windows Subsystem for Linux (WSL) or Virtual
Box (see [1] and [2] in the Further reading section at the end of this chapter).

The code for this chapter is available in the Chapter02 folder in this book’s GitHub repository: https://
github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes

Navigating Cloud-native Operations with GitOps20

An overview of the integration of GitOps and
cloud-native technology
In Chapter 1, we explored GitOps, a fusion of DevOps and Git, emphasizing its ability to enhance
operational efficiency and system stability by applying software development techniques to infrastructure
management. Moving forward, Chapter 2 expands on this foundation, examining how GitOps integrates
with cloud-native technology. This technology signifies a significant shift in application development,
characterized by containerization, microservices, and dynamic orchestration, enhancing scalability
and resilience.

GitOps complements this by enabling systematic, version-controlled management of complex systems.
The synergy between GitOps and cloud-native technologies, particularly Kubernetes, leads to a more
dynamic, agile, and reliable approach to system management. This chapter aims to show how GitOps
simplifies and elevates the capabilities of cloud-native environments.

Additionally, GitOps, emerging from the confluence of DevOps and version control, leverages Git’s
power for managing and automating software system deployments and operations. By treating
infrastructure as code, GitOps facilitates reviewing, versioning, and deploying changes using Git’s
familiar pull requests and merges. This approach ensures consistency, traceability, and ease of rolling
back, proving especially potent in cloud-native settings.

Cloud-native technology, in contrast, represents a paradigm shift in how applications are constructed
and deployed. It involves using containers, microservices, and dynamic orchestration to create robust,
scalable, and independently deployable applications. This technology maximizes cloud flexibility,
enabling swift scaling and resilience. When integrated with GitOps, cloud-native technology becomes
more robust, allowing teams to manage complex systems more effectively with increased confidence.

Before delving into the practical applications of GitOps, it is essential to introduce Kubernetes, the
orchestration platform that’s central to cloud-native technology. Additionally, we will discuss K3s, a
lightweight variant of Kubernetes. K3s is particularly suited for personal development environments
as it allows Kubernetes clusters to be deployed on individual laptops. This setup allows for hands-on
experimentation and learning, providing a practical foundation for understanding and applying
GitOps techniques in a Kubernetes context. This knowledge will be crucial as we progress to more
advanced topics and practical demonstrations of GitOps in action.

An introduction to Kubernetes
In the upcoming sections, we will introduce Kubernetes, including a brief historical overview of the
original project and the core concepts of Kubernetes architecture. In the second part, we will delve
deeper into K3s and explore how you can use it to run a local Kubernetes cluster on your laptop.

An introduction to Kubernetes 21

What is Kubernetes?

Kubernetes is a robust and open source platform that was crafted to streamline the automation of
deploying, scaling, and managing application containers. It plays a central role in the kingdom of
container orchestration, offering a solid framework for the effective management of containerized
applications across multiple settings, including physical data centers and both public and private
cloud environments.

Originally, the Kubernetes project at Google, codenamed Project 7 as a nod to Star Trek’s Seven of Nine,
symbolized a more approachable version of Google’s Borg system. Owing to licensing constraints,
the term Kubernetes, Greek for helmsman, was adopted and reflected in its seven-spoked wheel logo,
subtly honoring its Star Trek-inspired origins. Following its 2014 announcement, Joe Beda, Brendan
Burns, and Craig McLuckie, among other Google engineers, spearheaded its development. Distinct
from Borg’s C++ coding, Kubernetes utilized Go. Its first version, Kubernetes 1.0, was released in
2015. Through collaboration with the Linux Foundation, Kubernetes became a cornerstone of the
Cloud Native Computing Foundation (CNCF), rapidly garnering integration into services offered
by major tech entities such as Red Hat, VMware, Mesosphere, Docker, Microsoft Azure, and AWS.

Kubernetes plays a critical role in cloud computing, facilitating both declarative configuration and
automation. It supports a range of container tools, including Docker, and its ability to manage complex
container architectures across multiple hosts makes it highly valuable.

Kubernetes simplifies the deployment and scaling of applications, and its automated rollouts and
rollbacks for containerized applications enhance reliability and efficiency. It allows containers to be
orchestrated across multiple hosts, handles how applications are deployed and scaled, and covers their
networking and storage needs.

The platform’s self-healing feature automatically restarts, replaces, and reschedules containers if they
fail. It also scales containers in response to varying loads and updates them without downtime using
a variety of deployment patterns.

Kubernetes supports a range of workloads, including stateless, stateful, and data-processing workloads.
It’s flexible enough to deliver complex applications, offering scalability and reliability while managing
workloads effectively.

Overall, Kubernetes has revolutionized the way containerized applications are deployed and managed,
making it a key tool in the world of modern software development and operations.

Kubernetes architecture

Kubernetes architecture is built to manage and orchestrate containerized applications. It consists of
several components that work together.

Navigating Cloud-native Operations with GitOps22

In Kubernetes architecture, the cluster is divided into two primary components: the control plane and
the worker nodes (or data plane). The control plane is responsible for global decision-making and
managing the cluster’s state. It includes essential elements such as the API server, etcd, scheduler,
controller manager, and cloud controller manager.

Conversely, node components are responsible for running the actual workloads. Each node contains
vital services such as Kubelet, a container runtime, and kube-proxy, which ensure that containers
run as expected and handle network communication within and outside the cluster.

This architecture allows for a robust and scalable system where the control plane maintains control
and nodes efficiently manage the workload.

The control plane includes the following components:

• API server (kube-apiserver): This central management entity processes REST requests,
validates them, and updates the corresponding objects in etcd. It’s the main interface of the
Kubernetes control plane.

• etcd: This is a consistent and highly available key-value store that acts as the primary storage
for all cluster data. It’s crucial for the cluster’s state management.

• Scheduler (kube-scheduler): The scheduler is responsible for assigning Pods to nodes based
on resource availability, user-defined constraints, taints, and selectors. This ensures each Pod is
placed on the optimal node that satisfies not only resource needs but also respects scheduling
policies such as taints and affinity/anti-affinity selectors.

• Controller manager (kube-controller-manager): This component runs various controller
processes in the background. It observes the state of the cluster, manages the life cycle of
workloads, and handles operations on nodes to ensure the desired state of the Kubernetes
cluster is maintained.

• Cloud controller manager: An architectural component that embeds cloud-specific control
logic, allowing cloud vendors to link their platforms with Kubernetes. It abstracts away the
cloud-specific code from core Kubernetes logic, enabling each cloud service to develop its plugins
independently. Each node component, which hosts the pods, consists of essential components
for maintaining and managing the containers and network communication:

 � Kubelet: This agent ensures that containers are running in a Pod, as per the specifications
defined in the Pod’s configuration. It manages the state of each Pod on the node, communicating
with the control plane of the master node (or master nodes in the case of highly available
Kubernetes clusters).

An introduction to Kubernetes 23

 � Container runtime: This is the underlying software that is responsible for running containers.
Kubernetes supports several container runtimes, such as Docker, containerd, and CRI-O,
enabling it to run containerized applications.

 � kube-proxy: This component oversees network interactions to and from the Pods. It routes
TCP and UDP packets and facilitates connection forwarding, adding a Kubernetes service
abstraction that acts as a proxy.

Figure 2.1 illustrates the Kubernetes architecture described here, with components for the control
plane and each component node:

Figure 2.1 – The Kubernetes cluster architecture

For a more in-depth understanding of each component in the Kubernetes architecture, please refer
to the official Kubernetes documentation (https://kubernetes.io/). This resource provides
comprehensive information and detailed explanations of various aspects of the Kubernetes system,
including its master and node components.

https://kubernetes.io/

Navigating Cloud-native Operations with GitOps24

Now that we have a basic understanding of what Kubernetes is and the main components that run
in a Kubernetes cluster, it’s time to learn how to set up a local cluster on your laptop using K3s, a
lightweight Kubernetes distribution.

Exploring K3s as a lightweight Kubernetes distribution
As mentioned previously, throughout this book, and specifically in this chapter, we will utilize K3s, a
lightweight Kubernetes distribution (https://k3s.io/), to run our examples.

K3s is particularly well-suited for scenarios where the full-scale implementation of Kubernetes may
be too resource-intensive or complex.

Its lightweight nature makes it ideal for edge computing and IoT scenarios, where resources are often
limited, and efficiency is paramount. In these environments, K3s provides the necessary Kubernetes
features without the overhead. Additionally, solutions such as vCluster from Loft have leveraged K3s
to run Kubernetes within Kubernetes, facilitating multi-tenancy on a host cluster. This approach
allows for isolated Kubernetes environments within a single cluster, optimizing resource usage and
offering scalability in multi-tenant setups. These use cases highlight K3s’s versatility and efficiency
in diverse computing environments. More information about K3s can be found in the official
documentation: https://docs.k3s.io/.

Origin of the K3s name
The name K3s, as explained in the official documentation (https://docs.k3s.io/),
is derived from the intent to create a Kubernetes installation that’s significantly smaller in
memory size. The naming convention follows that of Kubernetes, often abbreviated as K8s,
which consists of 10 letters. Halving this led to K3s, which was stylized to represent a more
compact version of Kubernetes. Unlike Kubernetes, K3s does not have an expanded form,
and its pronunciation is not officially defined. This naming reflects the goal of a lighter, more
efficient version of Kubernetes.

K3s simplifies the process of deploying a Kubernetes cluster, making it accessible even for small-scale
operations or development purposes. By removing non-essential components and using lighter-weight
alternatives, K3s significantly reduces the size and complexity of Kubernetes while maintaining its
core functionalities.

K3s maintain compatibility with the larger Kubernetes ecosystem, ensuring that tools and applications
designed for Kubernetes can generally be used with K3s as well.

One of the key features of K3s is its single binary installation, which includes both the Kubernetes
server and agent, simplifying the setup process. This makes it an ideal choice for developers who
want to quickly set up a Kubernetes environment for testing or development without the overhead
of a full Kubernetes installation.

https://k3s.io/
https://docs.k3s.io/

Exploring K3s as a lightweight Kubernetes distribution 25

K3s also offers flexible networking and storage options, catering to a wide range of use cases – from
small local clusters to larger, more complex environments. Its versatility and ease of use make it a
popular choice for those looking to explore Kubernetes without the need for extensive infrastructure.

Lastly, K3s’s lightweight nature and efficiency make it a suitable choice for continuous integration/
continuous deployment (CI/CD) pipelines, allowing for faster build and test cycles in environments
where resources are a consideration. In Chapter 5, we’ll learn how to use K3s to run Kubernetes
on Kubernetes.

Local cluster setup

Before diving into our first deployment example, it’s essential to set up the environment and understand
how Kubernetes, particularly K3s, facilitates our deployments. K3s is primarily designed for Linux
environments, so make sure you have a modern Linux system such as Red Hat Enterprise Linux,
CentOS, Fedora, Ubuntu/Debian, or even Raspberry Pi. If you’re a Windows user, you can still engage
with K3s by setting up WSL or running a Linux virtual machine (VM) through VirtualBox. These
setups will prepare you to harness the power of Kubernetes for your deployments.

Choosing your local Kubernetes environment – K3s, Minikube, and
alternatives

In this chapter, we have chosen to use K3s due to its lightweight nature and ease of setup, which makes
it particularly suitable for developing and testing Kubernetes environments. However, there are several
other alternatives for setting up local Kubernetes clusters that cater to different needs and platforms.
For instance, Colima (https://github.com/abiosoft/colima) is an excellent choice
for macOS users, offering a Docker and Kubernetes environment directly on macOS with minimal
configuration. Minikube (https://minikube.sigs.k8s.io) is another popular option that
runs on Windows, macOS, and Linux and is ideal for those looking to simulate a Kubernetes cluster
in a single node where they can experiment and test Kubernetes applications.

While K3s is our choice for this chapter, you are encouraged to use the local cluster setup that best
fits your platform or preferences. In subsequent chapters, we will primarily focus on using K3s or
Minikube. These platforms provide a convenient and consistent environment for learning and deploying
applications using Kubernetes, ensuring that the concepts and procedures we’ll explore are accessible
regardless of the specific local cluster technology used.

Setting up WSL

All details regarding the nature of WSL and the procedures for installing it on Windows are beyond
the scope of this book. However, comprehensive guidance on setup steps and in-depth information
about WSL can be accessed through the official Microsoft documentation (see [1] in the Further
reading section at the end of this chapter):

https://github.com/abiosoft/colima
https://minikube.sigs.k8s.io

Navigating Cloud-native Operations with GitOps26

Figure 2.2 – A conceptual illustration representing WSL on a Windows operating system

Remember, staying updated with the latest WSL versions and features through the official site will
enhance your experience and ensure compatibility with the most recent Windows updates.

Setting up VirtualBox

VirtualBox is an open source virtualization software developed by Oracle. It allows users to run
multiple operating systems on a single physical computer, creating VMs that can operate independently.
This makes it an invaluable tool for software testing, development, and educational purposes as it
provides a flexible and isolated environment for running and experimenting with different operating
systems without risk to the host system:

Exploring K3s as a lightweight Kubernetes distribution 27

Figure 2.3 – The VirtualBox home page at https://www.virtualbox.org/.

The detailed steps for installing VirtualBox are beyond the scope of this book. However, comprehensive
installation instructions and additional information can be found in the official documentation [2].

For the most current information and tips, visiting the official VirtualBox documentation is
highly recommended.

Unless otherwise specified, for this chapter and the subsequent ones, we will assume the use of an
Ubuntu-22.04 LTS installation within WSL. This setup provides a consistent and controlled environment
for our examples and demonstrations.

By focusing on a specific version of Ubuntu, we ensure that the instructions and scenarios presented
are as relevant and applicable as possible, aligning closely with the most common and stable Linux
distribution used in WSL.

K3s setup and installation verification

In this section, we’ll cover the basic steps that are necessary to establish a Kubernetes cluster using
K3s in its default configuration, assuming that WSL is already installed and functioning correctly.

Navigating Cloud-native Operations with GitOps28

Downloading and installing K3s

Follow these steps to download and install K3s:

1. Let’s start by opening a new Terminal window and typing the following command:

$ wsl --install -d Ubuntu-22.04

At a certain stage, the setup will require you to specify a UNIX username (for example, pietro),
which does not need to match your Windows username. The next step involves setting the
password that will be used to run a command as an administrator (sudo). If the operations
are completed correctly, the Terminal window should look like this:

Figure 2.4 – Successfully installing an instance of Ubuntu 22.04.3 LTS on WSL

2. Before proceeding with the K3s setup, it is always better to execute commands to update the
operating system with the latest patches:

$ sudo apt update
$ sudo apt upgrade

This ensures that you are working with the most recent and secure versions of the software.

Exploring K3s as a lightweight Kubernetes distribution 29

The apt update and apt upgrade commands
The apt update and apt upgrade commands are fundamental in maintaining the
software on systems using the APT package manager, commonly found in Debian-based Linux
distributions such as Ubuntu. The apt update command refreshes the local package index
by retrieving the latest information about available packages and their versions from configured
sources. This doesn’t install or upgrade any packages and instead updates the package lists to
inform the system of new, removed, or updated software. Once the package index has been
updated, the apt upgrade command is used to upgrade installed packages to their latest
versions. It downloads and installs the updates for any packages where newer versions are
available, ensuring the system is up-to-date and potentially more secure.

If required, enter the password you set up while installing Ubuntu. After executing these
commands, the Terminal should look as follows:

Figure 2.5 – Terminal window after executing the apt update and apt upgrade commands

Navigating Cloud-native Operations with GitOps30

3. The next step is to install K3s using the following command:

$ curl -sfL https://get.k3s.io | sh -s - --write-kubeconfig-mode
644

The preceding command will download and set up the necessary tools, followed by launching
the K3s server. The successful setup of a K3s instance is depicted in Figure 2.6:

Figure 2.6 – Successfully setting up K3s

Verifying the K3s installation

It is necessary to use two commands to check the correctness of the K3s setup and configuration. The
first one is as follows:

$ k3s --version

The preceding command is used to check which version of K3s we are running. If the K3s server is
running correctly, we should be able to see a message similar to the following:

Figure 2.7 – The result of executing the k3s –version command

Exploring K3s as a lightweight Kubernetes distribution 31

The second command that checks the correctness of the K3s setup is as follows:

$ k3s check-config

The k3s check-config command performs a diagnostic check on the system’s configuration to
ensure it is suitable for running a K3s cluster. It verifies critical aspects such as kernel compatibility,
required system dependencies, and the presence of necessary features and modules. This command helps
in identifying potential issues or missing configurations before proceeding with the K3s installation,
ensuring a smoother setup process:

Figure 2.8 – Successfully configuring the k3s check-config command

Congratulations! You have confirmed that the K3s server has been installed in your local development
environment. Now, it’s time to verify the Kubernetes cluster and deploy a test application.

Checking the Kubernetes cluster

To confirm that our K3s node is up and running, let’s type the following command:

$ kubectl get nodes

Navigating Cloud-native Operations with GitOps32

If the Kubernetes cluster is working correctly, the preceding command will produce the following output:

Figure 2.9 – Example output after running the kubectl get nodes command

After confirming that the node is up and running correctly, we can run the following command to
obtain more information about the running cluster:

$ kubectl cluster-info

The kubectl cluster-info command is a useful tool in Kubernetes for obtaining essential
information about a cluster. When executed, it displays key details such as the Kubernetes master and
services endpoint addresses. This command helps users quickly understand the state and connectivity
of their cluster’s control plane and core services such as KubeDNS and, when applicable, the dashboard.
It is particularly valuable for troubleshooting and ensuring that the Kubernetes cluster is configured
correctly and operational. Easy to use, kubectl cluster-info is often one of the first commands
you should run to verify the health and status of a Kubernetes environment, as shown here:

Figure 2.10 – Information provided after executing the kubectl cluster-info command

kubectl
kubectl is a command-line tool that serves as the primary interface for interacting with
Kubernetes. It allows users to deploy applications, inspect and manage cluster resources, and
view logs. Essentially, kubectl provides the necessary commands to control Kubernetes clusters
effectively. Users can create, delete, and update parts of their Kubernetes applications and
infrastructure using this versatile tool. It is designed to be user-friendly, offering comprehensive
help commands and output formatting options, making it easier to understand and manage
complex Kubernetes environments. kubectl is an indispensable tool for developers and
system administrators working with Kubernetes, offering a robust and flexible way to handle
containerized applications and services in various environments.

Exploring K3s as a lightweight Kubernetes distribution 33

Kubernetes manifest

A Kubernetes manifest is a configuration file, typically written in YAML or JSON, that defines resources
that should be deployed to a Kubernetes cluster. It specifies the desired state of objects, such as Pods,
Services, or Deployments, that Kubernetes needs to create and manage. This manifest enables users
to declare their applications’ requirements, networking, and storage configurations, among other
settings, in a structured and versionable format.

As an example, a basic Kubernetes manifest for deploying a simple application might look like this:

apiVersion: v1
kind: Pod
metadata:
 name: hw-gitops-folks
spec:
 containers:
 - name: hw-gitops-folks-container
 image: k8s.gcr.io/echoserver:1.4
 ports:
 - containerPort: 8080

In this manifest, a Pod named hw-gitops-folks is defined. It contains one container named
hw-gitops-container, which uses the echoserver:1.4 image from Kubernetes’ container
registry. The container exposes port 8080. This manifest, when applied to a Kubernetes cluster, will
create a Pod running a simple echo server that can be used for basic testing.

Our first deployment with K3s

Now that we have successfully set up, configured, and verified our K3s cluster, we are poised to embark
on an exciting phase: preparing for our first deployment. This step marks a significant milestone in
our journey as we transition from the foundational aspects of K3s to actively utilizing the cluster for
practical applications. The upcoming deployment process will not only reinforce our understanding of
Kubernetes concepts but also demonstrate the real-world utility of our K3s environment. It’s a moment
where theory meets practice, allowing us to see firsthand how our configured cluster can host and
manage applications. Let’s proceed with an eagerness to explore the capabilities of our Kubernetes
setup while keeping the practices we’ve learned and the robust infrastructure we’ve established in mind:

1. Let’s begin by typing the following command, which should list all the running Pods:

$ kubectl get pods

The result of its execution should look something like this:
No resources found in default namespace

Navigating Cloud-native Operations with GitOps34

2. The preceding output is normal since no deployments have been performed so far. Let’s try
another command:

$ kubectl get pods --all-namespaces

This time, the result should be different as we are requesting to include Pods running in all
namespaces, both user-defined and system-defined, such as those within the predefined kube-
system namespace. These Pods are essential for the operation of the Kubernetes system. The
specific Pods and their statuses are detailed in Figure 2.11, offering a comprehensive view of
the active system components within this crucial namespace:

Figure 2.11 – Example of running Pods in the kube-system namespace

What is a namespace in Kubernetes?
In Kubernetes, a namespace is a fundamental concept that’s used to organize clusters into logically
isolated sub-groups. It provides a way to divide cluster resources between multiple users and
applications. Essentially, namespaces are like virtual clusters within a physical Kubernetes cluster.
They allow for resource management, access control, and quota management, enabling efficient
and secure multi-tenancy environments. For instance, different development teams or projects
can operate in separate namespaces, without interference. Namespaces also facilitate resource
naming, ensuring that resources with the same name can coexist in different namespaces.
They play a crucial role in Kubernetes for scalability and maintaining order, especially in larger
systems with numerous applications and teams.

Creating different namespaces in Kubernetes is widely regarded as a best practice for several compelling
reasons. Namespaces provide a logical partitioning of the cluster, allowing for more organized and
efficient resource management. This separation is particularly beneficial in environments with multiple
teams or projects as it ensures a clear distinction between resources, reduces naming conflicts, and
enhances security by isolating workloads. Additionally, namespaces facilitate fine-grained access
control as administrators can assign specific permissions and resource limits to different namespaces,
preventing accidental or unauthorized interactions between distinct parts of the cluster. By using
namespaces, teams can also streamline deployment processes and monitor resource usage more
effectively, leading to a more robust and scalable Kubernetes environment. In essence, namespaces
are crucial in maintaining order, security, and efficiency in complex Kubernetes clusters. So, let’s get
started by creating one:

Exploring K3s as a lightweight Kubernetes distribution 35

1. Let’s continue by creating a new namespace before continuing with our first deployment:

$ kubectl create namespace gitops-kubernetes

The response to this command should look something like this:
namespace/gitops-kubernetes created

2. The command to delete a namespace is as follows:

$ kubectl delete namespace gitops-kubernetes

3. For the first deployment, we will create a Kubernetes manifest file that defines a deployment
for a simple “hello-world” web page, along with a corresponding service to expose it. This
manifest file will create a deployment that runs a container based on a generic hello-world
image and a service to make the deployment accessible (the complete version of the manifest
mentioned here can be found in this book’s GitHub repository):

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-world-deployment
 namespace: gitops-kubernetes
...
spec:
...
 spec:
 containers:
 - name: hello-world
 image: nginxdemos/hello
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: hello-world-service
 namespace: gitops-kubernetes
spec:
 type: NodePort
 ...
 ports:
 - protocol: TCP
 port: 80
 nodePort: 30007

Navigating Cloud-native Operations with GitOps36

To apply the manifest, we need to save it in a .yaml (or .yml) file, such as hello-world-
deployment.yaml (its name isn’t important).

4. To edit the file, we can use an editor such as nano by running the following command:

$ nano hello-world-deployment.yaml

This manifest file has two parts:

 � Deployment: It creates a deployment named hello-world-deployment that runs
a container using the nginxdemos/hello image, which serves a simple HTML page.
The container is configured to expose port 80. In the metadata section, we have specified
to run the Pod in the namespace we created previously – that is, namespace: gitops-
kubernetes.

 � Service: It creates a service named hello-world-service of the NodePort type to
expose the deployment. This service makes the hello-world application accessible on a port
on the nodes in the cluster (in this example, port 30007). In the metadata section, we have
specified to run the service in the namespace we created previously – that is, namespace:
gitops-kubernetes.

NodePort
In this hello-world service example, the NodePort service type was chosen to demonstrate a
simple way of exposing a service to external traffic in Kubernetes. NodePort opens a specific
port on all the nodes; any traffic sent to this port is forwarded to the service. While this is useful
for development and testing, it may not be ideal in a real-world cloud scenario, especially when
running on a VM in the cloud. This is because NodePort exposes a port on the host VM/node,
potentially posing a security risk by making the service accessible externally. In production
environments, more secure and controlled methods of exposing services are typically preferred.

5. To apply this manifest, use the kubectl apply -f <filename>.yaml command:

$ kubectl apply -f hello-world-deployment.yaml

The response to this command should look something like this:
deployment.apps/hello-world-deployment created
service/hello-world-service unchanged

6. Now, we can list the Pods and services that are running in the gitpos-kubernetes
namespace using the following command:

$ kubectl get pods --namespace gitops-kubernetes & kubectl get
services --namespace gitops-kubernetes

Exploring K3s as a lightweight Kubernetes distribution 37

The result of this command is shown in Figure 2.12:

Figure 2.12 – Results of applying the deployment file, where we can see

useful information such as the Cluster-IP and the assigned ports

Now that we have deployed our application in the Kubernetes cluster, the next crucial step is to test
its functionality. This is where port forwarding plays a key role.

Port forwarding

Port forwarding with kubectl allows us to temporarily route traffic from our local machine to a pod in
the Kubernetes cluster. This method is especially useful for testing purposes as it enables us to interact
with the application as if it were running locally, without the need to expose it publicly. By forwarding
a local port to a port on the pod, we can verify the deployment’s operational aspects, ensuring that our
application behaves as expected in a controlled environment before making it accessible to external
traffic. The following steps outline the process for executing port forwarding on the running pod and
testing its functionality using curl:

1. Start port forwarding: Use the following kubectl command to start port forwarding from
a local port to a port on the Pod:

$ kubectl port-forward pod/[POD_NAME] [LOCAL_PORT]:[REMOTE_PORT]

Replace [POD_NAME] with the name of your Pod. For instance, in Figure 2.12, the name of
the pod is hello-world-deployment-6b7f766747-nxj44. Here, [LOCAL_PORT]
should be replaced with the local port on your machine – for example, 9000 (ensure that the
local port is not already used by another running service!) – while [REMOTE_PORT] should
be replaced with the port on the Pod that you want to forward traffic to. In our case, as reported
in Figure 2.10, the Pod port is 80.

2. At this point, we are using the Pod’s name, hello-world-deployment-6b7f766747-
nxj44. So, if we want to forward traffic from local port 9000 to the Pod’s port, 80, the
command would be as follows:

$ kubectl port-forward hello-world-deployment-6b7f766747-nxj44
--namespace gitops-kubernetes 9000:80

Navigating Cloud-native Operations with GitOps38

This will produce the following output:
Forwarding from 127.0.0.1:9000 -> 80
Forwarding from [::1]:9000 -> 80

The preceding output indicates that port forwarding is set up on your machine to redirect
traffic from a local port to a port on a Kubernetes Pod or another network service. Keep this
command running as it maintains the port forwarding session.

3. Open a new Terminal or Command Prompt and type the following command to open a new
WSL shell:

$ wsl -d Ubuntu-22.04

4. Use curl to send a request to the local port that is being forwarded:

$ curl http://localhost:9000

This command sends a request to your local machine on port 9000, which kubectl then
forwards to the Pod’s port (80). You should see the output of the request in your Terminal.
Typically, this is the content that’s served by your application running in the Kubernetes Pod,
as shown in Figure 2.13:

Figure 2.13 – Example of content served by our application running in the Kubernetes Pod

Getting started with containers 39

Congratulations on achieving this remarkable result! You’ve successfully deployed your first application
in Kubernetes, and the content is being correctly served, as evidenced by the successful curl call.
This is a significant milestone in your journey with Kubernetes, showcasing your ability to not only
deploy an application but also ensure its proper functioning within the cluster.

In the upcoming section, we will delve deeper into Docker, closely examining its essential components,
functionalities, and practical applications. We’ll build our first Docker image and demonstrate how
to run it as a container locally.

Getting started with containers
Containers have become a cornerstone in cloud-native application development due to their ability
to package and isolate applications with all their dependencies. This isolation ensures consistency
across various environments, making them highly efficient for both development and deployment.
Container images, which are static files containing executable code and dependencies, follow a layered
structure for efficient modification and storage, with each layer representing changes or additions.

Despite the versatility of containers, Kubernetes does not provide a native mechanism for building
these images, necessitating external tools such as Docker.

Docker, an open source platform, has transformed the world of containerization by simplifying the
creation, deployment, and execution of applications in containers. It enables developers to encapsulate
applications with their dependencies in a unified format, facilitating software development. Docker’s
containers offer a semi-isolated environment, balancing isolation with efficiency, allowing multiple
containers to run concurrently on a single host. These containers are both lightweight and portable,
ensuring uniform functionality across diverse platforms, from local laptops to cloud infrastructures.

Docker files are instrumental in creating these images, specifying the steps and components to
be included.

The Open Container Initiative (OCI) standardizes container image formats and runtimes, further
enhancing interoperability and portability across different containerization technologies.

Docker setup

Up until now, we have focused on using Ubuntu 22.04 as an instance within WSL. While a step-by-step
setup of Docker falls outside the scope of this book, you can find comprehensive installation guides
and troubleshooting tips in the official Docker documentation: https://docs.docker.com/
engine/install/ubuntu/. After successfully installing Docker, you can verify its installation
and check that Docker is running correctly on your system by typing the following command in
your Terminal:

$ sudo docker run hello-world

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Navigating Cloud-native Operations with GitOps40

The sudo docker run hello-world command quickly verifies the installation and setup of
Docker by running a very simple container. When executed, it does the following:

• sudo: Ensures the command is run with superuser privileges, which are often required for
Docker commands.

• docker run: Tells Docker to run a container.

• hello-world: Specifies the image to use. In this case, it’s the hello-world image, a
minimal Docker image created by Docker, Inc. It’s commonly used as a test image to validate
that Docker is installed and running correctly.

If Docker has been correctly installed and configured, this command will pull the hello-world
image from Docker Hub (if it’s not already downloaded), create a new container from that image,
and run it. The container simply displays a message confirming that Docker is installed correctly and
then exits, as shown in Figure 2.14:

Figure 2.14 – Result of executing the docker run hello-world command

Getting started with containers 41

Docker alternatives

Although Docker is one of the most popular tools for building container images, there are several
alternative tools available:

• Podman: An open source, daemonless container engine that can run on Linux systems. It is
compatible with Docker but does not require a running daemon. Podman is known for enabling
easier management of containers and pods.

• Rancherdesktop: An open source application that provides all the essentials to work with
containers and Kubernetes on desktop.

• containerd: A core container runtime that adheres to industry standards, available as a service
for both Linux and Windows. It is capable of managing the entire life cycle of containers on
its host system.

• CRI-O: This is a realization of the Kubernetes Container Runtime Interface, facilitating the
use of runtimes compatible with the OCI. It serves as a bridge, connecting OCI-compliant
runtimes with kubelet.

• rkt (pronounced ‘rocket’): Developed by CoreOS, it’s a Pod-native container engine for Linux.
It’s designed for security, simplicity, and composability within modern cluster environments.

• LXD: A cutting-edge manager for system containers and VMs that provides a user experience
akin to VMs but through the use of Linux containers.

• OpenVZ: This is a virtualization solution built on container technology for Linux systems that’s
capable of generating several secure and isolated Linux containers on a singular physical server.

To assist in choosing the most suitable containerization tool for your specific needs, the following table
provides a comparison of various Docker alternatives. It highlights their key features and ideal use
cases, offering insights into which tool may best align with your project’s requirements or preferences:

Alternative Description

Podman Best for environments that prioritize security and for users who prefer a
solution without a daemon. It’s fully compatible with Docker’s CLI, making it a
seamless replacement.

Rancherdesktop A user-friendly, GUI-based tool tailored for developers who want an easier way
to manage containers and Kubernetes, especially on desktop environments for
development and testing purposes.

Containerd Chosen for its performance and reliability as a container runtime in production
environments. Lacks Docker’s image-building features but excels in running
containers efficiently.

Navigating Cloud-native Operations with GitOps42

Alternative Description

Rkt Previously a viable alternative, but its development has ceased, potentially limiting
its suitability for long-term projects.

OpenVZ Ideal for hosting solutions or for scenarios requiring multiple, isolated Linux
environments on a single host, with a focus on resource efficiency and scalability.

Table 2.1 – Comparative overview of containerization tools – evaluating

alternatives to Docker for diverse development needs

Dockerfile

The first step in creating a container image involves defining a Dockerfile, which is essentially a
blueprint for the image. This file contains a set of instructions and commands that tell Docker how
to build the image. It starts with specifying a base image to build upon, often a minimal version of an
operating system, such as Ubuntu or Alpine Linux. Then, additional layers are added by specifying
dependencies, copying application files, and setting environment variables. Each command in a
Dockerfile creates a new layer in the image, building up the environment that’s needed to run the
application. The following is an example of a Dockerfile:

Use an official Python runtime as a parent image
FROM python:3.8-slim
Set the working directory in the container
WORKDIR /usr/src/app
Copy the current directory contents into the container at /usr/src/
app
COPY . .
Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
Make port 80 available to the world outside this container
EXPOSE 80
Define environment variable
ENV NAME World
Run app.py when the container launches
CMD ["python", "app.py"]

Let’s take a closer look at this file:

• FROM python:3.8-slim: This line indicates the base image from which you are building.
The Dockerfile starts with the Python 3.8 image, specifically the slim variant, which is a smaller,
more compact version.

• WORKDIR /usr/src/app: This line sets the working directory inside the container to /
usr/src/app. Future commands will run in this directory.

Getting started with containers 43

• COPY . .: This line copies files from the Dockerfile’s current directory to the working directory
in the container (/usr/src/app).

• RUN pip install --no-cache-dir -r requirements.txt: This line executes
a command inside the container, which in this case is installing Python dependencies listed
in requirements.txt.

• EXPOSE 80: The line informs Docker that the container listens on port 80 at runtime. Note
that this does not publish the port.

• ENV NAME World: This line sets the NAME environment variable to World. This can be
used by the application running in the container.

• CMD ["python", "app.py"]: The default command to run when a container starts.
This line runs the Python application.

This Dockerfile provides a simple example of building an image of a simple Flask web app application
written in Python. It builds an image that includes the application and its dependencies, making it
ready to run in a containerized environment. Now, imagine that you have a Dockerfile in your current
directory together with a requirements.txt file and you want to build a Docker image from
this Dockerfile. The command you would use is as follows:

$ sudo docker build -t hello-world-py-app:1.0 .

At this stage, as shown in Figure 2.15, your container image is in the process of being built. During
this build, Docker retrieves any existing layers from public container registries such as DockerHub,
Quay, or Red Hat Registry. The topic of container registries will be introduced in the upcoming pages.
It then adds a new layer based on the instructions in your Dockerfile. If some layers are already present
locally, Docker will use these from the container cache or Docker cache, speeding up the build process
by avoiding redundant downloads:

Figure 2.15 – Result of the docker build command

Navigating Cloud-native Operations with GitOps44

The container image is now available in the local Docker cache and ready to be used. Its presence can
be verified with the following command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world-py-app 1.0 765f270eef8c 7 minutes ago 139MB
hello-world latest d2c94e258dcb 8 months ago 13.3kB

Once the image has been created, it can be used locally or uploaded to a public container registry for
external use, such as within a CI/CD pipeline. For our purposes, we’ll run the container image locally.
To do this, use the following command:

$ sudo docker run -p 8080:8080 -ti hello-world-py-app:1.0

The preceding command includes several options:

• The -p option binds a port on the host to a port on the container, allowing external access to
the container’s services

• The -t option allocates a pseudo-TTY, which provides a Terminal within the container

• The -i option enables interactive mode, allowing interaction with the container

• The -d option runs the container in the background and outputs a hash, which can be used
for asynchronous interaction with the container

Public container registry
A public container registry is an online service where users can store and share container images.
It serves as a centralized repository, facilitating the distribution of containerized applications. To
upload and manage images, users typically need to create an account with the registry provider.
This account allows them to publish, update, and maintain their images, making them accessible
to others. Public registries such as Docker Hub, Google Container Registry, and Amazon Elastic
Container Registry are popular choices, offering easy access over the internet. These platforms
not only provide storage for container images but often come with additional features such
as version control, cataloging, and security scanning. An account with these services enables
developers to deploy applications consistently across different environments, streamline software
development, and collaborate more effectively with others in the community.

Please note that the process of creating an account with a public container registry, although a crucial
step for managing and distributing container images, falls outside the scope of this chapter and
book. Each registry, such as Docker Hub or Google Container Registry, has its own set of guidelines
and procedures for account creation and management. You are encouraged to refer to the specific
documentation provided by these services for detailed instructions on setting up an account.

Sample workflow – effortless CD with Docker and K3s 45

The preceding command will launch the application within the Docker network and bind it to port
8080 on our local machine. It will then wait for incoming requests, as illustrated in Figure 2.16:

Figure 2.16 – Result of the docker run command

From a new Terminal, we can try to access the running container using curl:

$ curl http://localhost:8080

Alternatively, we can run the following command:

$ curl localhost:8080/[YOUR_NAME_HERE]

You’ll receive a response similar to the one shown in Figure 2.17, where I used my name to obtain
the output:

Figure 2.17 – Example of responses received from our Python Flask

application running as a containerized image

Now that we are equipped with the necessary tools and understanding of Docker and containers, in
the next section, will integrate these elements so that we can construct our first CD pipeline using
Docker and K3s.

Sample workflow – effortless CD with Docker and K3s
At this point, we are ready to create a very simple CD pipeline using the tools we’ve explored so far.
The basic idea is to simulate the operations performed by a developer who needs to update the Flask
app we’ve used so far to add a new feature that allows the current date and time to be retrieved.

Navigating Cloud-native Operations with GitOps46

Our example will consist of performing the following steps:

1. Local development: We will edit the previous Python Flask app to expose a new service that
returns the current date and time.

2. Dockerizing the application and running it locally: We will build the new version of the
Docker image locally using the docker build command, as we did previously. Use the Dockerfile
section as a reference.

After building the image, we will run it locally using Docker to ensure the containerized
application works as expected. Use the Dockerfile section as a reference.

3. Publishing the image to a public container registry: We will publish the build image to a
public registry repository.

4. Deploying to K3s: We will write the Kubernetes manifest file to specify how our application
should be deployed on K3s, including which Docker image to use and the desired number
of replicas.

You will apply this configuration to your K3s cluster using the commands you learned about in the
Exploring K3s as a lightweight Kubernetes distribution section of this chapter.

Let’s get started!

Local development

Edit the app.py file present in this book’s GitHub repository by adding the following Python code:

…
@app.route('/datetime')
def datetime():
 import datetime
 now = datetime.datetime.now()
 return now.strftime("%Y-%m-%d %H:%M:%S")
…

You’re free to use whatever code editor you like to edit this file – it doesn’t matter.

Dockerizing the application and running it locally

Follow these steps to Dockerize the application and run It locally:

1. In the Dockerfile section, we created the first version of our Docker image, tagged as hello-
world-py-app:1.0. Now that we have added a new feature, it’s time to create a new version
of that image. We will use a tag of 2.0 using the following docker build command:

$ sudo docker build -t hello-world-py-app:2.0 .

Sample workflow – effortless CD with Docker and K3s 47

2. Upon typing the following command, you should be able to see both images listed:

$ sudo docker images

The result of this command should look like this:
hello-world-py-app 2.0 a7d7ab4514fa 19 seconds
ago 145MB
hello-world-py-app 1.0 3f8f095a7b37 About an hour
ago 145MB

3. We can run the Docker image locally with the following docker command:

$ sudo docker run -p 8080:8080 -ti hello-world-py-app:2.0

This will produce a result similar to the following:
* Serving Flask app 'app'
* Debug mode: on
WARNING: This is a development server. Do not use it in a
production deployment. Use a production WSGI server instead.
 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:8080
 * Running on http://172.17.0.2:8080
Press CTRL+C to quit
…

4. From a new Terminal, we can try to access the running container using curl:

$ curl http://localhost:8080/datetime

We’ll obtain the current response:
2024-01-13 12:39:50

Well done – as a developer, you have tested that the new feature is working as expected! Now, we can
publish our image to a public repository.

Publishing the image to a container registry

Publishing our hello-world-py-app:2.0 Docker image to a public repository involves
several steps:

1. Assuming that you have already an account on a public container registry such as Docker
Hub, the first step is to open a new Terminal and log in to the registry using the Docker CLI:

$ sudo docker login

When requested, you need to enter your credentials – that is, the username and password you
used to create an account.

Navigating Cloud-native Operations with GitOps48

2. Before pushing an image, we need to tag it with the registry’s name. For Docker Hub, it’s
usually in username/repository:tag format. Run the following command to tag the
previously built image:

$ sudo docker tag hello-world-py-app:2.0 [yourusername]/hello-
world-py-app:2.0

3. Then, we need to push the tagged image:

$ sudo docker push [yourusername]/hello-world-py-app:2.0

This process will take some time because we are uploading our image to the repository.

4. To verify that the image is in the registry, log in to your Docker Hub account (or your registry’s
interface) and navigate to your repositories to confirm that the hello-world-py-app:2.0
image is listed there.

Deploying to K3s

The time to deploy our image to our local Kubernetes cluster has finally arrived! We can reuse the
same Kubernetes manifest file that we used in the Our first deployment with K3s section, but we are
going to apply a couple of edits, with the most important one being to update the manifest file so that
it indicates where the Kubernetes cluster has to download the image, using our container repository.
So, let’s get started:

1. In the deployment section of the manifest file, we have to change the image value from
nginxdemos/hello to [yourusername]/hello-world-py-app:2.0. Then, we
have to change the name (where specified in the file) from hello-world to first-cd-
pipeline:

 spec:
 sectioners:
 - name: first-cd-pipeline
 image: [yourusername]/hello-world-py-app:2.0

Here, we have also changed the name of the deployment to first-cd-pipeline-
deployment. The deployment file can be found in the Chapter02 folder in this book’s
GitHub repository.

2. Save the new file, naming it as first-cd-pipeline-deployment.yaml, and apply
the deployment with the following command:

$ kubectl apply -f first-cd-pipeline-deployment.yaml

Sample workflow – effortless CD with Docker and K3s 49

The response should look like this:
deployment.apps/first-cd-pipeline-deployment created
service/first-cd-pipeline-service created

3. Before establishing port forwarding, as described at the end of the Our first deployment with
K3s section, we need to get some useful information by running the following command:

$ kubectl get pods --namespace gitops-kubernetes & kubectl get
services --namespace gitops-kubernetes

This will produce an output similar to the following:
NAME TYPE CLUSTER-IP
EXTERNAL-IP PORT(S) AGE
first-cd-pipeline-service NodePort 10.43.172.10
<none> 80:30007/TCP 29s
NAME READY STATUS RESTARTS
AGE
first-cd-pipeline-deployment-5b85cfd665-5626b 1/1
Running 0 29s

4. At this point, we have all the information we need to perform port forwarding:

$ kubectl port-forward first-cd-pipeline-deployment-5b85cfd665-
5626b --namespace gitops-kubernetes 8080:80

5. Open a new Terminal and use curl to test that the new feature has been deployed and hosted
by the K3s cluster:

$ curl http://localhost:8080/datetime

You should see an output similar to the following:
2024-01-13 17:59:39

6. To delete the deployment, type the following command:

$ kubectl delete -f first-cd-pipeline-deployment.yaml

Congratulations on reaching this milestone with a manual CD deployment!

The steps outlined here for publishing a Docker image to a public container registry should be viewed
as a manual example that illustrates the basic principles of CD. In practice, however, this process is
typically automated using tools such as Git Actions, which streamline and optimize the deployment
cycle. While these manual steps provide a foundational understanding, real-world applications often
rely on more sophisticated automation for efficiency and consistency. In the next chapter, we’ll delve
into how such tools can be integrated into your workflow, thereby enhancing the CD process and
reducing the need for manual intervention.

Navigating Cloud-native Operations with GitOps50

Summary
In this chapter, we navigated the practical aspects of deploying cloud-native applications using Kubernetes
and K3s, highlighting key techniques for efficient container management and orchestration. This chapter
focused on building foundational skills that are crucial for managing cloud-native environments,
including understanding Kubernetes resources and deployment methodologies.

As we move to the next chapter, the emphasis will shift to introducing Git tools. We’ll explore how
these tools can be leveraged to create an automated CI/CD pipeline, an essential component for
seamlessly deploying and managing cloud-native applications, as well as enhancing development
and operational workflows.

Further reading
To learn more about the topics that were covered in this chapter, take a look at the following resources:

• [1] https://learn.microsoft.com/en-us/windows/wsl/about

• [2] https://www.virtualbox.org/

https://learn.microsoft.com/en-us/windows/wsl/about
https://www.virtualbox.org/

3
Version Control and

Integration with Git and GitHub

So far, our exploration has shed light on the foundational concepts of GitOps and its critical role in
managing cloud-native operations. This journey has involved unpacking the principles, benefits, and
transformative nature of GitOps in infrastructure management, as well as its capacity to enhance and
streamline cloud-native processes.

This chapter will further expand on these concepts. It will delve into the significance of Git in version
control, an essential component of modern software development. The chapter will also explore
GitHub’s contribution to collaborative development and how it can be maximized for team efficiency.
Additionally, it will discuss the integration of GitOps practices with Git and GitHub, highlighting
automated integration processes.

The chapter outlines the best practices for utilizing Git and GitHub within a GitOps framework, aiming
to enhance workflow efficiency and promote a strong DevOps culture.

In this chapter, we’ll focus on these key areas:

• Version control systems

• Why Git?

• Exploring GitHub

• Integrating GitOps and GitHub

Technical requirements
To fully engage with the concepts and practices presented in this chapter, there are a few technical
requirements. You should have a basic understanding of software development processes and a
familiarity with command-line tools. Access to a computer with internet connectivity is necessary
to follow along with examples involving Git and GitHub. This hands-on approach will enable you to
apply the theories and practices of GitOps in real-world scenarios.

Version Control and Integration with Git and GitHub52

The code for this chapter is available in the Chapter03 folder of our GitHub repository at https://
github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes.

Exploring version control systems – local, centralized, and
distributed
Version control systems (VCSs) are essential tools in modern software development, as they are
responsible for enabling efficient management of changes to files, especially code. Git, a widely
used VCS, exemplifies this by tracking modifications, allowing users to view and revert to specific
versions of files as needed. This functionality is crucial for collaborative projects, where it provides a
comprehensive record of who made changes, when, and why, enhancing accountability and clarity.

At its core, version control is about recording changes over time. This makes it easier to recover
previous states of a project, whether for fixing bugs, testing, or undoing changes. It’s not limited to
software code; version control can be applied to any file type, making it an asset for professionals such
as graphic or web designers who might need to manage different versions of their work. The use of a
VCS minimizes risks associated with file loss or errors, as it provides a safety net for easily reverting
to earlier states and understanding the evolution of a project. This leads to increased efficiency and a
more structured workflow with minimal overhead.

By integrating version control into their workflow, teams and individuals gain a powerful tool to
navigate the complexities of project development, ensuring a smoother, more controlled process of
continuous improvement and collaboration.

VCS can be categorized into three main types: local, centralized, and distributed:

• Local VCSs (LVCSs): These are the simplest forms. They involve keeping track of changes in
files on a local computer, typically using a database that stores all the changes to files under
revision control. This system is straightforward but has limitations, especially in the contexts
of collaboration and data backup. Figure 3.1 shows an example of LVCS on the left side.

• Centralized VCSs (CVCSs): These systems, such as Subversion (SVN), have a single server
that contains all versioned files. Various clients check out files from this central place. This setup
significantly enhances collaboration compared to LVCS, as everyone knows what everyone else
is working on. However, the central server is also a single point of failure; if it goes down, no
one can collaborate or save versioned changes.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes

Exploring version control systems – local, centralized, and distributed 53

Figure 3.1 – An example of LCVS and CVCS

Concurrent version systems and SVN
The Concurrent Versions System (CVS) was an early version control system that enabled
collaborative software development by allowing teams to work simultaneously on a project using
a centralized repository. However, it had limitations, especially in handling binary files. It also
lacked advanced features. SVN was developed as a modern alternative to CVS, addressing these
shortcomings. SVN, also a centralized system, improved collaboration by allowing multiple
users to work efficiently on a project with a centralized source for file changes, enhancing the
tracking and management of changes made by different team members.

• Distributed VCSs (DVCSs): Systems such as Git fall into this category. Instead of a single central
repository, each user has a complete copy of the entire repository. This approach allows for
more complex workflows, increases redundancy and backup options, and enables offline work.
It also allows for various forms of merging and branching, offering a more flexible approach
to version control, especially for large-scale projects with many contributors.

Version Control and Integration with Git and GitHub54

Figure 3.2 – An example of DVCS

Having explored the landscape of VCSs—including LVCSs, CVCSs, and DVCSs, each offering distinct
benefits and suited to specific project needs—it’s clear why Git stands out among DVCSs. Let’s delve
deeper into the unique advantages and capabilities that make Git an essential tool in modern software
development in the next section.

Why Git?
The story of Git begins with the developmental challenges of the Linux kernel project in the early
2000s. This period saw Linus Torvalds, the creator of Linux, facing a dilemma with the existing version
control tools. The limitations and restrictions of the proprietary DVCS, BitKeeper, used by the Linux
community at that time, led to the need for a new system. This spurred the creation of Git in 2005,
marking a significant turn in the version control system landscape.

Git was designed with specific goals in mind, drawing from the lessons learned during the use of
BitKeeper. Key among these were speed, simple design, and robust support for non-linear development.
The system was tailored to handle large projects such as the Linux kernel efficiently both in terms of
speed and data size. This focus on efficiency and flexibility was crucial given the scale and complexity
of such projects.

Why Git? 55

The structure of Git is unique and effective. It is a distributed version control system, meaning that
every user has the complete history of the project stored locally. This design not only enhances speed
but also enables a more flexible and secure approach to version control. Repositories in Git are
comprehensive, containing commits, which are essentially snapshots of the project at various stages,
as well as references to these commits (known as heads). Over the years, Git has evolved and matured,
retaining its initial qualities while becoming more user-friendly. Its integration with platforms such
as GitHub (we will delve into more details about GitHub in the Exploring GitHub section of this
chapter), Bitbucket, and GitLab has further amplified its capabilities, providing centralized hubs for
collaboration, code sharing, and project management.

To illustrate the widespread adoption of Git, it’s worth noting that the GitHub community announced
having surpassed 100 million developers on their platform:

https://github.blog/2023-01-25-100-million-developers-and-counting/

The adoption of Git in GitOps practices underscores its reliability and efficiency, making it a cornerstone
in modern software development and version control.

Having understood the importance of Git from various perspectives, we will now shift our focus to a
more practical approach. In the upcoming sections, we’ll begin with the basics of Git commands and
examples to offer a hands-on experience.

Git setup

This chapter doesn’t cover the details of Git installation in depth, but you can find a thorough, step-
by-step guide in the official Git documentation (refer to [1] in the Further reading section at the end
of this chapter). For the purposes of our discussions, we’ll assume that Git is already installed on a
Windows Subsystem for Linux (WSL) Ubuntu 22.04 distribution. It is important to underline that
Git can be natively installed on Windows (without WSL), macOS, and Linux.

For additional information on setting up WSL, please refer to Chapter 2, particularly the Setup of WSL
section, which provides relevant guidance and insights.

To verify your Git installation, you can enter a specific command in your command prompt. This
command will help you confirm that Git is properly installed and functioning on your system:

$ git version

The expected response should resemble the following:

git version 2.45.1

Great job! In the following sections, we will delve into the basics of Git, explore its commands, and
examine the most interesting features that are essential for GitOps.

https://github.blog/2023-01-25-100-million-developers-and-counting/

Version Control and Integration with Git and GitHub56

Creating and cloning a Git repository

A Git repository is a cornerstone in the Git version control system, encompassing all project files and
their revision histories. It’s marked by the .git directory containing necessary change-tracking data.
Repositories exist either as local entities on a user’s computer or as remote versions on servers such
as GitHub, enabling both individual work and collaborative efforts. They play a crucial role in project
version management and evolution, storing files and histories as commits in a structured, linked-list
format. This setup supports varied interactions such as cloning (creating a local copy of a repository
from a remote server), branching (diverging from the main code base to create separate versions for
development or testing without affecting the original code), and code version comparisons (examining
the differences between various versions of code files to track changes or merge updates).

A Git repository can be started using two commands:

• git init: This command is used to initialize a new Git repository in a directory that is not
currently under version control. Executing this command creates a hidden subfolder named
.git in the directory, setting up the necessary structure for repository management and
version control.

• git clone: This command is used to create a local copy of an existing Git repository, typically
one that’s hosted remotely such as on GitHub. When you clone a repository, it downloads not
only the project’s files but also its complete history and all branches into your local repository.
This process ensures that you have the entire development history of the project at your disposal.

Open the command prompt and activate a WSL instance, as detailed in Chapter 2, in the Setup WSL
section, then follow the ensuing numbered steps to create and clone a Git repository:

1. Create a new directory named Chapter_3:

$ mkdir Chapter_3

2. To set up Chapter_3 as the current working directory, type cd Chapter_3 into the
command prompt.

3. Once in the Chapter_3 directory, you are ready to initialize a new Git repository using the git
init command. This step is crucial for starting version control in your new project directory:

$ git init

The output from the command should look something like this:
hint: Using 'master' as the name for the initial branch. This
default branch name
hint: is subject to change. To configure the initial branch name
to use in all
…

Why Git? 57

hint: git branch -m <name>
Initialized empty Git repository in /home/pietro/Chapter_3/.git/

4. By listing the contents of the working directory using the ls -a command, you should be
able to see the newly created .git hidden directory. This directory is an indication that the
Git repository has been successfully initialized:

$ ls -a

The response to this command should resemble the following output:
. .. .git

5. To list the contents and subfolder structure of the .git directory, you can use the ls -a
./.git command. This will display all the files and subdirectories within the .git directory,
providing insight into the structure of the initialized Git repository:

$ ls -a ./git

The output should look like the following:
. .. HEAD branches config description hooks info
objects refs

6. To initialize a repository by cloning it, you should first navigate to a different directory. Once
there, execute the clone command with the appropriate URL to create a copy of an existing Git
repository in that new location. This process will replicate the repository, including its history
and branches, into your specified directory:

$ git clone https://github.com/PacktPublishing/Implementing-
GitOps-with-Kubernetes

The output from the command should look something like this:
Cloning into 'Implementing-GitOps-with-Kubernetes'...
remote: Enumerating objects: 151, done.
remote: Compressing objects: 100% (94/94), done.
...
Resolving deltas: 100% (32/32), done.

We have now learned how to create a new repository from scratch or by cloning an existing one.
Next, we’ll focus on understanding and using basic Git commands to start recording changes in our
repository. This step is crucial for managing and tracking the evolution of your project files.

Version Control and Integration with Git and GitHub58

The basics of Git

Understanding the basics of Git involves familiarizing yourself with a set of fundamental commands that
facilitate version control in software development. These commands enable you to track and manage
changes to your project’s files, offering control over every aspect of its evolution. From staging and
committing changes to managing branches and updating your project with the latest developments,
mastering these commands is essential for the effective use of Git. This introductory overview will
guide you through key commands such as git status, git add, git commit, git branch,
git merge, git pull, and git push, each playing a critical role in the Git workflow:

• git status: This command shows the status of changes, indicating whether they are
untracked, modified, or staged.

• git add: This command stages changes for inclusion in your project’s history. It prepares the
changes for the next step, allowing you to control what becomes part of the project’s history.

• git commit: This command saves the staged changes to the project’s history, functioning
like capturing a snapshot. It finalizes what you have staged with git add.

• git branch: Use this to view the branches being worked on locally, giving insight into the
various lines of development.

• git merge: This merges different lines of development and is commonly used to integrate
changes from one branch into another (e.g., merging a feature branch into the master branch).

• git fetch: This command updates your local database of changes from a remote repository,
which is useful for reviewing updates before integrating them into your local branch.

• git pull: This updates your local development line with changes from its remote counterpart.
It is useful when you need to reflect changes made by others in your local environment.

• git push: This updates the remote repository with commits made locally, ensuring that the
remote repository reflects your recent changes.

A basic Git commit-status-push loop example

Let’s start with a practical example of how to use Git locally using the commands listed in the The
basics of Git section. You are free to use the repository initialized in the Creating and cloning a Git
repository section of this chapter or to start with a new one:

1. Set up a GIT identity:

$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"

Why Git? 59

2. Use the git status command to see the current state of your files, whether they are
untracked, modified, or ready to be committed:

$ git status

The response to this command should look something like this:
On branch master
No commits yet
nothing to commit (create/copy files and use "git add" to track)

This indicates that your working directory is clean, meaning that no tracked files have been
modified and no untracked files are present. Additionally, it confirms that you’re on a specific
branch (master) that hasn’t diverged from its remote counterpart.

3. Create a new non-empty file in the working directory:

$ echo 'The content of this file will be committed.' > README

The preceding command will create a new non-empty README file in the current working directory.

4. Execute the git status command again:

On branch master
No commits yet
Untracked files:
 (use "git add <file>..." to include in what will be
committed)
 README
nothing added to commit but untracked files present (use "git
add" to track)

The README file appears with the untracked status because Git recognizes it as a file
that is not present in the last commit and that hasn’t been prepared for inclusion in future
commits. The untracked status prevents Git from automatically adding files that might
not be intended for version control, such as binary files. To include the README file in your
project’s version history, you need to explicitly track it with Git, ensuring it’s considered for
subsequent commit snapshots.

5. To track modifications, to add the new file, use the git add command:

$ git add README

6. Execute the git status command again:

On branch master
No commits yet
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
 new file: README

Version Control and Integration with Git and GitHub60

README is now marked as staged because it appears under the Changes to be committed
section, indicating that it’s ready for the next commit.

7. With our staging area prepared as desired, it’s now time to record our changes in the repository’s
history using git commit -m "Add the README file", whereby we specify the
modifications that we’ve implemented:

$ git commit -m "Add the README file."

The output from the git commit command should be like the following:
[master (root-commit) f933b54] Add the README file.
 1 file changed, 1 insertion(+)
 create mode 100644 README

Whenever you add, modify, or delete one or more files (or non-empty folders), you’ll need to
repeat steps 5 and 7 to ensure that those changes are properly staged and committed.

Git workflows

The basic Git workflow involves a strategic approach to branching that facilitates efficient development
and release processes. This strategy includes different types of branches:

• Main (or Master): The foundational branch where production-ready code is maintained
throughout the project’s life cycle

• Develop: Initiated alongside the main branch, it houses pre-production code and features
under testing

• Feature: Employed for developing new features, these branches merge back into the develop
branch upon completion

• Release: Dedicated to preparing code for production release

• Hotfix: Addresses urgent fixes directly in the main branch

In this workflow, changes are tracked as commits. They document the history of file modifications,
including what changed, who changed it, and when. This structure not only organizes work effectively
but also accelerates the release cycle by clearly defining the purpose of each branch and streamlining the
integration of new features, bug fixes, and releases. Figure 3.3 illustrates an example of a Git workflow.

Exploring GitHub 61

Figure 3.3 – An example of a Git workflow

Initially, the content of a repository resides in a default branch. For making modifications or additions,
it’s recommended to create and work within your own branch. This practice ensures that the main
code base remains stable while you develop features or fixes. Delving deeply into the intricacies of Git,
including branching, merging, and remote strategies, exceeds the scope of this book. However, for
those seeking an in-depth exploration, Mastering Git by PACKT, [3] in the Further reading section,
offers comprehensive insights into advanced Git concepts. It’s an excellent resource for expanding
your Git knowledge beyond the basics.

This section concludes our brief exploration of Git, marking the beginning of our journey into GitHub.
The upcoming section will introduce and delve into GitHub, presenting its significance and utility in
the world of GitOps.

Exploring GitHub
GitHub is a vital platform in the world of software development, serving as a hub for collaborative
projects using Git. It extends the functionality of Git by providing a web-based graphical interface.
GitHub facilitates the hosting of both public and private repositories, making it easier for individuals
and teams to collaborate on projects regardless of their geographical location. Its importance lies not
just in code storage but also in fostering a community where developers can share, contribute to, and
build upon each other’s work, enhancing the open source development culture.

Note
Creating a GitHub account is essential for storing source code on this widely used platform. This
book will guide you through using GitHub to manage code in public and private repositories.
Detailed instructions for account creation are available on GitHub’s website, where you can
find all the information needed to get started (https://github.com/).

SSH access offers a secure way to interact with Git repositories, bypassing the need for entering
a username and password with each command. It’s particularly useful for cloning public projects
without an account. For forking or pushing changes, however, an account is necessary. For
detailed setup instructions, refer to GitHub’s official SSH access guide (https://docs.
github.com/en/authentication/connecting-to-github-with-ssh).

https://github.com/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/authentication/connecting-to-github-with-ssh

Version Control and Integration with Git and GitHub62

GitHub significantly enhances collaborative software development by enabling remote teamwork and
streamlining processes such as bug tracking and continuous integration. Its pull request system bolsters
collaboration, facilitating code review and merging. Moreover, GitHub serves as a comprehensive
code hosting platform, supporting both public and private repositories, thus bolstering both open
source and private projects. This accessibility and integration with development tools makes GitHub
indispensable for developers worldwide.

GitHub’s ecosystem

The GitHub ecosystem is a comprehensive and dynamic environment that extends beyond simple
code hosting. It encompasses a wide range of tools, integrations, community features, and services
that support the entire software development life cycle. This includes project management tools, issue
tracking, continuous integration and deployment services, and code review facilities. Additionally,
GitHub offers a vast community and network of developers contributing to open source projects,
sharing insights, and collaborating on various initiatives. This ecosystem has become an integral part
of the software development world, fostering innovation and collaboration among developers globally:

• Version control: At its core, GitHub offers Git-based version control for managing and tracking
code changes

• Issue tracking: It includes tools for reporting and tracking bugs, feature requests, and tasks
within projects

• Collaboration features: Features such as pull requests and code reviews facilitate collaborative
coding and team interaction

• GitHub actions: For automation of workflows, such as Continuous Integration and Continuous
Deployment (CI/CD)

• Project management: Tools for organizing and prioritizing work, such as Projects and
Kanban boards

• Community and networking: A platform for developers to contribute to open source projects,
network, and collaborate

• Marketplace: Offers third-party apps and integrations to extend GitHub functionality

• GitHub Pages: Provides hosting for static websites and documentation directly from a
GitHub repository

• Security Features: Includes features for vulnerability scanning and managing access controls

Having gained an understanding of what GitHub is and how to access it, it’s time to shift our focus
toward practical applications.

Exploring GitHub 63

GitHub enhances the software development process by integrating tools for better code quality, such
as command line operations, issue discussions, pull requests, and code reviews, alongside a vast array
of apps available in the GitHub Marketplace.

It fosters collaboration through the GitHub flow, enabling developers to efficiently manage work within
repositories, outline project directions, and seamlessly merge updates after thorough discussion and
agreement. It thereby transforms the conventional methodologies of software construction.

GitHub flow

The GitHub flow is a branch-based workflow integrating Git commands for global teams. It involves
creating branches for parallel development, adding commits for reversible project points, and using
pull requests to foster transparency (see the Git workflow section in this chapter). Code review
is central, thereby promoting an open culture. Merging incorporates changes seamlessly, while
deployment ensures robust code. This workflow adapts to various collaboration scales, from small
teams to global contributions, emphasizing pull requests for discussion and integration. GitHub’s
tools replace traditional email reviews, streamlining the development process. We can summarize
the GitHub Flow in the following steps:

1. Create a repository. The first thing to do is to create a repository in our GitHub space. In the
upper corner of any page of each GitHub space, click on + and then on New Repository, as
shown in Figure 3.4.

Figure 3.4 – Creating a new GitHub repository

For the repository name, you could choose something such as gitops-for-k8s-gitops-
integration. Description is optional. Decide between a private or public repository
based on your preference for open access or restricted visibility. Ensure that you check the
Add a README file checkbox and then proceed by clicking the Create repository button,
as illustrated in Figure 3.5.

Version Control and Integration with Git and GitHub64

Figure 3.5 – The form for creating a new repository on GitHub

2. Create a branch. By default, the created repository has one branch named main that is considered
the one containing production-ready code. Best practices suggest using a different feature
branch for each feature that we want to implement. To create a new branch in GitHub, click
the Code tab of the repository that you created in the preceding step, then click the dropdown
menu containing the main item, as shown in Figure 3.6. To create the new branch, click on
Create branch features/docker-file-and-ci, as highlighted in Figure 3.6.

Exploring GitHub 65

Figure 3.6 – Creating a new features/docker-file-and-ci feature branch

3. Add commits. It’s time to add some useful files to our repository. For this exercise, we will use
the same Docker file seen in the Dockerfile section of Chapter 2 of this book. To add a Docker
file, click the Add file button (see Figure 3.7). If you opt for Create new file, an editor will open
where you can paste the Docker file contents and commit. Alternatively, selecting Upload files
allows you to directly upload the Docker file from your computer.

Figure 3.7 – Menu for adding a new file or uploading an existing one

4. Copy the content of the Docker file and call the file dockerfile, as illustrated in Figure 3.8.
Click on Commit changes and accept the suggested commit message and options. Repeat
the operations for the requirements.txt file used in the Dockerfile section of Chapter 2.

Version Control and Integration with Git and GitHub66

Figure 3.8 – The GitHub editor interface for editing a repository file

5. Adopt best practices for commit messages by specifying the action taken, such as Add file
or Remove API. Use Create dockerfile as a suggested description and commit
your changes. On the main page, select the Edit File icon for the README file and add the
following line at the beginning, then commit the changes with the default description:

This repository will be used to show GitOps and GitHub
capabilities

See [2] in the Further reading section for a useful list of commit best practices.

6. Open a pull request. After making changes in a branch off the main branch, you can initiate
a pull request, which is a core element for collaboration in GitHub. This feature allows you to
suggest changes, seek a review to merge your contributions into another branch, and highlight
differences in color. You can start a discussion with a pull request immediately after committing,
even if the code isn’t final. Practicing this with a pull request in your repository by merging
it yourself is an excellent way to familiarize yourself with GitHub’s collaborative flow before
moving on to bigger projects.

7. From the repository’s tab, click on the Pull requests tab of our repository and click on New
Pull request. In the Example Comparison box, select the features/dockerfile-and-ci branch
to compare with the main branch as illustrated in Figure 3.9, then click on the Create pull
request button.

Exploring GitHub 67

Figure 3.9 – Creating a pull request and select which branches to compare

8. Review the changes in the comparison view at the bottom of the page. If they accurately reflect
your intended modifications, proceed to create a pull request. Assign a title to your pull request
and include a concise description of your changes, such as detailing the addition of a Docker
file and the automation of Docker image builds with GitHub Actions. Feel free to enhance
your description with emojis, images, or GIFs, and then finalize it by creating the pull request.

9. Discuss and review the code. Starting collaboration involves seeking reviews from your peers on
pull requests. This step enables collaborators to offer feedback or suggest edits before finalizing
changes to the main branch, ensuring a consensus-driven approach to code integration.

10. In the final step, merge your features/dockerfile-and-ci branch into the main
branch to add your updates. Should any conflicts between your pull request and the main
branch emerge, GitHub will prompt you to resolve them prior to merging. Assuming that
there are no conflicts, the merge should be straightforward. To complete the process, select
Merge pull request at the bottom of the pull request page. Confirm the merge. A notification
that mentions a successful merge and request closure will appear. Lastly, delete the branch for
cleanup and return to the repository’s Code tab to view your changes in the main branch.

We’ve introduced the fundamentals of GitHub and GitFlow alongside a hands-on example. We
encourage you to practice using Git command line tools for cloning repositories, as outlined in the
Git repository section of this chapter. Armed with this essential knowledge, we’re poised to delve into
integrating GitOps with GitHub, specifically for automating Docker deployments with commits.

Version Control and Integration with Git and GitHub68

Integrating GitOps and GitHub
GitHub Actions offers a powerful automation tool within the GitHub ecosystem, enabling developers
to streamline their software development workflows. Specifically, a GitHub Action can significantly
enhance a GitOps workflow by automating the building and pushing of Docker images for services,
followed by the deployment of new versions to Kubernetes clusters. This capability simplifies the CI/
CD processes, making it easier for teams to maintain and update their applications efficiently in a
cloud-native environment.

Best practices suggest that when you want to use this GitHub Action, your GitHub repository should
have a dev and a master or main branch, and that it should use tags for releases. In the following
example, for brevity, we will work directly in the main branch. Best practices suggest working in
separate branches.

Here are the steps to automate Docker image creation with GitHub Actions:

1. Click on Actions in the repository’s tab, as shown in Figure 3.10:

Figure 3.10 – The tab menu with the Actions button circled

2. On the new page, click on set up a workflow yourself, as shown in Figure 3.11:

Figure 3.11 – Manually defining a workflow in GitHub

3. In the editor, add the following content:

name: Create Docker Image CI
on:
 push:
 branches: [main]
 pull_request:
 branches: [main]
jobs:
 build:
 runs-on: ubuntu-latest
 steps:

Integrating GitOps and GitHub 69

 - uses: actions/checkout@v4.1.1
 - name: Build the Docker image
 run: docker build . --file dockerfile --tag my-image-
name:$(date +%s)

The name field serves as the identifier for our action. In the on section, we specify the events
that will trigger this action, primarily focusing on specific branches. This is usually set to main.
If you happen to create a new branch and want to trigger this action, you’ll need to modify
this section accordingly.

Within the jobs | build section, you’ll find the runs-on field, which specifies the type of
GitHub servers that our job will run on. This is distinct from the version of our Docker image,
which is determined by Dockerfile. In this case, our Docker image will be based on Ubuntu
20.04. The Docker image build will take place on GitHub servers running ubuntu-latest.

Now, let’s move on to the action steps. The uses field instructs the workflow to perform a
checkout of our repository. The name field provides a label for the step. Finally, the run field
specifies the command to execute. With this configuration, we are prepared for our first build
on the Ubuntu 20.04-based Docker image.

4. To initiate a new build, we need to introduce a modification to our main branch. You can easily
accomplish this by making a simple comment change to the Docker file within the integrated
editor on GitHub or editing the README file. In Figure 3.12, the build is triggered from an
update to README.

Figure 3.12 – A list of workflows triggered by commits on the Actions page

Once you’ve made the change in your repository, GitHub will automatically detect it and initiate
a new build. You’ll notice an indicator signaling that the build has been triggered.

Version Control and Integration with Git and GitHub70

5. To access the build logs, simply click on build, as illustrated in Figure 3.13. This will lead you
to the dedicated page for that build. Once on this page, you can delve into the individual steps
of the build process and review the logs associated with each step, as illustrated in Figure 3.14.
GitHub also provides email notifications in case of build failures, and you can conveniently
configure your alerting preferences within the GitHub platform.

Figure 3.13 – A summary of a successful build

Figure 3.14 – Detailed steps of the build process with logs for each step

Summary 71

At this stage, you should have a comprehensive understanding of Git, GitFlow, GitHub, and how to
develop a CI process that builds a Docker image for each commit.

Summary
This chapter delved into the essential role of Git for version control and GitHub for collaborative
software development within the GitOps framework. It outlined the significance of these tools in
enhancing team efficiency, automating deployment processes, and fostering a robust DevOps culture.
Key areas covered include the technical requirements for engaging with Git and GitHub, the benefits
of VCSs, the functionalities of Git and GitHub, and the integration of GitOps practices. The chapter
concluded with some best practices for utilizing Git and GitHub to streamline workflow efficiency.

In the upcoming chapters, we will explore additional tools such as Argo CD and Flux CD, along with
their integration into GitOps, enabling us to complete our pipeline with the deployment segment.

Further reading
• [1] https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

• [2] https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60

• [3] https://www.packtpub.com/product/mastering-git/9781783553754

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://gist.github.com/luismts/495d982e8c5b1a0ced4a57cf3d93cf60
https://www.packtpub.com/product/mastering-git/9781783553754

4
Kubernetes with GitOps Tools

Transitioning from the theoretical underpinnings of GitOps presented in the initial chapters, this
chapter delves into the practical interplay between Kubernetes and GitOps tools, emphasizing their
significance in modern cloud-native operations. Earlier discussions set the scene by introducing
GitOps, examining its cloud-native applications, and integrating version control via Git and GitHub.

Here, we’ll narrow our focus to Kubernetes, engaging with prominent tools such as Helm, Kustomize,
Argo CD, and Flux CD to deepen our understanding and application insights.

This chapter aims to build on previous insights, providing a comparative look at pivotal GitOps
instruments while underscoring their distinct attributes and synergy with Kubernetes. By dissecting the
functionalities and applications of these tools, you’ll be equipped with the acumen to make informed
choices, align your GitOps strategies with specific needs, and enhance Kubernetes deployment frameworks.

In this chapter, we’ll focus on the following key areas:

• Overview of popular GitOps tools

• A deep dive into Helm and Kustomize

• Argo CD integration with Kubernetes

• Flux integration with Kubernetes

• Comparing Argo CD and Flux

Technical requirements
To fully grasp and apply the content of this chapter, you must meet certain technical prerequisites. A
foundational understanding of Kubernetes architecture and concepts, along with proficiency in using
command-line interfaces, is essential. It is recommended that you also have prior experience with the
GitOps tools discussed in previous chapters, such as Helm, Kustomize, Argo CD, and Flux. Access
to a computer with internet connectivity is crucial for executing hands-on examples and integrating
GitOps tools with Kubernetes clusters.

Kubernetes with GitOps Tools74

The relevant code and resource files for this chapter can be found in the Chapter04 folder of this
book’s GitHub repository: https://github.com/PacktPublishing/Implementing-
GitOps-with-Kubernetes.

Overview of popular GitOps tools
In this section, we’ll delve into a curated selection of pivotal tools that epitomize the GitOps methodology,
each serving a unique role in orchestrating, managing, and deploying infrastructure and applications.
This includes Terraform for IaC, Argo CD and Flux for continuous delivery within Kubernetes
environments, and Helm and Kustomize for package management and application configuration. These
tools collectively facilitate a more streamlined, secure, and scalable approach to system management,
embodying the core principles of GitOps. By understanding the functionality and strategic application
of each tool, you can leverage the full potential of GitOps to enhance operational efficiency and
deployment precision in cloud-native environments:

• Terraform: Terraform (https://www.terraform.io/) is an open source IaC software
tool created by HashiCorp. It allows users to define and provision data center infrastructure using
a high-level configuration language known as HashiCorp Configuration Language (HCL), or
optionally JSON. Terraform manages external resources (such as public cloud infrastructure,
private cloud infrastructure, network appliances, Software-as-a-Service (SaaS), and more)
with a “declarative” approach, proposing a model for what the intended end state should look
like rather than the steps to get there. This approach enables developers and infrastructure
teams to collaborate and manage the IT infrastructure through code, ensuring consistency
and accountability.

• Argo CD: Argo CD (https://argo-cd.readthedocs.io/en/stable/) is a
declarative, GitOps CD tool for Kubernetes. It automates the process of deploying applications
to specified target environments within Kubernetes clusters, ensuring that the live state is always
in sync with the configurations stored in Git repositories. Argo CD follows GitOps’ principles,
treating Git repositories as the source of truth for defining the desired application state, thereby
simplifying the deployment process and enhancing security and traceability. It provides a
graphical user interface for visualizing the status of applications, their version control history,
and the differences between the deployed and desired states.

• Flux: Flux (https://fluxcd.io/) is another tool that embodies GitOps’ principles and
is designed to automate the process of deploying to Kubernetes. It ensures that the state of a
cluster matches the configurations stored in a Git repository. Flux continuously monitors the
repository and automatically applies any new changes to the target environment. This enables
developers to manage and deploy their applications by simply updating their Git repositories.
Flux supports complex deployment strategies, including canary and blue-green deployments, and
integrates with Kubernetes to ensure that the actual state of live systems is always represented
accurately in code.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://www.terraform.io/
https://argo-cd.readthedocs.io/en/stable/
https://fluxcd.io/

A deep dive into Helm and Kustomize 75

• Helm: Helm (https://helm.sh/), a Kubernetes package manager, streamlines the
deployment process by enabling developers and operators to effortlessly package, configure,
and deploy applications and services on Kubernetes clusters. It employs a packaging format
known as charts – collections of files that detail a set of related Kubernetes resources. These
charts allow you to define, install, and upgrade complex Kubernetes applications, making
updates and rollbacks simpler and thus enhancing the deployment procedure.

• Kustomize: Kustomize (https://kustomize.io/) introduces a template-free way to
customize application configurations that can be applied across different environments. It is a
standalone tool for customizing Kubernetes objects through a file called kustomization.
yaml, allowing resource files, patches, and other settings to be declared without altering the
original YAML files. This approach simplifies how distinct configurations for each environment
(development, staging, production, and so on) can be managed without requiring multiple
copies of the resource files.

In the upcoming sections, we will delve into each tool while covering practical examples.

A deep dive into Helm and Kustomize
This section delves into the nuanced world of Helm and Kustomize, aiming to provide an in-depth
exploration of these powerful Kubernetes tools. By guiding you through the setup processes, practical
project examples, and the integration of these tools with GitOps workflows, we endeavor to impart
a solid foundation and advanced insights for effectively managing and deploying applications in
cloud-native environments.

Helm

Within the sphere of managing resources for Kubernetes, Helm stands out as a pivotal instrument
that’s designed to enhance and simplify the orchestration process, setting itself apart from similar
tools. As a blend between a management utility and a templating engine, Helm generates artifacts
that can not only be deployed but also shared and capable of version control, establishing itself as a
comprehensive package manager for Kubernetes environments.

By leveraging the Go template language in YAML configurations, Helm streamlines the setup and
administration of Kubernetes applications. Helm starts by generating and deploying a Helm project
into a Kubernetes cluster. A distinctive feature of Helm is its utilization of charts, setting it apart from
tools such as Kustomize. These charts, acting as bundled artifacts, compile all necessary components,
including any dependencies, facilitating their widespread distribution and reusability.

https://helm.sh/
https://kustomize.io/

Kubernetes with GitOps Tools76

Furthermore, Helm tackles the challenges associated with the mutable nature of application settings,
particularly within Kubernetes ConfigMaps. It recognizes that mere alterations to ConfigMaps may
not trigger automatic updates to applications. To combat this, Helm introduces methods to activate
rolling updates following changes in ConfigMaps, thus ensuring continuous application performance
and enhanced management efficiency. This detail-oriented approach highlights the effectiveness of
Helm when it comes to governance and updating Kubernetes deployments.

ConfigMaps
ConfigMaps in Kubernetes serves as a mechanism to store non-confidential data in key-value
pairs, which can then be utilized by Pods and other system components. They are designed
to separate configuration artifacts from image content to keep containerized applications
portable. This enables users to change the configuration without having to rebuild the Docker
images, and without exposing sensitive data when the configuration data is not encrypted.
ConfigMaps can be used to store fine-grained values such as individual properties or coarse-
grained information such as entire configuration files or JSON blobs. This functionality is
particularly useful for applications that need to be configured at runtime, making it easier to
deploy the same application in different environments without changing the application code.

Adding to its capabilities, Helm is recognized as an optimal package manager for Kubernetes since
it aligns with GitOps methodologies. It serves as an efficient method for bundling and distributing
collections of YAML files through Helm charts and enables their dissemination via a Helm repository.
This streamlines the management process, offering a solution to the otherwise labor-intensive and
monotonous task of handling Kubernetes manifests, illustrating why Helm is considered an invaluable
tool in the Kubernetes ecosystem.

Helm setup

Setting up Helm is generally an easy task. Typically, it involves fetching a script and executing it, as
shown here:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/
helm/main/scripts/get-helm-3
$ chmod 700 get_helm.sh
$./get_helm.sh

Alternatively, you can execute the following command:

https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 |
bash

A detailed step-by-step guide on how to install Helm is beyond the scope of this chapter. More
information about Helm and instructions for its installation can be found here: https://helm.
sh/docs/intro/install/.

A deep dive into Helm and Kustomize 77

Type the following command to verify that Helm has been installed correctly:

$ helm version

The expected output should look like this:

version.BuildInfo{Version:"v3.14.2",
GitCommit:"c309b6f0ff63856811846ce18f3bdc93d2b4d54b",
GitTreeState:"clean", GoVersion:"go1.21.7"}

Congratulations! Helm is correctly installed and you are ready to create your first Helm project.

Our first Helm project

First, we need to create a new Helm chart (or just chart). Helm charts are packages composed of
YAML files that specify the resources needed to run an application, tool, or service inside a Kubernetes
cluster. To create the Helm project, we need to enter the following command:

$ helm create gitops-k8s-deployments-helm

This command creates a new directory called gitops-k8s-deployments-helm containing
the scaffold of the project. With this Helm’s directory layout has been created. It should look like this:

chart.yaml charts templates values.yaml

Let’s take a closer look:

• chart.yaml: This is the descriptor and contains metadata related to the Helm chart

• templates: This directory contains all the template files that are used for installing the
Helm chart. Additionally, the tests folder within the templates directory of a Helm chart
repository contains test files that Helm uses to verify the chart.

• values.yaml: This contains the default values for the current Helm chart

Customization of the Helm chart passes through the edits of the files under the templates
subdirectory. The content of the deployment.yaml file is available in this book’s GitHub repository.
At this point, we are ready to view a local preview of the Helm chart. We can do this by entering the
following command:

$ helm template .\gitops-k8s-deployments-helm\

The following is an extract of the expected output:

Source: gitops-k8s-deployments-helm/templates/service.yaml
apiVersion: v1
kind: Service

Kubernetes with GitOps Tools78

metadata:
 name: release-name-gitops-k8s-deployments-helm
 labels:
 helm.sh/chart: gitops-k8s-deployments-helm-0.1.0
 app.kubernetes.io/name: gitops-k8s-deployments-helm
 app.kubernetes.io/instance: release-name
 app.kubernetes.io/version: "1.16.0"
 app.kubernetes.io/managed-by: Helm
spec:
 type: ClusterIP
 ports:
 - port: 80
 targetPort: http
 protocol: TCP
 name: http
 selector:
 app.kubernetes.io/name: gitops-k8s-deployments-helm
 app.kubernetes.io/instance: release-name

Here, the values for name, type, port, and others are taken from the values.yaml file. If possible,
override them using the --set parameter in the Helm command. For instance, we can override the
port value to 8080 like so:

$ helm template --set service.port=8080 .

Using the local Kubernetes cluster, up&running (see Chapter 2), we are now able to install our chart
and upgrade it. Instead of using the default namespaces, we want to use the gitops-kubernetes one:

$ helm install gitops-k8s-deployments-helm --namespace gitops-
kubernetes .

The output of this command should be as follows:

NAME: gitops-k8s-deployments-helm
LAST DEPLOYED: Sat Mar 2 12:23:21 2024
NAMESPACE: gitops-kubernetes
STATUS: deployed
REVISION: 1
NOTES:
…

A deep dive into Helm and Kustomize 79

We can list the installed Helm charts using the helm list command:

$ helm list --namespace gitops-kubernetes

Here’s the output:

NAME NAMESPACE
REVISION UPDATED
STATUS CHART
APP VERSION
gitops-k8s-deployments-helm gitops-kubernetes
1 2024-03-02 12:23:21.29488893 +0100 CET
deployed gitops-k8s-deployments-helm-0.1.0 1.16.0

We can retrieve the running Pods with the following command:

$ kubectl get pods --namespace gitops-kubernetes

Here’s the expected output:

NAME READY
STATUS RESTARTS AGE
first-cd-pipeline-deployment-5b85cfd665-wlzq4 1/1
Running 3 (106m ago) 48d
gitops-k8s-deployments-helm-7464b9b75d-mh4xx 1/1
Running 0 4m41s

We can grab history information about the installed Helm chart using the history command:

$ helm history gitops-k8s-deployments-helm --namespace gitops-
kubernetes

At this point, we can imagine upgrading the image (or just the tag) of the images used by our deployment
from nginx to nginxdemos/hello, as specified by the values.yaml file:

image:
 repository: nginxdemos/hello

We need to change the appVersion value in the chart.yaml file (for instance, from 1.16.0
to 2.0.0):

appVersion: "2.0.0"

At this point, we can upgrade our deployment using the helm upgrade command:

$ helm upgrade gitops-k8s-deployments-helm --namespace gitops-
kubernetes .

Kubernetes with GitOps Tools80

We can grab useful information with the history command:

1 Sat Mar 2 12:23:21 2024 superseded
gitops-k8s-deployments-helm-0.1.0 1.16.0 Install
complete
2 Sat Mar 2 12:37:42 2024 deployed
gitops-k8s-deployments-helm-0.2.0 2.0.0 Upgrade
complete

To remove the deployment, we can use the helm uninstall command:

$ helm uninstall gitops-k8s-deployments-helm --namespace gitops-
kubernetes

Integrating Helm charts with GitOps

We can effortlessly integrate Helm charts with Git and GitOps practices to establish a single source of
truth for our application’s desired state. This integration is fundamental for modern DevOps workflows
as it leverages the versioning capabilities of Git alongside the automated, declarative nature of GitOps.
Here’s an example:

git init
git add .
git commit -m "Initial commit of gitops-k8s-deployments-helm."
git remote add origin <your-repository-url>
git push -u origin master

Now that we have a good understanding of Helm and how it works, it’s time to move on to the next
section, which is dedicated to another important tool: Kustomize.

Kustomize

Kustomize is a standalone tool that’s designed to customize Kubernetes configurations. It’s part of
Kubernetes itself and was introduced as a feature within kubectl in version 1.14. Kustomize introduces
a template-free way to customize application configuration. This differs significantly from other
configuration management tools, which rely on templates or scripting. It enables users to declare
configuration changes through files that Kubernetes can understand without altering the original
YAML files. This method avoids the pitfalls of templating languages and maintains the declarative
nature of Kubernetes objects.

Kustomize works by using a file called kustomization.yaml, which contains customization
instructions. These instructions can include adding labels and annotations, changing the number of
replicas, altering container images, and more. Users can build an overlay structure with Kustomize,
where a base configuration can serve as a foundation, and overlays can modify this base for specific
environments, such as development, staging, or production.

A deep dive into Helm and Kustomize 81

In a GitOps workflow, Kustomize helps manage and apply different configurations for different
environments by maintaining them in separate directories within a Git repository. Kustomize enables
your team to update base files for core components without disrupting customizations specific to your
use case. Additionally, using patch overlays offers the advantage of adding layers to your configuration
settings. This allows for easier isolation when troubleshooting or layering configurations from the
most general to the most specific. For example, Figure 4.1 illustrates how to integrate Kustomize and
Helm within a continuous deployment (CD) pipeline.

Kustomize uses a layered approach to configuration management to facilitate reuse:

• Base layer: Defines the most widely used resources

• Patch layers: Tailors resources to specific use cases:

Figure 4.1 – Example of Kustomize and Helm placed in a CD pipeline

When changes are committed to the repository, a GitOps tool such as Argo CD or Flux, both of which
will be covered in the Argo CD integration with Kubernetes and Flux integration with Kubernetes sections
of this chapter, respectively, can automatically apply the changes to the appropriate Kubernetes clusters
based on the Kustomize configurations. This approach enhances automation, improves traceability,
and ensures consistency across environments.

Kustomize setup

As previously mentioned for Helm, setting up Kustomize is an easy task. Execute the following script
to detect the corresponding operating system and install the necessary libraries:

$ curl -s "https://raw.githubusercontent.com/kubernetes-sigs/
kustomize/master/hack/install_kustomize.sh" | bash

Kubernetes with GitOps Tools82

For a detailed step-by-step guide on installing Kustomize, please refer to the Kustomize section at
Kustomize | SIG CLI (kubernetes.io).

As a standard step to verify the correctness of the Kustomize setup, you can type the following
command in a Terminal:

$ kustomize version

The expected output should resemble the following:

v5.3.0

A Kustomize example for Kubernetes deployment

Kustomize is a tool for customizing Kubernetes configurations. It lets you maintain configuration
changes separately from the base configuration files, which is particularly useful for keeping track of
environment-specific changes without duplication. Let’s dive into a step-by-step example of deploying
an application on Kubernetes using GitOps and Kustomize, bringing all the elements together for a
cohesive process:

1. The first step is creating the base configuration where we will add the default Kubernetes
resource files:

$ mkdir gitops-k8s-deployments-kustomize/base

2. Inside the base directory, we need to create a Kubernetes deployment file named deployment.
yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: gitops-k8s-kustomize
 labels:
 app: gitops-k8s-kustomize
spec:
 replicas: 1
 selector:
 matchLabels:
 app: gitops-k8s-kustomize
 template:
 metadata:
 labels:
 app: gitops-k8s-kustomize

A deep dive into Helm and Kustomize 83

 spec:
 containers:
 - name: gitops-k8s-kustomize
 image: k8s.gcr.io/echoserver:1.10
 ports:
 - containerPort: 8080

3. In the same base directory, we need to create another Kubernetes service file named service.
yaml:

apiVersion: v1
kind: Service
metadata:
 name: gitops-k8s-kustomize
spec:
 selector:
 app: gitops-k8s-kustomize
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

4. Lastly, within the base directory, create a kustomization.yaml file that references your
Kubernetes resources:

resources:
 - deployment.yaml
 - service.yaml

5. Now, we need to create the overlay configuration so that we can maintain patches separately
from the base configuration. You might have different environments, such as development,
staging, and production. For instance, we can create an overlay directory and subdirectory
for the development environment like so:

$ mkdir -p overlays/development

6. Inside the overlays/development directory, create a kustomization.yaml file to
specify namespace, patches, and any other environment-specific changes:

namespace: gitops-k8s-kustomize-dev
resources:
 - ../../base
patches:
 - path: ./patches/deployment_patch.yaml

Kubernetes with GitOps Tools84

7. Also, in the overlays/development directory, inside the patches subdirectory, create
a deployment_patch.yaml file to update the image or any other properties specific to the
development environment. In this case, we are increasing the number of replicas in development:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: gitops-k8s-kustomize
 labels:
 environment: development
spec:
 replicas: 2 # Increase the number of replicas in development.

8. At this point, navigate to your overlay directory and use Kustomize to build the final configuration.
Then, you can apply it to your Kubernetes cluster. To build the overlay configuration, run the
following command:

$ kustomize build overlays/development

9. Before applying the configuration to our local cluster, we need to create the proper namespace:

$ kubectl create namespace gitops-k8s-kustomize-dev

10. At this point, we can apply the configuration by entering the proper command:

$ kustomize build overlays/development | kubectl apply -f -

11. The expectation is to have three replicas running in the specified namespace. We can confirm
this by using the following command:

$ kubectl get pods --namespace gitops-k8s-kustomize-dev

This will produce an output similar to the following:
NAME READY STATUS RESTARTS AGE
gitops-k8s-kustomize-… 1/1 Running 0 114s
gitops-k8s-kustomize-… 1/1 Running 0 114s

12. If we want to deploy to a staging namespace using three replicas, we need to create an
overlays/staging folder and add a kustomization.yaml file with the following content:

namespace: gitops-k8s-kustomize-stg
resources:
 - ../../base
patches:
 - path: ./patches/deployment_patch.yaml

A deep dive into Helm and Kustomize 85

13. The content of the deployment_path.yaml file will be as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: gitops-k8s-kustomize
 labels:
 environment: staging
spec:
 replicas: 3 # Increase the number of replicas in staging.

14. As before, to apply the configuration to our local cluster, we need to create the proper namespace:

$ kubectl create namespace gitops-k8s-kustomize-stg

15. At this point, we can apply the configuration by entering the proper command:

$ kustomize build overlays/staging | kubectl apply -f -

16. The expectation is to have three replicas running in the specified namespace. We can confirm
that using the following command:

$ kubectl get pods --namespace gitops-k8s-kustomize-stg

This will produce an output similar to the following:
NAME READY STATUS RESTARTS AGE
gitops-k8s-kustomize-… 1/1 Running 0 14s
gitops-k8s-kustomize-… 1/1 Running 0 14s
gitops-k8s-kustomize-… 1/1 Running 0 14s

Integrating Kustomize with GitOps

As we did for Helm charts, we can effortlessly integrate Kustomize with Git and GitOps practices to
establish a single source of truth for our application’s desired state. This integration is fundamental for
modern DevOps workflows as it leverages the versioning capabilities of Git alongside the automated,
declarative nature of GitOps:

git init
git add .
git commit -m "Initial commit of gitops-k8s-deployments-kustomize."
git remote add origin <your-repository-url>
git push -u origin master

Kubernetes with GitOps Tools86

Helm versus Kustomize – configuration tools compared

Kustomize and Helm are both powerful tools that can be used for managing Kubernetes configurations,
but they approach configuration management differently and serve slightly different purposes within
the Kubernetes ecosystem.

Helm is often described as a package manager for Kubernetes. It uses a packaging format called charts,
which are collections of files that describe a related set of Kubernetes resources. Helm charts are
templates that can be dynamically configured through the use of values that are passed at runtime. This
feature allows complex applications and their dependencies to be deployed using a single command,
making Helm particularly suitable for managing packaged applications and sharing them across a wide
user base. Helm also supports versioning, which means you can manage and track releases of your
applications, roll back to previous versions, and manage application deployment in a structured manner.

Kustomize, on the other hand, introduces a template-free way of customizing Kubernetes applications.
It uses a base and overlay model where the base configuration can be overridden or extended by
overlays without altering the original files. This approach is particularly powerful for maintaining
slight variations of the same application (for example, across different environments, such as staging
and production) without duplicating effort. Kustomize has been integrated directly into kubectl
since Kubernetes v1.14, allowing users to apply configurations using the kubectl apply -k
command. Unlike Helm, Kustomize does not manage packages or dependencies; it focuses purely
on configuration customization.

In summary, while both Helm and Kustomize enhance Kubernetes’ native capabilities, they cater to
different aspects of application deployment and management. Helm is ideal for defining, installing,
and upgrading complex Kubernetes applications as discrete packages, while Kustomize excels at
customizing and managing the configurations of these applications across various environments
without the need to maintain separate files for each environment. Choosing between them – or using
them in tandem – depends on your specific needs and the complexity of your deployment scenarios.

Having explored Helm and Kustomize, we’ll now transition to discussing two other significant tools
in the DevOps landscape: Argo CD and Flux.

Argo CD integration with Kubernetes
Argo CD is a prominent GitOps tool that’s designed for Kubernetes and enables automated, CD by
syncing application definitions, configurations, and environments directly from a Git repository. This
section aims to shed more light on the architecture of Argo CD and its synchronization mechanism.
Argo CD follows a client-server architecture:

• Argo CD API server: The core service that provides the primary API for Argo CD, it handles
user requests and performs application state analyses and reporting.

Argo CD integration with Kubernetes 87

• Repository server: This service is responsible for fetching repository contents and returning
manifest files. It understands various configuration management tools, such as Helm, Kustomize,
Jsonnet, and others, enabling Argo CD to work with multiple types of manifests.

• Application controller: This is the key component that continuously monitors application
definitions and configurations in the Git repository. It compares the current state of the cluster
with the desired state defined in Git and applies any necessary changes to align the two.

• Argo CD UI and CLI: The services provide a visual interface and command-line tooling for
users to manage applications, view their states, and perform various operations.

• Dex server: An optional component for integrating with external identity providers
for authentication.

Argo CD employs a declarative approach to ensure the desired application state defined in a Git
repository matches the actual state deployed in the Kubernetes cluster. Here’s how the synchronization
process works:

• Monitoring: Argo CD continuously monitors the specified Git repository for changes to the
application definitions and configurations.

• Comparison: When changes are detected, Argo CD compares the new desired state defined
in Git with the current state of the Kubernetes cluster.

• Convergence: If discrepancies are found, Argo CD undertakes actions to reconcile the differences.
This could involve creating, updating, or deleting Kubernetes resources to ensure the cluster’s
state aligns with the configuration specified in the Git repository.

• Self-healing: If the cluster state deviates from the Git-defined state due to manual changes or
other factors, Argo CD automatically corrects these deviations to maintain consistency.

• Manual or automatic sync: Users can configure Argo CD to synchronize changes either
automatically as they occur in the Git repository or require manual intervention for synchronization,
providing flexibility based on the team’s workflow and policies.

Argo CD setup

Setting up and configuring Argo CD is beyond the scope of this book. For comprehensive and
detailed instructions on how to set up Argo CD, we highly recommend visiting the Argo CD website
at https://argo-cd.readthedocs.io/en/stable/getting_started/. There, you
will find the most up-to-date documentation, including step-by-step guides, troubleshooting tips,
and best practices specifically designed to facilitate a smooth setup process. For the remainder of this
chapter, we will assume that Argo CD has been successfully installed and configured.

If Argo CD has been correctly set up on your local laptop, should be possible to navigate the Argo CD
UI, which is normally available at https://localhost:8080, as shown in Figure 4.2:

https://argo-cd.readthedocs.io/en/stable/getting_started/
https://localhost:8080

Kubernetes with GitOps Tools88

Figure 4.2 – Argo CD UI

Deploying to Kubernetes with Argo CD

When deploying to Kubernetes with Argo CD, a crucial step is to create an Argo CD application, which
is fundamental to the GitOps-driven deployment strategy. This object connects the version-controlled
repository, housing the Kubernetes manifests, to the actual state of applications operating within the
Kubernetes cluster, whether local or remote. By establishing an Argo CD application, we dictate to
Argo CD what to deploy, the deployment target, and the method of synchronizing the live state with
the desired state outlined in the Git repository. To demonstrate the effectiveness of this deployment
approach, we will introduce a straightforward application, as detailed in the upcoming section.

The My City Weather app

The weather app we are deploying provides simulated temperature forecasts and weather updates
while utilizing a CSV file as its data source. By deploying on Kubernetes with Argo CD, we can adopt
GitOps principles for streamlined, error-free updates, ensuring that our application consistently aligns
with the most recent configurations and code changes maintained in the Git repository.

Follow these steps to deploy the weather app on Kubernetes via Argo CD:

1. Create a new GitHub repository: The first step is to create a new GitHub repository or use an
existing one. I suggest that you start from scratch with a new one, as detailed in the GitHub
Flow section in Chapter 3. In the upcoming section, we will refer to the gitops-k8s-
deployments-book-weather-app repository.

2. Populate the GitHub repository: The second step is populating the repository we created in
Step 1 with the files located in the Chapter_4/argocd_gitops directory of the repository
accompanying this book.

Argo CD integration with Kubernetes 89

The outcome should resemble what’s depicted in Figure 4.3. The src folder will contain the
necessary files to construct a chart, which will display temperatures retrieved from a CSV file
that is deployed alongside the application to the end user. The deployment folder will contain
the Kubernetes manifest files (such as deployment.yaml and service.yaml) that are
used to ensure synchronization between the Argo CD application’s state and the repository’s
state. Additionally, the .github/workflows directory will house the definitions of the CI/
CD pipeline used by GitHub Actions. This pipeline is responsible for building and pushing
a new Docker image to a container registry each time changes are committed to the GitHub
repository, thereby automating the deployment process and ensuring that updates are seamlessly
reflected in the live application. To complete this section, you need to have a valid Docker Hub
account, as mentioned in the Publishing the image to a container registry section in Chapter 2:

Figure 4.3 – The new GitHub repository is now populated with

Kubernetes manifest files and application files

3. Deployment status: By clicking on the Actions tab of our repository, we should be able to see
at least one completed workflow, as illustrated in Figure 4.4:

Kubernetes with GitOps Tools90

Figure 4.4 – Our completed the build and push pipeline

4. Argo CD application: At this point, we are ready to define the Argo CD application. As usual,
we must define a YAML file containing the definition of the application we want to deploy
via Argo CD. Let’s create a file named argco_cd_deployment.yaml (the name isn’t
important) with the following content:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: my-city-weahter-app
 namespace: argocd
spec:
 destination:
 namespace: gitops-kubernetes
 server: https://kubernetes.default.svc
 project: default
 source:
 repoURL: https://github.com/[USERNAME]/[REPOSITORY].git
 path: deployment
 targetRevision: main

In this context, name defines the name of the Argo CD’s application, namespace defines
where Argo CD is installed, and destination specifies the target Kubernetes cluster and
namespace (in our case, gitops-kubernetes). The project parameter indicates that
the application should be installed within Argo CD’s default project. The repoURL parameter
denotes the repository where the Kubernetes manifest YAML files are located, path specifies
where to look for these manifests, and targetRevision identifies the repository branch
to be checked out.

Argo CD integration with Kubernetes 91

To create the defined application in Argo CD, enter the following command:
$ kubectl apply -f argocd-deployment.yaml

The expected output is shown here:
application.argoproj.io/my-city-weahter-app created

The crucial field to observe, as shown in Figure 4.5, is Status, which is labeled as OutOfSync. This
status indicates that although the application has been registered, there is a mismatch between
its current state (in this case, the application has not been deployed yet) and the information
in the Git repository (which contains the application’s deployment files):

Figure 4.5 – The new Argo CD application has been successfully added to the default project

Click the Sync button to start the synchronization process. After a few seconds, Status should
be Synced, as shown in Figure 4.6:

Kubernetes with GitOps Tools92

Figure 4.6 – The Argo CD application has been successfully synchronized with the repository

Clicking on the my-city-weather app provides additional details about the Argo CD
application, as illustrated in Figure 4.7:

Figure 4.7 – Graphical view of the resources deployed by Argo CD to the Kubernetes cluster

Argo CD integration with Kubernetes 93

5. Modify the application: Make changes to your application’s code or Kubernetes manifests
and push these changes to your GitHub repository. For instance, we can change the number
of replicas in the deployment\deployment.yaml file from 1 to 2:

spec:
 replicas: 2
 selector:
 matchLabels:

This change will trigger the proper action and a new run of the build-and-push pipeline will
be performed, as shown in Figure 4.8:

Figure 4.8 – Executing a new run of the defined pipeline

Now, observe how Argo CD detects that the live state (current deployment in Kubernetes) is out
of sync with the desired state (the latest changes in your Git repository), as shown in Figure 4.9:

Kubernetes with GitOps Tools94

Figure 4.9 – Argo CD’s status changes to OutOfSync after modifying the number of replicas

6. Sync Argo CD: Use the Argo CD UI or CLI to synchronize the changes, updating your
Kubernetes deployment so that it matches the latest state defined in your GitHub repository.

Congratulations on successfully navigating Argo CD! You’ve made significant strides in mastering
GitOps principles and applying them effectively in a Kubernetes environment. As we transition from
Argo CD, we’ll embark on exploring another pivotal GitOps tool: Flux. The next section will guide
you through the fundamentals of Flux, offering you another perspective on automated deployment
strategies within Kubernetes. Let’s continue our journey into the world of GitOps with an in-depth
look at Flux and its unique features.

Flux integration with Kubernetes
Flux is a powerful, open source tool that automates the deployment of applications within Kubernetes,
embodying the principles of GitOps. As a next-generation deployment solution, Flux continuously
monitors your Git repositories for changes and automatically applies those changes to your Kubernetes
clusters, ensuring that the state of your deployments always matches the source of truth in your
version control system. This approach not only simplifies deployment workflows but also enhances
security, traceability, and reliability across your infrastructure. In this section, we will dive into how
Flux can transform your deployment strategy, making your operations more efficient and aligned
with modern DevOps practices.

Flux integration with Kubernetes 95

Flux consists of several key components that work together to monitor, pull, and apply configurations
from a Git repository to a Kubernetes cluster:

• Flux daemon (Fluxd): This is the core component that continuously monitors the configured
Git repository. It checks for new commits to branches, tags, or specific paths and applies the
changes to the Kubernetes cluster. It acts as the agent that ensures the desired state from the
repository is accurately reflected in the cluster.

• Source controller: This component acquires source materials from repositories (such as Git)
and detects if there are any changes. It ensures that the latest configurations are always used
for deployments.

• Kustomize controller (for Flux v2): Applies Kustomize configurations, allowing raw Kubernetes
manifests to be customized without the need to alter the original YAML files.

• Helm controller (for Flux v2): Provides declarative management for Helm chart releases. This
component allows Flux to manage Helm chart dependencies directly from Git.

• Git repository: This is where the Kubernetes resource files (such as YAML manifests, Kustomize
configurations, or Helm charts) are stored. Flux relies on this repository as the single source
of truth for the state of resources in the Kubernetes cluster.

• Synchronization: Flux continuously synchronizes the configuration from the Git repository
with the Kubernetes cluster. If it detects any discrepancies between the configuration in Git
and the current state of the cluster, it updates the cluster so that it matches the desired state
defined in Git.

• Automation and rollback: Flux supports automated deployments and rollbacks. If a new
configuration is detected in the Git repository, Flux automatically applies it to the Kubernetes
cluster. Similarly, if a configuration change leads to an error, Flux can revert to the previous
stable version, aligning with the rollback capabilities of Git.

• Security and secrets management: Flux provides mechanisms to handle secrets securely and
supports integration with Kubernetes secrets management tools. This ensures that sensitive
information is not exposed in the Git repository.

• Observability and notifications: Flux can be configured to send notifications (for example, via
Slack, email, or other messaging platforms) about the status of deployments and sync operations.
Additionally, it provides observability features for monitoring the health and performance of
the GitOps pipeline.

Kubernetes with GitOps Tools96

Flux setup

Setting up and configuring Flux is beyond the scope of this book. For comprehensive and detailed
instructions on how to set up Flux, we highly recommend visiting the Flux website at https://
fluxcd.io/flux/installation/. There, you will find the most up-to-date documentation,
including step-by-step guides, troubleshooting tips, and best practices specifically designed to facilitate
a smooth setup process.

You can enter the following command to check you have everything you need to run Flux:

$ flux check --pre

Before continuing, note the output of the previous command must resemble the following:

► checking prerequisites
✔ Kubernetes 1.28.5+k3s1 >=1.26.0-0
✔ prerequisites checks passed

In the upcoming section, we will refer to the same weather app described in the The My City Weather
app section of this chapter.

Deploying to Kubernetes with Flux

First, we need to export our GitHub credentials (username and access token):

export GITHUB_TOKEN=ghp_jlFEXvI…
export GITHUB_USER=[GITHUB_USERNAME]

GitHub personal access token (PAT)
A GitHub PAT is a secure way to provide authentication to your GitHub account without the
need to use a password. This token acts as a key, granting access to GitHub services through
the API, command-line tools, and other third-party applications. This token can be customized
with varying scopes of access, from read-only to full repository control, depending on what
tasks need to be performed. This flexibility makes PATs particularly useful for automation,
scripting, and integrating with third-party services or CI/CD pipelines, ensuring that operations
that require GitHub access can be executed securely and efficiently. It’s essential to keep your
PATs confidential and treat them with the same level of security as your password to prevent
unauthorized access to your GitHub account.

After installing Flux, you need to bootstrap it to your repository. This connects your Kubernetes cluster
to the repository and sets up the necessary components for continuous synchronization:

flux bootstrap github \
--owner=[GITHUB_USERNAME]\

https://fluxcd.io/flux/installation/
https://fluxcd.io/flux/installation/

Flux integration with Kubernetes 97

--repository=gitops-k8s-deployments-book-weather-app \
--path= ./deployment/base
--personal

The output should look like this:

► connecting to github.com
► cloning branch "main" from Git repository "https://github.com/
[GITHUB_USERNAME]/gitops-k8s-deployments-book-weather-app.git"
✔ cloned repository
► generating component manifests
✔ generated component manifests
…
► pushing sync manifests to "https://github.com/[GITHUB_USERNAME]/
gitops-k8s-deployments-book-weather-app.git"
► applying sync manifests
✔ reconciled sync configuration
✔ waiting for GitRepository "flux-system/flux-system" to be
reconciled
✔ GitRepository reconciled successfully

By executing the following command, we can verify how the resources of the flux-system
namespace have been deployed within the respective namespace:

$ kubectl get all -n flux-system

Now, we need to create a file in the repository that outlines how Flux should apply the manifests.
If you bootstrapped Flux with a path such as ./deployment/base, you should place the
kustomization.yaml file inside the deployment directory:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - base

Commit and sync the changes with a comment like Define Flux Kustomization. After a few
minutes, Flux should start synchronizing the repository’s state with the local Kubernetes cluster. We
can check the status of the synchronization by running the following command:

$ flux get kustomizations

Once everything is up and running, any changes you make to the Kubernetes manifests in your
GitHub repository will be automatically applied to your cluster. Try changing the number of replicas
in your deployment.yaml file, commit them, and push the changes. Flux will detect the update
and apply the change to your cluster.

Kubernetes with GitOps Tools98

By following these steps, you have successfully connected your weather app, which is in a GitHub
repository, to your Kubernetes cluster using Flux, achieving a GitOps workflow.

Now that we’ve learned how to deploy to Kubernetes with Flux, we’ll compare Argo CD and Flux. This
comparison will shed light on their distinctive capabilities and how each tool positions itself within
the Kubernetes deployment ecosystem.

Comparing Argo CD and Flux
The following table compares Argo CD and Flux, two leading GitOps CD tools that are used in the
Kubernetes ecosystem that have been introduced in depth in this chapter. Both tools are designed to
automate the deployment process by syncing your Kubernetes cluster state with configurations stored
in a Git repository, enabling a declarative approach to infrastructure management. This table outlines
key features and differences between Argo CD and Flux to help you understand their capabilities,
installation processes, synchronization mechanisms, and other critical aspects, all of which should
help you select the right tool for your needs:

Feature Argo CD Flux

Project Maturity Mature, widely adopted Mature, widely adopted

Installation Custom resource
definitions (CRDs) and a
dedicated namespace

Uses Helm or manifests for installation

Configuration Declarative setup through
YAML files

Declarative setup through YAML files

Sync Mechanism Pull-based from Git repository Pull-based from Git repository

Sync Frequency Configurable, default every
3 minutes

Configurable, can be set as low as a
few seconds

Auto-Sync Supported, can automatically apply
changes from Git

Supported, can automatically apply
changes from Git

Secret Management Integrates with external secret
management tools

Has built-in secret management via
Mozilla SOPS

Customization Highly customizable through
plugins and hooks

Extensive customization with
Kustomize and Helm

User Interface Provides a web-based UI for
monitoring and management

Primarily a command line with an
optional web UI component

Summary 99

Feature Argo CD Flux

Multi-Tenancy Supported through
namespaced installations

Supported using multiple instances

Community
and Support

Large community,
active development

Large community, active development

Rollback Features Supports automatic and
manual rollbacks

Supports rollbacks, typically managed
through Git

Table 4.1 – Argo CD versus Flux – key differences in Kubernetes deployment

This section concludes our exploration of the most popular tools that are used in the context of
GitOps and Kubernetes. We’ve delved into the intricacies of various tools that facilitate the GitOps
workflow, emphasizing their roles, features, and how they integrate within the Kubernetes ecosystem.
By understanding these tools, we equip ourselves with the knowledge necessary to implement efficient,
automated, and scalable DevOps practices in cloud-native environments.

Summary
This chapter transitioned from theoretical aspects of GitOps to practical applications within Kubernetes
by focusing on tools such as Helm, Kustomize, Argo CD, and Flux. It provided a comparative analysis
of these tools, highlighting their unique features and how they complement Kubernetes deployments.
This chapter was designed for those with foundational Kubernetes knowledge and covered technical
prerequisites, how to integrate GitOps tools with Kubernetes clusters, and practical examples for real-
world application. Additionally, it offered step-by-step guides for deploying applications using Argo
CD and Flux, emphasizing GitOps methodologies for efficient and secure application management.

As we conclude this chapter on orchestrating and managing Kubernetes environments, our exploration
transitions to the next frontier: diving into advanced Git repository strategies, service catalog
construction, and the scalability of GitOps through ApplicationSet generators. These topics will
further refine our understanding of efficient operations and the multifaceted approach required for
successful multitenancy and cloud-native scalability.

Part 2:
Harnessing Advanced

Orchestrations, Culture, and
Control in GitOps Practices

In this part, you will delve into advanced GitOps practices. You will learn about scaling GitOps across
multiple clusters, architectural designs for efficient operational control, and the cultural transformation
required to embrace GitOps fully within IT organizations. This section emphasizes not only the technical
implementation but also the strategic and cultural shifts needed to support and sustain GitOps at an
enterprise level, providing a holistic view of GitOps adoption and integration.

This part includes the following chapters:

• Chapter 5, GitOps at Scale and Multitenancy

• Chapter 6, GitOps Architectural Designs and Operational Control

• Chapter 7, Cultural Transformation in IT for Embracing GitOps

5
GitOps at Scale

and Multitenancy

This chapter delves into advanced GitOps applications, focusing on scaling and multitenancy within
Kubernetes environments. It’s tailored for those with a foundational understanding of tools such as
Argo CD and who are looking to expand their knowledge in more complex scenarios.

We’ll start by discussing strategies to build scalable cluster infrastructures using GitOps. This includes
designing Kubernetes clusters that can adapt to increasing demands, all managed through GitOps
methodologies. A significant part of this discussion involves deploying applications across multiple
clusters efficiently, focusing on scalability and customization.

A critical aspect we’ll address is enforcing multitenancy in shared Kubernetes environments. We’ll
explore how to achieve this using GitOps tools such as Argo CD, adhering to their operational
philosophies. Complementary to this, we’ll introduce tools such as vCluster that simplify multitenancy
enforcement while maintaining GitOps principles.

The emphasis throughout this chapter is on concepts over tools. While tools may evolve, the underlying
principles remain constant, providing a stable foundation for understanding these technologies.

We’ll also cover the implementation of a lightweight internal developer platform (IDP) to facilitate
the deployment of third-party tools through Kubernetes Service Catalog (KSC). This approach
simplifies application management within Kubernetes.

Real-world insights form a significant part of this chapter, drawing from experiences and lessons
learned in diverse project environments. This practical perspective is invaluable for understanding
the real-world application of these strategies.

GitOps at Scale and Multitenancy104

This chapter, which is aimed at intermediate learners, won’t delve into the setup or basic operations
of Argo CD. Instead, it will focus on their application in complex, real-world scenarios, demonstrating
the practical use of the most suitable tools for each case. The goal is to equip you with a comprehensive
understanding of scaling and managing multitenancy in Kubernetes using GitOps, enriched with
real-world applications and insights, by staying focused on the approaches and not the tools.

The chapter is tough, but I hope you’ll have learned a lot by the time you finish it. I’ve tried to share
all the insights from projects in a compact way with you. This chapter can be logically divided into
two sections. The first section covers approaches to using GitOps at scale and the necessary setup via
KSC. The second section, starting on page 45, focuses on multitenancy with GitOps to get the most
out of the setup.

We will cover the following main topics in this chapter:

• Understanding the App of Apps approach

• Understanding multi-cluster management

• Understanding effective Git repository strategies

• Building a service catalog for Kubernetes

• Exploring native multitenancy with Argo CD

• Exploring multitenancy with vCluster and Argo CD

Technical requirements
Due to the limited space available, many examples have been shortened or are incomplete. Therefore,
we have a repository with complete examples. This follows the chapter05/section pattern – that
is, chapter05/chapter-5-building-a-service-catalog-for-kubernetes. For
all the code examples discussed, along with additional resources, please refer to the Chapter05
folder in the book’s GitHub repository at https://github.com/PacktPublishing/
Implementing-GitOps-with-Kubernetes.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes

Traditional CI/CD versus GitOps CD 105

Traditional CI/CD versus GitOps CD
The main difference between traditional CI/CD and Argo CD is in how deployments are handled

:

Figure 5.1 – Traditional CI/CD versus GitOps CD

Traditional CI/CD follows a workflow where changes are automatically integrated, tested, and deployed,
while Argo CD uses a synchronization mechanism to ensure the actual state matches the desired
state in the Git repository. Argo CD relies on a CI step, meaning any change must go through a CI
process before Argo CD can detect and act on it. This ensures that only verified changes are deployed.
Unlike CI/CD, which might require manual interventions that can lead to discrepancies, Argo CD
continuously monitors and synchronizes the system state with the Git repository, reducing the risk
of drifts and maintaining consistency.

In the following section, we’ll look at the difference between platform engineering and IDPs.

GitOps at Scale and Multitenancy106

Platform engineering versus IDPs
In my opinion, a distinction between internal developer platforms (IDPs) and internal developer
portals (IDPOs) is becoming increasingly relevant and is already a topic of much debate. To clarify
the different approaches, here’s how I differentiate these terms:

• Platform engineering: This is the traditional approach where a dedicated team owns, operates,
and continuously improves the Kubernetes platform itself. Their focus is on the underlying
infrastructure, ensuring its stability, scalability, and security. Developers working on applications
typically consume this platform and concentrate solely on their software or third-party tools
that aren’t offered by the platform team. This is a common approach in many projects today.

• Internal developer platform (IDP): This approach introduces an IDP solution, such as
backstage.io from Spotify. The IDP team is responsible for providing and maintaining the IDP
itself, which includes extensive documentation, building blocks, and templates for developers
and acts like a portal (IDPO) for developers. Developers can then leverage these resources to
self-deploy their applications within a defined Kubernetes environment. This allows developers
to have some influence on the content and functionality of the IDP through contributions or
requests. The engineering focus of the platform team shifts from core Kubernetes operations
to managing and evolving the IDP. However, developers are still responsible for the day-to-day
operations of their deployed Kubernetes environments, including updates and troubleshooting.

Now, let’s explore the App of Apps approach.

Understanding the App of Apps approach
In managing multiple applications, there are primarily two established strategies: the App of Apps
approach and ApplicationSets. This section will address several key questions:

• What challenges does the App of Apps approach overcome?

• In which situations is the App of Apps approach most beneficial?

• How does the App of Apps approach enhance GitOps practices?

An application in this context refers to the Git repository and folder where manifests, which are essential
definitions that allow your app to run in Kubernetes, are stored. Argo CD is versatile as it supports
raw YAML manifests, custom configuration management, and popular tools such as Kustomize,
Helm, and Jsonnet.

Understanding the App of Apps approach 107

But what about scenarios where we must deploy multiple applications? How should we manage these
manifests? Each application being deployed requires an application definition. However, when these
applications are a collection of related entities, it would be beneficial if Argo CD could recognize
this relationship. To address this need, the Argo community developed the App of Apps approach.
Essentially, this approach allows a root Argo CD application to be defined, which, in turn, defines and
synchronizes multiple child applications. This method streamlines the management process, especially
in complex deployments, by leveraging a hierarchical folder structure.

Figure 5.2 illustrates an instance of the App of Apps approach. In this example, a single Argo CD
application corresponds to just one specific web application:

Figure 5.2 – The App of Apps approach

Examining the application manifest reveals key details:

project: default
source:
 repoURL: 'git@github.com:PacktPublishing/Implementing-GitOps-with-
Kubernetes.git'
 path: ./chapter05/chapter-5-the-app-of-apps-approach/app-of-app/
simple-webapp
 targetRevision: main
destination:
 server: 'https://kubernetes.default.svc'
 namespace: app-of-app
syncPolicy:
 automated:
 prune: true
 selfHeal: true

Here, path is set to directly point to the specific application. Next, let’s explore the App of Apps
approach shown in Figure 5.3 for a more comprehensive understanding:

GitOps at Scale and Multitenancy108

Figure 5.3 – App of Apps

Rather than directing toward a singular application manifest, as it did previously, the root app now
references a specific folder within a Git repository. This folder contains all the individual application
manifests that define and facilitate the creation and deployment of each application. By adopting this
approach, it’s possible to declare all your applications within a unified YAML manifest. The following
example demonstrates this pattern for enhanced comprehension:

project: default
source:
 repoURL: 'git@github.com:PacktPublishing/Implementing-GitOps-with-
Kubernetes.git'
 path: ./chapter05/chapter-5-the-app-of-apps-approach app-of-apps/
simple-webapps
 targetRevision: main
 directory:
 recurse: true
 destination:
 server: 'https://kubernetes.default.svc'
 namespace: app-of-apps
syncPolicy:
 automated:
 prune: true
 selfHeal: true

Understanding the App of Apps approach 109

In the provided definition, the path attribute instructs Argo CD to target a specific directory –
in this case, named simple-webapps – located within the repository. This directory contains
Kubernetes manifests that define the applications, as well as supporting various formats such as Helm,
Kustomize, or plain YAML files. In the provided configuration, there are two notable attributes worth
highlighting: selfHeal: true and directory.recurse: true. The selfHeal feature
ensures automatic updates of the child applications in response to any changes detected, maintaining
consistent deployment states. Additionally, the recurse setting enables the iteration through the
webapps folders, facilitating the deployment of all applications contained within.

Therefore, the App of Apps approach enables you to administer your application resources by simply
updating your manifests in the Git repository – adding or removing application resources as needed.
This approach reduces reliance on direct interactions with Argo CD applications through the web
UI or CLI.

Use cases of App of Apps combined with examples

The App of Apps approach in Argo CD is highly advantageous for managing multiple applications as a
single entity while ensuring their isolation during deployment. This is particularly useful in scenarios
such as cluster bootstrapping and managing Argo CD applications without relying on the CLI or UI.
Let’s explore these use cases with relevant examples:

• Cluster bootstrapping: Imagine that you have a standard set of applications that need to be
installed in every new Kubernetes cluster. Rather than deploying each application individually,
you can group them into a single “root” application. This simplifies the process, allowing you
to deploy the entire set of applications simultaneously, enhancing efficiency and consistency
across different deployments.

Example for developers and service providers: Let’s say you’re developing or providing services
that involve deploying a custom yet similar stack for each deployment, such as the following:

 � Frontend

 � Backend for frontend

 � Database

The App of Apps approach allows you to encapsulate these components into a single deployment
entity, streamlining the process.

GitOps at Scale and Multitenancy110

• Managing Argo CD applications without the CLI or GUI: You can modify an existing root
application using Git operations, such as adding new folders to the paths it monitors. This
capability lets Argo CD automatically deploy new applications or update existing ones without
needing to interact through the CLI or web UI, aligning with GitOps principles of version
control and auditability.

Example for platform engineers: As a platform engineer, let’s say you’re providing a similar
stack on Kubernetes for each customer, such as the following:

 � Ingress-Controller

 � Cert-Manager

 � External-DNS

The App of Apps approach is beneficial here as it allows you to manage these components
effectively, ensuring that each customer’s environment is consistently configured with the
necessary tools.

In both use cases, the App of Apps approach facilitates a more streamlined, efficient, and consistent
deployment process, whether you’re dealing with different client requirements as a service provider
or ensuring uniformity across various Kubernetes clusters as a platform engineer.

The ApplicationSets approach

In this section, you’ll discover the process of creating, updating, managing, and removing numerous
Argo CD applications through the use of an ApplicationSet [1] controller.

We will delve into the concept of an ApplicationSet and address key questions such as the following:

• What exactly constitutes an ApplicationSet?

• What are the functionalities and advantages of an ApplicationSet?

• Why is a generator necessary, and what varieties exist?

In the Argo CD framework, an ApplicationSet [2] significantly enhances the GitOps strategy for
continuous deployment (CD) within Kubernetes. This tool adeptly handles the complexity involved in
managing a variety of Kubernetes manifests, such as deployments, services, secrets, and configuration
files, all within a Git repository. Unlike the Argo CD application resource, which is limited to deploying
resources from a single git repository to one cluster or namespace, the ApplicationSet extends this
functionality. It utilizes templated automation to concurrently create, modify, and oversee multiple
Argo CD applications, thereby broadening its operational scope to encompass several clusters
and namespaces.

Understanding the App of Apps approach 111

The ApplicationSet controller, which is installed in the same namespace as Argo CD, plays a crucial
role. It generates a multitude of Argo CD applications from the ApplicationSet’s custom resource (CR).
This arrangement ensures that your Argo CD applications are in sync with your specified resources,
effectively transforming the ApplicationSet into one or more Argo CD applications, thus enhancing
overall deployment efficiency and scalability.

Generate refers to the process employed by the controller using various generators, but what exactly are
these generators? Generators in the ApplicationSet resource play a crucial role by creating parameters
that are incorporated into the template fields, ultimately generating Argo CD Applications. For a
practical example of this process, refer to this chapter’s introduction. The functionality of generators is
determined by their data sources. For instance, the List generator derives parameters from a predefined
list, the Cluster generator utilizes the Argo CD cluster list, and the Git generator gets sources from
files or directories in a Git repository.

There are numerous generators for different use cases and roles within ApplicationSets. For instance,
there’s the Cluster generator, which is ideal for platform engineers to scale their platforms, and the Pull
Request generator, which allows developers to deploy features for QA through GitOps. Additionally,
the Matrix generator allows you to combine up to two generators to meet more specific requirements.

We’ll be utilizing the Cluster generator to implement GitOps at scale. Moving beyond theory, let’s dive
into its practical application. We’ll start with a single cluster, tagging it with a label such as env=prod.
This can be done in the Argo CD UI by navigating to Settings | Clusters | Select In-Cluster |Edit |
Add Labels:

Figure 5.4 – Adding labels

GitOps at Scale and Multitenancy112

Now, create an ApplicationSet manifest, like so:

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: simple-webapp
 namespace: argocd
spec:
 generators:
 - clusters:
 selector:
 matchLabels:
 env: prod
 values:
 branch: main
 template:
 metadata:
 name: "{{name}}-simple-webapp"
 annotations:
 argocd.argoproj.io/manifest-generate-paths: ".;.."
 spec:
 project: default
 sources:
 - repoURL: git@github.com:PacktPublishing/Implementing-GitOps-
with-Kubernetes.git
 targetRevision: "{{values.branch}}"
 path: ./chapter05/chapter-5-the-app-of-apps-approach/
applicationsets/simple-webapp
 destination:
 name: "{{name}}"
 namespace: "argocd"
 syncOptions:
 - CreateNamespace=true

Here, we’re employing the Cluster generator, which is designed to deploy our simple-webapp
across various Kubernetes clusters. By using the env=prod selector, the ApplicationController will
create several applications corresponding to the count of your clusters. Each application’s name will
be modified to include the cluster name – for example, in-cluster-simple-webapp.

To apply ApplicationSet, use the following command:

kubectl apply -f simple-webapp-applicationset.yaml

Understanding the App of Apps approach 113

To view ApplicationSet, run the following command:

kubectl get applicationsets -n argocd

You can also view a templated application like so:

kubectl get application -n argocd

When you check the Argo CD UI, you won’t find the ApplicationSet directly, but you will see the
templated application, named in-cluster-simple-webapp. This application is managed by
the application controller in the following manner:

Figure 5.5 – The application templated through an ApplicationSet, managed by

the application controller, and informed over the Cluster generator

The templated application is visible through the ApplicationSet manifest, where the application
controller uses the Cluster generator to set the necessary parameters.

GitOps at Scale and Multitenancy114

Which approach should be used?

In most projects I’ve been involved in, teams prefer using individual applications and ApplicationSets
over the App of Apps approach. From a platform engineer’s [3] perspective, for creating scalable
infrastructure with GitOps, the ApplicationSets approach seems to be the most logical choice.

The App of Apps pattern in Argo CD is suitable for the following aspects:

• Bootstrapping multiple applications: Efficiently deploy numerous applications simultaneously.

• Managing applications as a single unit: Simplify the management of multiple applications.

• Enhancing the deployment workflow: Streamline the process of deploying and
updating applications.

ApplicationSets can be particularly beneficial in the following scenarios:

• Creating flexible deployment strategies for diverse environments: Deploy to multiple
Kubernetes clusters, to different namespaces in different clusters, or to different namespaces
on a single cluster (developer, DevOps, and platform engineer).

• Managing Applications in Monorepos: Deploy from different Git repositories, SCM providers,
or folders (developer, DevOps, platform engineer).

• Enabling self-service for multi-tenant clusters: ApplicationSets can facilitate a self-service
model, particularly with the Pull Request generator. This allows developers to deploy applications
in multi-tenant clusters with greater autonomy, without needing cluster-level permissions
(collaboration between developers and platform engineers).

• Deploying cluster add-ons across multiple clusters: Using the Cluster generator, you can
target add-ons to specific clusters managed within Argo CD, which is useful for large-scale,
multi-cluster environments (platform engineers, Site Reliability Engineers (SREs) and
DevSecOps engineering).

Contrasting this with the App of Apps approach, which is more suited for managing a collection of
related applications within a single repository or cluster, ApplicationSets offer more flexibility and
scalability, especially in environments with diverse deployment needs. They allow for more granular
and distributed control, aligning with complex infrastructure requirements and multi-cluster strategies.

Later, we will adopt an ApplicationSet to develop a scalable model for an IDP, referred to as KSC. This
platform aims to efficiently manage a large number of Kubernetes clusters while ensuring up-to-date
security measures are maintained.

Next, we’ll take a deep dive to understand what multi-cluster management means in the context of
GitOps with Argo CD and what possibilities it opens.

Understanding multi-cluster management 115

Understanding multi-cluster management
In this section, we’ll delve into our experiences with two different approaches to managing multi-
cluster environments within the GitOps framework. Our focus is not on the tools themselves, but
rather on the overarching strategy of orchestrating and managing these clusters as though they were
a singular platform. Through this exploration, we aim to impart a deeper understanding of these
methodologies, emphasizing that the key lies in effective orchestration rather than a comparison of
specific tools. We’ll discuss two distinct concepts:

• One cockpit to rule them all: This concept emphasizes centralized management and orchestration
of multiple clusters as a unified platform

• One cockpit – diverse fleet management: This concept focuses on managing a diverse
range of Argo CD clusters from a single control point while considering security aspects of
inter-cluster communication

In terms of tool selection, our experience suggests that Argo CD, with its support for clusters,
ApplicationSets, and generators, is better suited for scaling with GitOps in multi-cluster environments
compared to Flux, which lacks a dedicated multi-cluster management concept. This differentiation
becomes clearer in contexts where management extends beyond dedicated clusters to scenarios such
as vCluster approaches within a host cluster.

Here are some additional considerations for multi-cluster management in a GitOps framework:

• High availability and disaster recovery: This includes deploying across multiple regions or
even using multiple providers to ensure robustness and resilience

• Existing expertise: The level of knowledge in Kubernetes, the cloud, or GitOps within the
organization plays a critical role

• Budget constraints: The costs involved in multi-cluster management should not exceed a
predetermined amount

• Compliance and regulatory requirements: Ensuring adherence to industry standards and
legal regulations in different regions or sectors

• Network infrastructure and latency: Optimizing for network performance and reducing
latency, something that’s especially important in geographically dispersed clusters

• Cloud or service provider implementation: For example, AKS works with Flux CD for its
GitOps implementation, while OpenShift uses Argo CD for GitOps deployments

Overall, the choice between Argo CD and Flux CD hinges on their respective capabilities in orchestrating
and managing multi-cluster environments and specific use case requirements.

GitOps at Scale and Multitenancy116

One cockpit to rule them all

In this approach, there is a single Argo CD instance that’s shared by both developers and platform
engineers (Figure 5.6). This shared instance allows platform engineers to offer centralized management
functions and comprehensive control over various Kubernetes clusters. They manage and monitor all
deployments, ensuring developers have access to the required resources while upholding company
policies and security standards. This method promotes collaboration and provides a unified view of
all clusters, effectively reducing complexity in large, distributed organizations:

Figure 5.6 – One cockpit to rule them all – with a common Argo CD instance

In the one cockpit to rule them all approach for GitOps with Argo CD, the following are some
crucial considerations:

• Developer access: Determining developer access to the Argo CD UI involves establishing role-
based access control (RBAC) associated with groups, projects, and roles, potentially including
Dex and OIDC provider integration.

• Project access control: Limiting team access to specific projects to prevent unauthorized
deployments across clusters.

• Resources allocation: Are savings being made in the right areas? This question prompts a critical
evaluation of resource allocation, questioning whether cost savings are effectively targeted in
areas that maximize efficiency and overall value.

Understanding multi-cluster management 117

• Version updates: Coordinating updates for Argo CD across teams on a shared instance used
by multiple teams is crucial. This coordination ensures version compatibility and prevents
issues related to API deprecations, maintaining a stable and functional GitOps environment
for all teams.

Working with multiple teams on this approach brings a multitude of questions and considerations that
need to be addressed, emphasizing the complexity and planning required for effective implementation.

Here are some points based on our experience with this approach:

• Shared Argo CD usage often led to increased system load, occasionally causing outages

• Integration of features such as Argo CD’s PR-Generator added complexity

• It necessitated robust multitenancy frameworks and tools

• Argo CD, as the sole point of control, introduced a heightened risk of system failure

• The increase in teams significantly raised the requirements for communication and
system maintenance

• While there were savings in hardware resources, these were counterbalanced by greater demands
on human resources for management and coordination

We employ this approach for shared clusters to facilitate cold starts, save money and resources, provide
a learning platform, and offer shared services such as documentation and runners. A shared cluster is
more relevant for incubating projects, and when a project is mature or needs to head for production,
it should be moved onto its own cluster.

One cockpit – multiple fleet and commander concept

In this concept, one Argo CD instance will be used by the platform team to deploy and manage the
whole infrastructure that’s needed by developer teams. The platform team also deploys dedicated Argo
CD instances with a dedicated UI for every team. The focus is the same, but it’s more so about the
orchestration process and managing those clusters as if they were a single platform. The developer
will get their dedicated Argo CD instance:

GitOps at Scale and Multitenancy118

Figure 5.7: One cockpit – diverse fleet management with dedicated Argo CD instances per cluster

In contrast to the one cockpit to rule them all approach, this approach involves the following aspects:

• Dedicated Argo CD instances: Each cluster is managed by its own Argo CD instance, enhancing
individual cluster autonomy and reducing risks associated with a single point of failure.

• Autonomous project management: Each team manages projects within their designated
clusters, allowing for greater control and customization.

• Resource allocation: Instead of leveraging a shared Argo CD instance, each cluster operates
its own stack. While this may offer focused resource management within individual Argo CD
instances per cluster, it potentially leads to higher overall resource consumption.

• Version control autonomy: Each team controls the version updates of their Argo CD instance,
ensuring smooth operation and compatibility within their cluster environment.

Understanding effective Git repository strategies 119

Here are some insights from our experience with the one cockpit – diverse fleet management approach:

• Increased autonomy: Dedicated resources and UI access grant more freedom, flexibility, and
responsibility. This setup allows for self-service and extended control for developers, enabling
them to focus on development.

• Ease of onboarding: This model simplifies GitOps adoption, making it suitable for both newcomers
and experienced teams. Onboarding new colleagues requires less time with this approach.

• Resource consumption: While offering clear team separation, this approach can lead to greater
resource usage.

• Enhanced security: The compromise of one Argo CD instance doesn’t impact others, increasing
overall security.

• Platform team focus: Platform teams concentrate on scaling and engineering services for a
scalable, self-service approach. Less time is needed for interactions with development teams
and for creating and hardening multitenancy aspects related to the shared Argo CD instance.

• Resilience and isolation: This approach enhances resilience and isolation for each project or
development team. It eliminates issues with noisy neighbors, and upgrades to Kubernetes or
infrastructure by other teams or projects do not affect individual teams, ensuring smoother
operations and reduced disruptions.

This approach is adopted for handling critical workloads, ensuring strict tenant separation, enhancing
developers’ self-service capabilities, and bolstering security in compliance with stringent requirements
for security, governance, and compliance. In the realm of GitOps, which is central to continuously
delivering software into clusters, this approach becomes even more crucial when scaling, particularly
from a security perspective in DevOps practices.

In managing multi-cluster environments at scale with GitOps, the emphasis extends beyond just
overseeing dedicated Kubernetes clusters. It involves leveraging Argo CD to address varied needs and
deploy diverse workloads, including both customer applications and infrastructure components, while
maintaining security compliance across different clusters. This approach aims to bridge the gap between
developers and platform engineers, fostering scalability and boosting productivity in both domains.

However, there is another gap with GitOps that relates to the best way to set up a staging concept.
This will be explained in more detail in the next section.

Understanding effective Git repository strategies
Understanding how to effectively promote applications between stages in a GitOps framework,
especially at scale, is a crucial challenge for both developers and platform engineers. Deploying an
application to various environments involves navigating complexities beyond a single deployment
scenario. With Argo CD, the process becomes more manageable, allowing deployment across multiple
clusters without needing multiple CD pipelines.

GitOps at Scale and Multitenancy120

This section delves into various approaches for managing environments: environment branches,
environment per Git, and folders for environments. Each has its pros and cons, and the choice largely
depends on the specific needs of the project and the team’s expertise. Companies such as Codefresh
[4] have developed solutions to facilitate stage propagation with Argo CD. However, this book focuses
more on understanding these approaches rather than specific tools, guiding you to choose the most
suitable strategy for your environment.

Environment branches

The environment-per-branch [4] approach in GitOps, which involves using branches to represent
different environments such as staging or production, is often considered an anti-pattern. This approach
can complicate pull requests and merges between branches, create configuration drifts, and increase
maintenance challenges with a large number of environments. It also contrasts with the Kubernetes
ecosystem and is generally better suited for legacy applications. In GitOps, it’s recommended to
separate application source code and environment configuration into different repositories, avoiding
the branch-per-environment model. For deployment promotions, Git merges can be problematic due
to conflicts and unintended changes, making promotion management more complex than it appears.

Advantages of the environment-per-branch approach include familiarity for many developers and
the theoretical simplicity of promoting releases through git merges.

However, the disadvantages are significant if you’re working with GitOps and Kubernetes:

• Complex merges: Promotion through Git merges can lead to conflicts and unintended changes

• Configuration drift: Different branches might lead to environment-specific code, causing
configuration drift

• Maintenance challenges: Managing a large number of branches can become unwieldy

• Dependent changes: Difficulties arise in managing changes that have dependencies as not all
commits can be cleanly cherry-picked

Now, let’s explore a straightforward deployment manifest as an illustrative example.

Figure 5.8: How to propagate between stages

Understanding effective Git repository strategies 121

This basic example illustrates the need to incorporate propagation logic in deployment manifests,
ensuring that specific values, such as the number of replicas, are appropriately scaled for each stage
according to its unique requirements. Using tools such as Helm or Kustomize with GitOps can
present challenges as Helm uses different values.yaml files for stages, and Kustomize relies on
overlays. Additionally, GitOps, based on the Kubernetes ecosystem, brings its own complexities that
must be managed.

While this approach might suit legacy applications, it’s less ideal for modern Kubernetes environments.
Branches can still be used for features and PRs for testing changes. However, you still need pipelines or
workflows to commit the changes into Git. There is an option for writing back to Git outside of Argo
CD. Tools like Argo CD and its PR-Generator can help manage these processes, but note that the PR
generator is used to manifest Git content into the cluster, not the other way around.

Environment per Git

The environment per Git approach arises from concerns, especially in security teams, about a
single Git repository branch containing both production and non-production environments. While
securing individual branches can be easier, issues in the folder approach can be addressed through
automation, validation checks, owner of code, or manual approvals. Promotions should ideally be
automated, with no direct commits to main but through pull requests and review workflows. For
heightened security needs, organizations can use two git repositories: one for all production-related
configurations and environments, and another for non-production elements, balancing security with
a manageable number of repositories.

Throughout my career, I’ve only encountered one team that adopted this approach specifically to
prevent junior developers from accidentally accessing and exposing sensitive data.

Folders for environments

Adopting the environment-per-folder approach in GitOps and Kubernetes involves organizing different
environment configurations within separate folders of a single Git repository. Each folder represents
a specific environment such as development, staging, or production. This structure allows for clear
separation and management of configurations for each environment, facilitating easier updates and
maintenance. It streamlines the deployment process in Kubernetes, aligning with the principles of
GitOps by keeping all environment configurations in a unified repository, ensuring consistency and
traceability of changes.

To effectively create a folder structure for Kubernetes, start by understanding your business needs, such
as developing highly available portals for different countries and their specific version requirements.
Then, integrate business-related values, such as a company logo, into all environments. Also, consider
dynamic customer-related values, such as customer status levels such as silver, gold, or platinum. This
approach ensures that your Kubernetes settings, such as the minimum replica count, are aligned with
both general and specific business requirements.

GitOps at Scale and Multitenancy122

We will use the same example we did previously for the environment-per-folder approach:

Figure 5.9: How to propagate between stages with folders for environments

We will showcase the ease of change propagation across environments using Kustomize. The first
step involves setting up a specific folder structure to facilitate this process:

Figure 5.10: Example stages with folders for environments

Exploring the file structure, the base directory contains configurations that are shared across all
environments and typically undergoes infrequent changes. For simultaneous modifications across
multiple environments, the base folder is the ideal location to manage these changes as it provides
a centralized point for updates affecting various deployment settings:

Understanding effective Git repository strategies 123

./base/deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: simple-webapp
spec:
 replicas: 2
 selector:
 matchLabels:
 app: simple-webapp
 template:
 metadata:
 labels:
 app: simple-webapp
 spec:
 containers:
 - image: "ghcr.io/la-cc/simple-webapp:1.0.1-stable" #specific
version
 name: simple-webapp
 env:
 - name: UI_X_COLOR #business-related values
 value: darkblue
 - name: SUBSCRIPTION_TIER
 value: silver

In this simple example, you can see that we cover all the points, such as the specific version, business-
related values, and more from the previous description:

./base/kustomization.yaml:

resources:
 - deployment.yaml

The base folder, also known as mixins or components, contains configurations common to different
environments. Its contents are defined based on what you consider to be shared characteristics across
your environments, a decision guided by your application’s specific needs. In our example, this folder
includes configurations for the QA, staging, and production environments.

In this section, we’ll modify the base deployment by applying QA-specific configurations using a
patch.yaml file. This approach allows us to customize the base setup for the QA environment
without altering the common deployment settings:

GitOps at Scale and Multitenancy124

./overlays/qa/kustomization.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - ../../base
patches:
 - path: patch.yaml
namePrefix: qa-
commonLabels:
 variant: qa

The following code shows how to overwrite the color in the base with a patch and thus allow a stage
that’s specific for qa configuration:

./overlays/qa/patch.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: simple-webapp
spec:
 replicas: 1
 template:
 spec:
 containers:
 - image: "ghcr.io/la-cc/simple-webapp:1.1.5-new-ui"
 name: simple-webapp
 env:
 - name: UI_X_COLOR
 value: aqua

Important note
 The kustomize tool in Kubernetes allows you to customize your YAML configurations
without having to modify the original files. It enables you to manage configuration variations
in a more structured and scalable way by using patches, overlays, and other techniques to
generate final configuration manifests.

Understanding effective Git repository strategies 125

You can easily check the patching changes by executing the kustomize CLI tool from inside the
..chapter05/chapter-5-effective-git-repository-strategies/folders-
for-environments folder with the following command, which will show that the base overlay
has been patched:

kustomize build overlays/qa

In this stage, we will conduct tests on a specific version that incorporates business-related values.
This version is intended to eventually become the new release for our “gold” customers in the future.

The following code block shows how to reference the base, link it to the correct patch, and set a
corresponding name prefix for all generated resources:

./overlays/stage/kustomization.yaml:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
 - ../../base
patches:
 - path: patch.yaml
namePrefix: stage-
commonLabels:
 variant: stage

This process follows a similar patching method to what’s used for QA.

The following code block shows how to overwrite the color in the base with a patch and thus allow a
stage that’s specific for stage configuration:

./overlays/stage/patch.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: simple-webapp
spec:
 replicas: 2
 template:
 spec:
 containers:
 - image: "ghcr.io/la-cc/simple-webapp:1.1.4-feature-login"
 name: simple-webapp

GitOps at Scale and Multitenancy126

The folder-based approach in GitOps offers a streamlined overview of all stages, eliminating the need
to switch and compare across different branches. This simpler example, however, only scratches the
surface. In practice, you would manage a variety of files and environment-specific configurations. The
structure’s adaptability also allows for expansion into region-specific environments such as qa-europe
or qa-asia, enabling customization based on unique regional requirements and business objectives.

The following scenarios showcase how mighty this approach is:

Important note
This process is an external workflow to Argo CD that greatly simplifies deployment management
by enabling easy comparison and propagation between stages.

• Use case 1: Find a specific diff between QA and staging:

The diff command in Linux compares two files or directories, showing the differences in
their content in a line-by-line format.

You can see the difference between the QA and staging environments by running diff qa/
patch.yaml stage/patch.yaml.

• Use case 2: Promote the application version from QA to staging:

Important note
The cp command in Linux is used to copy files and directories from one location to another.

I. First, copy the new version file with cp qa/version.yaml staging-us/
version.yaml.

II. Then, commit and push the changes to Git.

• Use case 3: Initially test new business-related values, and upon successful testing, incorporate
them into the common settings:

I. First, add the new specific config to QA.

II. Then, promote the change from QA to staging.

III. After that, commit and push the changes to Git and test the changes.

IV. After testing, you can promote the change from staging to production.

V. Again, commit and push the changes to Git.

VI. Now, all stages have the same specific config. It’s no longer a specific config to a specific
stage. This means you can promote the change to base.

VII. Now, again, commit and push the changes to Git.

Understanding effective Git repository strategies 127

VIII. At this point, you can remove additional config from QA, staging, and production because
the config already exists in base.

IX. For the final time, commit and push the changes to Git.

This approach greatly simplifies managing deployments by allowing you to easily compare stages.
You can quickly compare differences by selecting files or folders, eliminating the need for complex
Git operations such as cherry-picking. Changes between stages, such as moving from QA to staging,
are efficiently handled by copying and pasting files. The flexibility of this method extends to different
regions, countries, Kubernetes distributions, and tools, limited only by your own requirements. It offers
a customizable and adaptable solution for a variety of deployment scenarios and can be automated
with any workflow mechanism.

What makes this approach particularly effective for Kubernetes and especially for scaling GitOps operations?

The suitability of this approach for Kubernetes and GitOps at scale is inherent in Kubernetes itself.
Designed to be declarative and configuration-centric, Kubernetes seamlessly integrates with the
structured, folder-based approach. This method supports GitOps’ focus on version control and traceability,
which is crucial for managing configurations effectively in large-scale Kubernetes environments. The
approach’s simplicity and organizational clarity make it an ideal match for the scalable and systematic
deployment needs of Kubernetes and GitOps frameworks.

Scaling with ApplicationSet generators

We’ve already delved into the distinction between the App of Apps [5] approach and ApplicationSets
in GitOps at scale with Kubernetes. Now, we will explore how to use ApplicationSets with generators
to develop a streamlined developer platform, known as the KSC in this book. Specifically, we will
demonstrate deploying an ingress controller across different clusters using ApplicationSet, each tailored
with cluster-specific values. Our focus will be on using Helm, a prevalent tool for delivering configurable
software. Helm’s flexibility is showcased in the umbrella chart approach, where it can deploy either a
single chart or a group of related charts. This can be integrated with tools such as Helmfile or Argo
CD or used independently in a CD pipeline. An example of this is kube-prometheus-stack,
which employs an umbrella chart with subcharts, such as Grafana.

Here’s a brief overview of using an umbrella ingress-nginx Chart.yaml file:

apiVersion: v2
name: ingress-nginx #umbrella chart
version: 1.0.0
description: This Chart deploys ingress-nginx.
dependencies:
 - name: ingress-nginx #subchart
 version: 4.8.0
 repository: https://kubernetes.github.io/ingress-nginx

GitOps at Scale and Multitenancy128

In the case of the ingress-nginx umbrella chart, using the same name for both the umbrella
and subchart can lead to confusion, especially when overriding values. To address this, you should
use global values for the umbrella chart and specify the subchart’s name – for example, ingress-
nginx.controller.resources – for specific overrides. This distinction is crucial for those
unfamiliar with umbrella charts as many teams struggle with values not being applied as expected
due to this naming overlap.

Now, let’s understand why and which part allows us to build scalable deployments with Argo CD by
looking at the following extract with nginx-ingress-applicationset.yaml:

spec:
 generators:
 - clusters:
 selector:
 matchLabels:
 env: prod
 values:
 branch: main
 template:
 metadata:
 name: "{{name}}-ingress-nginx "
 spec:
 sources:
 - repoURL: git@github.com:PacktPublishing/Implementing-GitOps-
with-Kubernetes.git
 targetRevision: main
 ref: valuesRepo
 - repoURL: git@github.com:PacktPublishing/Implementing-GitOps-
with-Kubernetes.git
 targetRevision: "{{values.branch}}"
 path: "./chapter05/chapter-5-building-a-service-catalog-for-
kubernetes/networking/ingress-nginx"
 helm:
 releaseName: "ingress-nginx"
 valueFiles:
 - "values.yaml"
 - "$valuesRepo/chapter05/chapter-5-building-a-service-
catalog-for-kubernetes/cluster/{{name}}/networking/ingress-nginx/
values.yaml"

You can find the complete example in this book’s GitHub repository via the name provided.

Building a service catalog for Kubernetes 129

The concept of the generator, as previously explained, remains the same. The change lies in how the
ApplicationController sources the umbrella chart (see 1 in Figure. 5.11), retrieves custom values for
the specific target cluster (see 2 in Figure. 5.11), then uses Helm to template these values and deploys
them to the target cluster (see 3 in Figure. 5.11). The following figure will further clarify the underlying
processes, enhancing understanding of the operations taking place behind the scenes:

Figure 5.11: Example stages with folders for environments

This ApplicationSet, utilized by the application controller, employs generator clusters to modify the
Helm charts, including both umbrella and subcharts. This methodology facilitates the implementation
of GitOps at scale. Argo CD, a widely used tool in the market, plays a crucial role in enabling this
approach, supporting the dynamic and scalable management of application deployments.

In the next section, we will see how to build KSG, which allows you to deploy different services from
this catalog distributed across the clusters with a scaling approach.

Building a service catalog for Kubernetes
In this section, we will develop a service catalog for Kubernetes as a lightweight IDP. This platform will
streamline providing necessary infrastructure through Kubernetes deployments. The lightweight IDP is
designed to scale Kubernetes cluster flexibly via GitOps as projects grow, ensuring rapid time to market.
Additionally, it will facilitate the extension of services such as security, FinOps, and service-mesh as
needed, while ensuring that clusters are up to date and simplifying their management, regardless of
the number of clusters involved. This approach underscores the synergy between Kubernetes, GitOps,
and scalable infrastructure management.

GitOps at Scale and Multitenancy130

Before proceeding, it’s important to establish your labeling or tagging strategy, especially if you prefer
not to deploy the entire stack to every cluster. Additionally, providing the opportunity to create and
expand a service catalog can be beneficial. In such cases, it might be advisable to deploy a basic
Kubernetes cluster tailored for various specific purposes. One potential approach could be as follows:

Labels Stack will be Deployed Notes

env: dev,
staging, prod

none, plain cluster No stack will be deployed. Dev
should only be used for testing
purposes. It is not stable.

core-basic: enabled argocd, external-dns,
and ingress-nginx

Should be deployed with
security-basic if you
want to issue certificates
over cert-manager.

security-basic:
enabled

cert-manager,
acme-issuer, falco,
kyverno, sealed-
secrets, external-
secrets, and rbac

Should be deployed on
every cluster to keep the
cluster secure.

monitoring-basic:
enabled

grafana, victoria
metrics, msteams-
proxy, mailhog,
stunnel, prometheus-
node-exporter,
prometheus-
alertmanager, falco-
exporter, and cluster-
alerting

Will deploy a monitoring stack
without the logging stack.

monitoring-medium:
enabled

loki, promtail,
and minio-loki-
tenant

This stack requires storage
and should be deployed
with storage-basic:
enabled.

storage-basic:
enabled

minio-operator
and nfs-subdir-
provisioner

This stack is needed for the
monitoring-medium
stack. You can also deploy
the stack without the
monitoring-medium stack
to use object storage or NFS
for other purposes.

Table 5.1: One potential approach of using labeling to manage different tech stacks

Building a service catalog for Kubernetes 131

For instance, using an operator or a CI/CD pipeline based on your workflow, you can efficiently map
and transfer labels from your Kubernetes cluster to your Argo CD cluster.

Building the service catalog

To avoid exceeding the scope, we will focus on a handful of services when building the service catalog,
and we’ll be using the following folder structure:

Figure 5.12: Example of possible services in the catalog

Here, applicationsets is a directory dedicated to deploying various services across multiple
Kubernetes clusters using labels. Inside, the cluster directory contains multiple clusters, each iterated
within the ApplicationSet and enhanced with parameters from the Cluster generator. Other directories,
such as dns, networking, and others, group services logically. They comprise Helm umbrella
charts along with subcharts for specific services, such as external-dns or ingress-nginx.

We will now review the well-known nginx-ingress-applicationset.yaml file, which has
been updated to include the labels approach:

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: ingress-nginx
 namespace: argocd
spec:
 generators:
 - clusters:
 selector:
 matchLabels:
 env: dev
 core-basic: enabled

GitOps at Scale and Multitenancy132

 values:
 branch: main
 - clusters:
 selector:
 matchLabels:
 env: prod
 core-basic: enabled
 values:
 branch: main
....

Now, ApplicationController deploys exclusively to clusters matching the env = dev |
prod and core-basic = enabled labels. Structurally akin to other ApplicationSets for services
shown in Figure 5.11, there is a unique aspect in cert-manager from the security folder, incorporating
an additional label, security-basic: enabled, in its ApplicationSet.

The following code block shows how to implement it:

apiVersion: argoproj.io/v1alpha1
kind: ApplicationSet
metadata:
 name: cert-manager
 namespace: argocd
spec:
 generators:
 - clusters:
 selector:
 matchLabels:
 env: dev
 core-basic: enabled
 security-basic: enabled
 values:
 branch: main
 - clusters:
 selector:
 matchLabels:
 env: prod
 core-basic: enabled
 security-basic: enabled
 values:
 branch: main
...

Building a service catalog for Kubernetes 133

Now, Argo CD’s application controller only deploys cert-manager to clusters tagged with the
specific additional label.

Labels are powerful tools that allow you to manage different stacks for on-premises and public cloud
environments through a single central Argo CD unit. This versatility allows for seamless management
across multiple environments. Integrating this with the varied perspectives of different roles, labels
facilitate the following:

• Platform engineers can employ this method to deliver scalable Cluster-as-a-Service while
incorporating SRE principles

• DevSecOps engineers can implement policies across all clusters, ensuring governance
and compliance

• Developers can utilize this approach to deploy scalable applications across various customer
clusters with customized values

This unified approach streamlines operations and ensures consistency across diverse environments
and roles.

Should you possess extra manifests tailored to your specific requirements where the service needs
to be extended – for example, if Argo CD requires an optional ingress during deployment to a target
cluster for external access over ingress, and not direct via the Kubernetes API – you can introduce an
additional templates folder under system.argocd. In this folder, you can include a manifest
similar to the following extract from templates.ingress.yaml:

{{- if .Values.ingress -}}
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: argocd-server-ingress
 annotations:
 kubernetes.io/ingress.class: {{ .Values.ingress.className }}
 ingress.kubernetes.io/force-ssl-redirect: "true"
 nginx.ingress.kubernetes.io/ssl-passthrough: {{ .Values.ingress.
sslPassthrough | default "false" | quote }}
 cert-manager.io/cluster-issuer: {{ .Values.ingress.issuer }}
 cert-manager.io/renew-before: 360h #15 days
 cert-manager.io/common-name: {{ .Values.ingress.host }}
 kubernetes.io/tls-acme: "true"
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
spec:
 rules:
 - host: {{ .Values.ingress.host }}
…

GitOps at Scale and Multitenancy134

This approach enables you to override the values in the umbrella chart and, if necessary, deploy an
additional ingress, like so:

#overwrite helm umbrella chart values:
ingress:
 host: argocd.your-domain.com
 issuer: "letsencrypt"
 className: "nginx"

If your organization uses common certificates from a root CA required by all external DNS, you could
utilize kustomize to establish a folder structure. For instance, you could create kustomize.
dns.external-dns-secrets with your root-ca.yaml file. Then, you could integrate this
into your external-dns ApplicationSet using just a few lines, like so:

...
 sources:
 - repoURL: git@github.com:PacktPublishing/Implementing-GitOps-
with-Kubernetes.git
 targetRevision: "{{values.branch}}"
 path: "./kustomize/dns/external-dns-secrets"
 - repoURL: git@github.com:PacktPublishing/Implementing-GitOps-
with-Kubernetes.git
...

With that, we have successfully created a catalog that will broaden the scope of our services, policies,
and application portfolio.

A crucial point is focusing on the overarching approach to achieving GitOps at scale, rather than
fixating on specific tools such as Argo CD. Tools may come and go, such as Flux or successors to Argo
CD, but what remains vital is an adaptable strategy. This is akin to development practices evolving
across different frameworks and languages while maintaining their foundational methods. By carefully
organizing folders for various environments and merging this structure with an ApplicationSet, an
efficient and scalable GitOps solution is formed. Such a strategy not only streamlines management
but also significantly reduces the maintenance required for any given environment. KSC describes
the power of joining CNCF/OSS projects together to create a secured, self-managed serving platform
for developers, platform engineers, and SREs.

Bonus – maintenance with GitOps at scale and KSC

Let’s say that you’re managing hundreds of Kubernetes clusters, each with different stacks, and in every
cluster, a core service is deployed. This results in approximately 2,000 applications being distributed
across the clusters. The key requirement is to keep everything up-to-date and secure. You’ve scaled
up brilliantly and kept your applications in sync. Suddenly, on the same day, two critical Common

Building a service catalog for Kubernetes 135

Vulnerabilities and Exposures (CVEs) for the Ingress-NGINX image you’re using are exposed, along
with a bug fix for Cert-Manager and an extra configuration for External-DNS to enhance its resilience.
All your clusters are affected. How do you maintain all clusters at once, considering everything is
managed through Helm charts? Here’s how:

• You could manually check all the Helm chart versions, look at the deltas, then upgrade the
versions and deploy them across all clusters using Argo CD. However, CVEs and changes don’t
always get published at a specific time; they’re released when a vulnerability is discovered.

• You have a pipeline or a job in your Kubernetes cluster that runs against your service catalog
at set intervals to check for newer versions of a Helm chart. If a new version is found, it creates
a pull request, displays all the changed values, and automatically merges if all criteria are met
or after a review.

The second option sounds much better, and there is a script you can run in a pipeline that does precisely
this. Alternatively, you can use a GitHub Action for this purpose.

This is what a pull request looks like:

Name: External DNS
Version in Chart.yaml: 6.23.6
Latest Version in Repository: 6.26.4
between /tmp/tmp.aJBFfh/diff_value.yaml
and /tmp/tmp.aJBFfh/diff_latest_value.yaml

 _ __ __
 | | _ / _|/ _|
 / _' | | | | |_| |_
| (_| | |_| | _| _|
 __,_|__, |_| |_|
|___/
returned three differences
image.tag
 ± value change
 - 0.13.5-debian-11-r79
 + 0.13.6-debian-11-r28

Afterward, the GitOps approach takes over, rolling out the changes across all clusters. This way, you
minimize maintenance by centrally managing changes and deploying them via GitOps, regardless of
the number of clusters involved.

GitOps at Scale and Multitenancy136

The following section is about how to implement a multi-tenancy concept using only the board
resources that Argo CD provides.

Exploring native multitenancy with Argo CD
This chapter is not about setting up the most secure, optimal multitenancy environment with Argo CD.
That’s because best is based on your specific SRE motivations, security team constraints, governance,
the compliance policies of your company, your industry, and the skill level of your team. Additionally,
tools change frequently, often multiple times a year, with minor releases introducing new features.
Therefore, our focus here is on the approach to creating multitenancy with Argo CD while considering
the aspects you should pay attention to, what you can address now, and future considerations.

But why opt for a multitenancy setup with Argo CD instead of using a dedicated cluster for each project?

There are several reasons:

• Reducing the count of clusters makes it easy to maintain aspects such as upgrading
Kubernetes versions.

• To maximize resource utilization and efficiency, multitenancy is essential.

• In non-dynamic, ticket-based cold start environments, especially when not every Kubernetes
cluster operates in the cloud, multitenancy becomes a necessity.

• By implementing FinOps practices, each machine’s cost is closely monitored and optimized.
Multitenancy helps reduce overall costs by maximizing the utilization of resources across
multiple teams or projects, ensuring efficient spending and minimizing waste.

In this section, you will learn how to implement a multitenancy setup using Argo CD as the central
management tool for workloads from different teams.

The setting for this setup is a Kubernetes platform in a company-owned data center, constrained by
resources such as storage. A core Argo CD instance, provided by the platform team, is employed
for the GitOps approach. This core instance delivers platform context (such as ExternalDNS, Cert
Manager, and more) declaratively. Developer teams maintain their own Git repositories, with access
to the Kubernetes cluster facilitated through Active Directory (AD) groups.

The challenge lies in deploying over the same core Argo CD instance without allowing teams to misuse
it and break out of their isolated environments.

Exploring native multitenancy with Argo CD 137

The following are the requirements to enable secure multi-client operation:

• Teams should work autonomously

• Each team can only access its designated namespace

• Teams must not negatively impact others, for instance, through improper resource provisioning

• A declarative GitOps approach is maintained

• GitOps at scale is managed declaratively for new projects and teams

Additionally, there needs to be a clear understanding of where the platform team’s responsibilities
begin and end. For this, you can consider the following approaches:

• The platform team provides the platform and context but stops at the initial repository setup:

 � Pros: No need to manage credentials such as personal access tokens (PATs) or SSH keys.

 � Cons: Disaster recovery is more challenging; developers must reinitialize access to the repo
after, for instance, rotating a cluster

• The platform team provides the platform, context, and the initial repository:

 � Pros: Disaster recovery is simplified. A stateless cluster can be discarded or migrated, and
the GitOps approach will restore everything correctly.

 � Cons: Managing credentials for different team repos becomes necessary.

By understanding and implementing these strategies, you can effectively manage a multitenancy
environment in a resource-limited, Kubernetes-based infrastructure using Argo CD. The implementation
of those strategies is based on the GitOps experience of the development and platform teams.

We will use the second approach from the view of the platform team and create a folder in our
Git repository to be aggregated by Argo CD, with a specific folder structure. But first, let’s look at
Figure 5.13. Here, you can see that the different teams have access to a specific namespace, which is
regulated by RBAC, quotas, and network policies and managed over a common Argo CD instance
with projects and applications. The Argo CD instance is also used by the platform team to provide a
new namespace as a service for new projects of the developer teams:

GitOps at Scale and Multitenancy138

Figure 5.13: Multitenancy with GitOps and Argo CD

The folder structure that will be created for every team looks like this:

Figure 5.14: Multitenancy with GitOps and Argo CD

A project on Argo CD represents the team’s dos and don’ts. You can define the relevant set of rules by
setting a project per development team. With this, the platform team gives just enough of a playground
for the developers.

Exploring native multitenancy with Argo CD 139

Let’s take a look at argocd-project-devteam-a.yaml:

apiVersion: argoproj.io/v1alpha1
kind: AppProject
metadata:
 name: devteam-a
 namespace: argocd finalizers:
 - resources-finalizer.argocd.argoproj.io
spec: description: Enable DevTeam-A Project to deploy new
applications sourceRepos:
 - "*"
 destinations:
 - namespace: "devteam-a"
 server: https://kubernetes.default.svc
 # Restrict Namespace cluster-scoped resources from being created
 clusterResourceBlacklist:
 - group: ""
 kind: "Namespace"
 # Restrict namespaced-scoped resources from being created
 namespaceResourceBlacklist:
 - group: "argoproj.io"
 kind: "AppProject"
 - group: "argoproj.io"
 kind: "Application"
 - group: ""
 kind: "ResourceQuota"
 - group: "networking.k8s.io"
 kind: "NetworkPolicy"

In this context, AppProject is structured simply, encompassing elements such as sourceRepos,
destinations, roles, clusterResourcesBlackList, or WhiteList, and
namespaceResourceBlacklist or WhiteList.

The operational flow involves determining the origins of resources, the clusters they can be deployed
to, and the namespaces within a project where deployment is permitted. It defines which resources
and namespace resources can be created within the cluster by the project, with options to either allow
or explicitly disallow (!) actions.

Global projects can be set up to distribute configurations to other projects. This means you can
implement cluster-wide restrictions that are inherited by other AppProjects, eliminating the need to
replicate the entire configuration block for each project.

GitOps at Scale and Multitenancy140

Project roles can be used to grant or deny access to specific resources within the project. Global roles
(argo-rbac-cm) and team or project roles are also used here. However, if a user’s Kubernetes
RBAC permissions are more extensive than those defined by the project, the project settings won’t
limit their ability to access or modify resources. Therefore, it’s essential to constrain user rights at the
RBAC cluster level.

Consider the following example:

destinations:
 - namespace: "!kube-system"
 server: https://kubernetes.default.svc
 - namespace: "devteam-a-*"
 server: https://kubernetes.default.svc
 - namespace: "*"
 server: https://kubernetes.default.svc

Important note
Here, you have explicitly forbidden deployment to kube-system while allowing deployments
to the devteam-a namespace. However, this also inadvertently permits deployments to other
namespaces, such as devteam-b, because they don’t match the deny pattern. This scenario
underscores the importance of a deep understanding of Kubernetes and the relevant tools for
implementing a multitenancy approach with GitOps at scale.

Now, let’s examine how you would set up an application in this environment:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: application-initializer-devteam-a
 namespace: argocd
spec:
 project: devteam-a
 source:
 repoURL: https://dev.azure.com/ORGA-X/devteam-a/_git/application
 targetRevision: main
 path: ./applicationset
 destination:
 server: https://kubernetes.default.svc
 namespace: devteam-a
…

Exploring multitenancy with vCluster and Argo CD 141

The resources are collected by the Argo CD core instance and deployed via the GitOps approach. At
this point, the platform team takes care of applications and doesn’t allow the developer to deploy their
own applications (see the limitations). You should be careful because restriction to create resources
is not the same as manipulating resources. So, you might have to configure additional policies and
WebHook validations, depending on your environment, corporate governance, and security guidelines.

devteam-a has a folder named applicationset in their repository. The folder represents
the start of Argo CD. The developers can determine the order and deploy their application over
kustomize, Helm, or a direct Kubernetes manifest file. In this configuration, developers are unable
to create custom resources such as applications, ApplicationSets, and AppProjects.

This approach to multitenancy with GitOps presents certain limitations:

• Limited team access to the Argo CD UI/CLI: Teams typically can’t create and manage applications
through Argo CD’s UI or CLI. If you wish to provide such access, you will need to use a Dex
server, create policies in the RBAC ConfigMap, map groups to roles, or utilize project roles.

• Restricted access to monitoring stacks: Teams may not have access to a monitoring stack.
Implementing multitenancy at this level is also necessary.

• Potential conflicts with CRD versions: If two teams opt to deploy different versions of CRDs
for the same service, these conflicts must be mitigated. One way to do this is by blocking such
actions and handling them through pull requests.

• Challenges with declarative management: The concept of declarative management can
conflict with multitenancy principles. This is because Argo CD requires that custom resources,
such as applications, be in the same namespace as Argo CD itself. A beta feature currently in
development may allow applications to be deployed in different namespaces.

When opting for multitenancy with GitOps, you can conserve hardware resources. However, it’s
important to consider that the engineering resources required to maintain and enforce multitenancy
setups might increase. GitOps can simplify management and enforcement, but it also comes with
its own set of constraints, depending on the tools used and the underlying Kubernetes version and
core approach.

This is why AppProject is not enough for multi-tenancy. To get the full GitOps experience for development
teams, Argo CD by itself needs some enforcement. Due to the limits described here, some tools can
be used to reduce them. We’ll cover this in the next section.

Exploring multitenancy with vCluster and Argo CD
In the previous section, we explored how multitenancy is implemented natively with Argo CD, along
with its current limitations at the time of writing. While these limitations may be addressed in the
future, there’s no certainty.

GitOps at Scale and Multitenancy142

In this section, we’ll expand the multitenancy approach by introducing a tool called vCluster. This tool
addresses most of the limitations discussed earlier by enabling scaling through GitOps in a declarative
manner, facilitated by Argo CD. This method shifts from a Namespaces-as-a-Service model to a more
comprehensive Virtual-Kubernetes-as-a-Service (VKaaS) or Kubernetes-as-a-Service (KaaS) approach.

vCluster, an open source solution for creating and managing virtual Kubernetes clusters, presents a
novel approach to Kubernetes cluster management. It functions by establishing a host cluster, on top
of which vClusters – akin to seed clusters – operate within namespaces. This setup allows multiple
clusters to be deployed. Necessary Kubernetes components and an additional syncer operate as pods
within the namespace, offering a unique virtual cluster with its dedicated API. These virtual clusters,
although running within a single namespace of a host cluster, provide the illusion of being independent,
full-fledged clusters. This is particularly useful in scenarios where namespace limitations are a concern,
and specific configurations incompatible with the host cluster’s multitenancy setup are needed.

The focus here is not just on the tool itself, but on how it enables us to meet the requirements outlined
in the previous section. We will maintain the same requirements and explore how vCluster can
overcome the previously discussed limitations.

In our context, a tenant (Figure 5.15) refers to a project managed by vCluster on dedicated nodes,
each with its own Argo CD instance. Thus, in our framework, every project is a tenant, and every
tenant corresponds to a namespace, aligning with vCluster’s namespace-based approach within the
shared cluster:

Figure 5.15: Example of how a tenant can be grouped by services

Exploring multitenancy with vCluster and Argo CD 143

After this setup process, as illustrated in Figure 5.16, your system will feature a configuration where
shared and isolated workloads exist simultaneously on the host cluster. The degree of this simultaneous
existence hinges on how you apply taints and tolerations, along with other strategies, to guide
Kubernetes’ deployment decisions. This ability is key to distributing shared workloads throughout
the cluster effectively.

The method we’re about to delve into shows how to distinguish between the workloads of customer
seed clusters, which operate on dedicated node pools, and those of the default node pool and host
cluster. It’s important to note that these host cluster workloads are vital for either Kubernetes or your
platform team’s operations, such as deploying the seed clusters:

Figure 5.16: Multitenancy setup with vCluster

GitOps at Scale and Multitenancy144

We will split the workflow into four steps. However, only the first two steps are necessary to build a
multitenancy setup with vCluster:

1. Step 1 – deploy vCluster:

Important note
For this part, KSC is extended by optimization/vCluster.

The following code is an extract from the application and can be found on GitHub in the
vcluster-application.yaml file, which focuses on the essentials. It is important to
understand that several repos are referenced as sources, and a Helm release is created and
overwritten with specific values:

 sources:
 - repoURL: git@github.com:PacktPublishing/Implementing-
GitOps-with-Kubernetes.git
 targetRevision: main
 ref: valuesRepo
 # - repoURL: git@github.com:PacktPublishing/Implementing-
GitOps-with-Kubernetes.git
 # path: "./chapter05chapter-5-building-a-service-catalog-
for-kubernetes/cluster/vcluster-team-a/" #this part allows to
deploy additional manifest like rbac.yaml
 # targetRevision: main
 - repoURL: git@github.com:PacktPublishing/Implementing-
GitOps-with-Kubernetes.git
 targetRevision: main
 path: "./chapter05/chapter-5-building-a-service-catalog-
for-kubernetes/optimization/vcluster"
 helm:
 releaseName: "vcluster-team-a"
 valueFiles:
 - "values.yaml"
 - "$valuesRepo/chapter05/chapter-5-building-a-service-
catalog-for-kubernetes/cluster/vcluster-team-a/optimization/
vcluster/values.yaml"

Additionally, we’ll deploy specific Kubernetes resources, such as networkpolicy-deny-
ingress.yaml and rbac.yaml, to effectively manage access control at the namespace
level. These resources are crucial for ensuring proper security and access protocols within the
multitenancy environment.

Exploring multitenancy with vCluster and Argo CD 145

2. Step 2 – connect Argo CD running on the host cluster to the vCluster:

I. This step involves setting up a multitenancy environment using vCluster and Argo CD.
The focus is on establishing a connection between Argo CD, which operates on the host
cluster, and the vCluster running on the host cluster. This process begins with connecting
to the vCluster. You can achieve this with a single command. For a port forwarding
connection, the following command can be used:

vcluster connect vcluster-team-a -n vcluster-team-a

II. When utilizing an ingress for SSL passthrough, you can establish a connection using
the following command:

vcluster connect vcluster-team-a \
-n vcluster-team-a \
--server=https://vcluster-team-a.example.com

Remember to configure certain vCluster and ingress-controller-specific parameters to enable
SSL passthrough.

III. Once this is set up, connecting Argo CD on the host system to the vCluster is a
straightforward process and can be achieved with a single command line:

argocd cluster add vcluster_vcluster-team-a \
--label env=vdev \
--upsert \
--name vcuster-team-a

Important note
At this stage, we have effectively addressed the challenge of multitenancy. Teams are now
equipped to connect to the virtual cluster using the familiar vcluster connect command.
This capability is crucial in fostering self-sufficiency among teams.

3. Step 3 – point to KSC:

Here, the focus shifts to integrating the virtual Kubernetes environment with a service catalog.
This step involves creating an application that points to a repository containing a suite of
applications specifically designed for the virtual cluster. This is like the application example
provided earlier. By establishing a virtual KSC (vKSC), you can delineate the difference between
various environments and adopt your approach with labels to deploy in a manner akin to how
you manage dedicated Kubernetes clusters.

To implement this, you can follow the step-by-step guide available on my blog [7]. This guide
provides detailed instructions and insights into building a vKSC. This resource is particularly
useful for understanding how to effectively manage and deploy applications in a multi-tenant setup
using vCluster, ensuring a smooth and scalable operation within your Kubernetes environment.

GitOps at Scale and Multitenancy146

4. Step 4 – deploy Argo CD into vCluster while running Argo CD on the host cluster:

While setting up a multitenancy environment with vCluster, we have already established a folder
structure that represents our vKSC. This structure is crucial for organizing various services and
applications within the vCluster. After integrating Argo CD into this service catalog, similarly
to other services in the KSC, we must now use Argo CD running on the host cluster to deploy
Argo CD across all clusters using GitOps. This approach allows for an automated and consistent
deployment process. It helps in avoiding code redundancy and enables individual patching
of manifests for each cluster. This setup ensures efficient management and deployment in a
multi-tenant Kubernetes environment by uniformly deploying Argo CD across all clusters.

Bonus – simplified connection to multiple vClusters – a handy
bash script

Managing multiple vClusters can often become a cumbersome and noisy process, particularly when it
involves connecting to each cluster individually. To address this challenge and streamline the workflow,
I have developed a straightforward bash script. This script simplifies the process significantly. It operates
based on the context of the host cluster and utilizes a consistent naming pattern, such as a namespace
named vcluster-demo and an ingress formatted like vcluster-team-a.example.com.
With this script, you can efficiently iterate over and establish connections to all vClusters, thereby
saving considerable time and effort in managing your multi-cluster environment

Limitations solved in multitenancy with GitOps – a review

The implementation of multitenancy using vCluster and Argo CD, as outlined in the earlier steps,
addresses several key limitations:

• Limited team access to Argo CD UI/CLI: This can be resolved by implementing Steps 3 and
4. Each team receives an Argo CD instance, complete with UI and CLI access, enhancing
autonomy and operational efficiency.

• Restricted access to monitoring stacks: This can be solved by deploying an additional monitoring
stack within vCluster. This step ensures that teams have the necessary monitoring tools at their
disposal for effective cluster management.

• Potential conflicts with CRD versions: This is no longer an issue because each virtual Kubernetes
cluster maintains a key-value store with distinct CRDs. This separation effectively eliminates
conflicts arising from CRD version discrepancies.

• Challenges with declarative management: This is addressed through the platform team’s
ability to provision virtual clusters over Argo CD, enabling teams to manage their dedicated
vClusters effectively. From a developer’s perspective, following the implementation of Steps
3 and 4 (refer to the Exploring multitenancy with vCluster and Argo CD section) ensures a
smooth declarative management process.

Wrapping up – insights and lessons from multitenancy experiences 147

However, it’s important to note the inherent trade-offs in this approach. While this concept appears
resource-efficient, especially compared to the dedicated approach of one cluster per project/team,
vCluster does consume additional resources compared to the native approach. Most resources from
the virtual cluster can be synced into the host cluster, and loft.sh, the creator behind vCluster, is
working on expanding this bidirectional synchronization. There’s also a vCluster Pro enterprise version
offering further enhancements such as custom syncs between the host and vCluster, hibernating
vClusters, creating templates, and more. Nevertheless, the focus here is not strictly on the tool but on
the approach – how to effectively implement a multitenancy strategy using GitOps at scale.

As this chapter draws to a close, the following section summarizes the key points.

Wrapping up – insights and lessons from multitenancy
experiences
As we wrap up this chapter, it’s insightful to revisit the key themes and lessons that have emerged.
Beginning with the App of Apps approach, we set the stage for understanding the complexities of
managing applications in a Kubernetes environment. This approach emphasized the importance of a
structured and scalable method to handle application deployment and orchestration.

Moving on to multi-cluster management, we explored the intricacies of managing numerous Kubernetes
clusters, a critical aspect for organizations operating at scale. This exploration was complemented by
the section on effective Git repository strategies, where the focus was on optimizing the management
of repositories to enhance operational efficiency in a GitOps-centric environment.

The journey further unfolded with ApplicationSet generators and building a service catalog for Kubernetes.
These sections delved into the techniques and tools necessary for effectively scaling applications and
services across multiple Kubernetes clusters, underscoring Kubernetes’ inherent scalability and flexibility.

The Native multitenancy with Argo CD and Multitenancy with vCluster and Argo CD sections provided
a thorough understanding of different methodologies and tools for achieving efficient multitenancy.
They highlighted how multitenancy can be implemented and managed using Argo CD and vCluster,
offering insights into creating isolated, efficient multi-tenant environments.

Throughout this exploration, several key lessons and insights emerged:

• The strategy often outweighs the choice of tools, reinforcing the importance of approach over
specific technologies

• Implementing multitenancy natively can save hardware resources but may increase the demand
for engineering resources

• The use of patterns such as App of Apps and ApplicationSets can greatly aid in building scalable
deployment strategies for different roles and use cases

GitOps at Scale and Multitenancy148

• Managing multiple clusters with Argo CD is simplified, especially when combined with the
effective use of labels and a GitOps approach

• Labels, when used with ApplicationSets and Cluster generators, can facilitate selective and
flexible deployment strategies across clusters

• While native multitenancy approaches appear resource-efficient, they can introduce complexities
and necessitate more engineering resources

• Tools such as vCluster offer a more isolated approach to multitenancy while maintaining
declarative management and utilizing GitOps

• The balance between conserving hardware resources and the increase in engineering and
developer onboarding efforts needs to be carefully managed

• GitOps at scale empowers platform engineering teams and developers, allowing them to focus
on application development rather than operational burdens

In concluding this chapter, it becomes evident that understanding the underlying approach opens a
myriad of possibilities for creating diverse and impactful real-world solutions and products.

These include products:

• Platform as a Service (PaaS) products: As a platform engineering team, understanding these
concepts enables the creation of a PaaS product. This platform offers a suite of tools and services
that are essential for streamlined application development and deployment.

• Software as a Service (SaaS) solutions development for diverse clients: By leveraging GitOps
and Argo CD, developers can create customizable SaaS solutions that are easy to deploy across
different Kubernetes clusters in various regions and versions. This approach ensures automated,
consistent deployment, allowing developers to efficiently cater to the unique requirements of
a diverse client base.

• Deployment solutions for SRE teams: SRE teams can leverage this knowledge to improve their
deployment strategies, ensuring high availability and efficiency in their operations.

• Governance and compliance tools for security teams: Security teams can use these strategies
to implement robust governance and compliance measures across all clusters. By utilizing labels
effectively, they can establish comprehensive service packages that ensure adherence to security
standards and regulatory requirements.

These applications demonstrate the versatility and real-world impact of the strategies discussed in this
chapter, highlighting how a deep understanding of GitOps and multitenancy can lead to the creation
of diverse, scalable, and secure technological solutions.

Summary 149

Summary
In conclusion, this chapter has not only illuminated various strategies and tools for achieving
multitenancy and scaling in Kubernetes but also highlighted the crucial role of understanding these
concepts deeply. The journey through GitOps at scale and multitenancy reveals that while there are
multiple approaches to achieving efficiency in Kubernetes, each comes with its trade-offs. The ultimate
choice should be aligned with the organization’s specific needs and the goals of its development teams.

In the next chapter, we will introduce different architectures that have already been partially utilized
in this chapter to illustrate concepts such as One cockpit rule them all approach for multi-cluster
management, as well as discuss their advantages, disadvantages, use cases, and insights gathered
from various projects.

References
• [1] https://docs.akuity.io/tutorials/cluster-addons-with-

applicationsets/

• [2] https://argocd-applicationset.readthedocs.io/en/stable/
Generators/

• [3] https://codefresh.io/blog/argo-cd-best-practices/

• [4] https://codefresh.io/docs/docs/pipelines/deployment-
environments/

• [5] https://codefresh.io/blog/codefresh-gitops-app-of-apps/

• [6] https://www.vcluster.com/docs/using-vclusters/access

• [7] https://medium.com/devops-dev/multi-tenancy-with-vcluster-
794de061fff1

https://docs.akuity.io/tutorials/cluster-addons-with-applicationsets/
https://docs.akuity.io/tutorials/cluster-addons-with-applicationsets/
https://argocd-applicationset.readthedocs.io/en/stable/Generators/
https://argocd-applicationset.readthedocs.io/en/stable/Generators/
https://codefresh.io/blog/argo-cd-best-practices/
https://codefresh.io/docs/docs/pipelines/deployment-environments/
https://codefresh.io/docs/docs/pipelines/deployment-environments/
https://codefresh.io/blog/codefresh-gitops-app-of-apps/
https://www.vcluster.com/docs/using-vclusters/access
https://medium.com/devops-dev/multi-tenancy-with-vcluster-794de061fff1
https://medium.com/devops-dev/multi-tenancy-with-vcluster-794de061fff1

6
GitOps Architectural Designs

and Operational Control

In the rapidly evolving landscape of cloud-native technologies, understanding and effectively
implementing various architectural frameworks becomes crucial for organizations seeking to harness
the full potential of Kubernetes. As we dive deeper into this topic in this chapter, we will explore
diverse architectures that not only enable multi-cluster management – a theme partially introduced
in the previous chapter – but also facilitate effective GitOps implementations for service and product
deployments utilized by various companies.

Our journey will take us through real-world scenarios and practical insights from projects that have
employed different architectural approaches. By examining how various companies have successfully
integrated GitOps methodologies to deploy and manage their services and products, we gain valuable
perspectives on what works in different contexts. This chapter will particularly benefit platform
engineers, SREs, and internal developer platform builders as it focuses on deploying various
operational models used by teams to provide their workloads or the platform context.

We will delve into the nuances of managing Kubernetes clusters and workloads using tools such as
Argo CD, Flux CD, and Cluster API. These tools are at the forefront of enabling efficient and scalable
management of Kubernetes environments.

By the end of this chapter, you will have a comprehensive understanding of how different architectural
choices impact the effectiveness and efficiency of Kubernetes deployments, particularly in the context of
GitOps. Whether you’re a platform engineer crafting the infrastructure, an SRE ensuring its reliability,
or a developer building internal platforms, the insights shared here will be invaluable in your pursuit
of operational excellence in cloud-native environments.

As such, the following topics will be covered in this chapter:

• Exploring diverse GitOps architectural frameworks for Kubernetes environments

• Examining the impact of architectural choices on GitOps’ effectiveness

GitOps Architectural Designs and Operational Control152

• Tailoring designs for scalability, resilience, and efficiency in cloud-native deployments

• Centralized control – managing clusters with a solo Argo instance

• Dedicated instances – instance per cluster with Argo CD

• Dedicated instances – instance per cluster with Flux CD

• The middle way – instance per logical group with Argo CD

• The cockpit and fleet approach with Argo CD

• Centralized Kubernetes cluster creation – leveraging Cluster API and Argo CD for streamlined
cluster deployment

• A deep dive into Cluster API and GitOps – hands-on

Exploring diverse GitOps architectural frameworks for
Kubernetes environments
Exploring diverse GitOps architectural frameworks for Kubernetes environments is crucial for
organizations looking to streamline their deployment pipelines and operational workflows. GitOps,
a term coined by Weaveworks, emphasizes the use of Git as the single source of truth for declarative
infrastructure and applications. In Kubernetes environments, this translates to a series of best practices
and patterns that guide the management and automation of container orchestration.

Several architectural frameworks within GitOps cater to different organizational needs and technical
contexts. The choice of framework often depends on the complexity of the environment, the scale of
the operations, and the governance requirements.

The adoption of GitOps influences architectural decisions in Kubernetes in several ways:

• Infrastructure as Code (IaC): With GitOps, the entire Kubernetes architecture is defined
as code – typically YAML files that describe the desired state of the system. This approach
enables developers and operations teams to collaborate on infrastructure changes, which can
be versioned, reviewed, and audited just like application code.

• Immutable infrastructure: The architectural frameworks that embrace GitOps often prioritize
immutability. Once a resource is deployed, it should not be changed manually in the running
environment. Instead, any modifications are made in the Git repository, which triggers a
deployment process to update the infrastructure.

• Modular design: GitOps encourages a modular approach to infrastructure. Each module, or set
of Kubernetes resources, can be managed as a separate project within Git. This modularization
aligns with Kubernetes’ architectural philosophy of microservices, where each service can be
deployed, scaled, and managed independently.

Exploring diverse GitOps architectural frameworks for Kubernetes environments 153

• Automated deployment strategies: Architectural frameworks under GitOps often incorporate
advanced deployment strategies such as canary releases, blue-green deployments, and A/B
testing. GitOps tooling automates the rollout and monitoring of these strategies, making it
easier to implement them in a controlled manner.

• Environment parity: GitOps ensures that each environment – from development to staging to
production – can be replicated with a high degree of fidelity. This is achieved by using the same
declarative configurations across environments, reducing the “works on my machine” syndrome.

• Security and compliance: By defining architectural elements as code in a Git repository, GitOps
enables the application of security policies and compliance checks as part of the continuous
integration/continuous deployment (CI/CD) pipeline. This means that security becomes a
part of the architecture by design, not an afterthought.

• Single repository versus multiple repositories: Some organizations opt for a single repository
containing all configurations and applications, which simplifies management but may not
scale well with large teams or complex applications. Others prefer multiple repositories and
separating configurations and applications to provide finer-grained access control and clearer
separation of concerns.

• Push versus pull deployment models: In a push-based model, changes are pushed from the
repository to the Kubernetes clusters, often through a CI/CD pipeline. The pull-based model,
conversely, involves a Kubernetes operator within the cluster monitoring the repository and
pulling in changes when they’re detected. While the push model offers immediacy, the pull
model is praised for its alignment with the Kubernetes declarative philosophy and enhanced
security posture.

• Monolithic versus microservices architectures: When it comes to application architectures
within Kubernetes, GitOps can be applied to both monolithic and microservices patterns.
Monolithic architectures may be easier to manage through GitOps due to their singular nature,
but microservices architectures benefit from GitOps through the ability to independently
deploy and scale services.

The architectural frameworks for Kubernetes, empowered by GitOps, are evolving to facilitate more
robust, scalable, and secure application deployments. Embracing GitOps not only streamlines the
operational workflow but also enforces best practices in software architecture. As organizations adopt
these frameworks, they must remain flexible and willing to adapt to the rapidly changing landscape
of cloud-native technologies.

In the next section, we will look at the effects the choice of architecture has on working with GitOps.

GitOps Architectural Designs and Operational Control154

Examining the impact of architectural choices on GitOps’
effectiveness
GitOps is inherently aligned with Kubernetes’ declarative approach to managing infrastructure, where
the desired state of the system is described in code. This state is checked into a Git repository, which
then serves as the single source of truth. The effectiveness of GitOps is contingent on how well the
architectural choices support a declarative model that enables the following aspects:

• Version control: Tracking changes over time, providing a historical context, and enabling
rollback to previous states

• Change management: Facilitating peer reviews and approvals for changes to infrastructure
code, enhancing the quality and security of deployments

• Automated synchronization: Ensuring that the actual state of the system automatically
converges to the desired state defined in the repository

Architectural choices impacting GitOps

When considering the impact of architectural choices on GitOps, several key factors come into play:

• Repository structure: Choosing between a monolithic (single repository) versus a multi-repository
(one per service or team) approach can significantly affect the manageability and scalability
of applications. A monolithic repository might simplify dependency tracking and versioning
but could become unwieldy with scale. Multi-repository strategies enhance modularity and
separation of concerns but require more sophisticated synchronization mechanisms.

• Deployment strategies: The architecture must support a variety of deployment strategies, such
as canary, blue-green, or rolling updates. GitOps tools automate the execution of these strategies,
and the choice of strategy can impact resource utilization, downtime during deployments, and
the ability to test changes in production-like environments.

• Environment isolation: Architectural decisions on how to isolate and manage environments
(development, staging, and production) will affect the GitOps workflow. Environment-specific
configurations can be handled via separate branches, directories, or even separate repositories,
each with implications for access control, traceability, and complexity.

• Scalability: As organizations scale, the architecture should facilitate a GitOps approach that can
handle increased workloads, more complex deployments, and a growing number of services.
This may involve partitioning clusters, adopting multi-cluster strategies, or leveraging cloud-
native tools that specifically address scalability.

• Security considerations: Architectural choices must ensure that security is embedded in the
GitOps workflow. This includes everything from securing access to Git repositories to encrypting
sensitive data and automatically enforcing policies throughout the CI/CD pipeline.

Tailoring designs for scalability, resilience, and efficiency in cloud-native deployments 155

Making informed architectural decisions

To ensure GitOps effectiveness, organizations must make informed architectural decisions:

• Assess organizational needs: Understand the organization’s requirements in terms of scale,
complexity, compliance, and team workflows

• Evaluate tooling compatibility: Select GitOps tooling that is compatible with the chosen
architecture and can support the required deployment strategies

• Promote collaboration: Architectures should encourage collaboration between development,
operations, and security teams to leverage the collective expertise in support of GitOps workflows

• Continuously refine: Architectural choices should be revisited and refined based on feedback
from ongoing operations so that they can adapt to new challenges and opportunities

In conclusion, the architectural choices that are made when setting up Kubernetes environments
have far-reaching implications for the success of a GitOps approach. By fostering an architecture
that embraces version control, change management, and automated synchronization, organizations
can leverage GitOps to enhance the agility and stability of their infrastructure. Making informed
decisions about repository structures, deployment strategies, environment isolation, scalability, and
security will position teams to harness the full potential of GitOps, leading to a more resilient and
responsive infrastructure.

Tailoring designs for scalability, resilience, and efficiency
in cloud-native deployments
Tailoring architectural designs to achieve scalability, resilience, and efficiency is fundamental for
cloud-native deployments, where the dynamic nature of the cloud environment can present both
opportunities and challenges. Cloud-native architectures enable systems to be resilient to failures,
adaptable to changing loads, and efficient in resource utilization. When incorporating GitOps practices,
these designs can be systematically enforced and continuously improved.

Scalability in cloud-native architectures

Cloud-native deployments are expected to handle varying loads gracefully. This flexibility is crucial
for maintaining performance during demand spikes and optimizing costs during quieter periods.
Here are a few ways you can achieve high scalability:

• Horizontal scaling: Architectures should be designed to allow for horizontal scaling, which
involves adding more instances of an application to handle increased load

• Microservices: Breaking down applications into microservices enables individual components
to scale independently, providing granular control over resource allocation

GitOps Architectural Designs and Operational Control156

• Stateless applications: Stateless applications are inherently more scalable since any instance
can handle any request, allowing for straightforward horizontal scaling

GitOps can manage the deployment and scaling of these services by automatically adjusting the
number of instances based on the load, as defined in the Git repository.

Resilience through redundancy and isolation

A resilient system can withstand and recover from failures without significant downtime or data loss.
Here are a few ways you can achieve stronger resilience:

• High availability: Architectures must be designed for high availability, with redundant
components that can take over in case of failure.

• Fault isolation: Microservices architectures naturally lend themselves to fault isolation. A
problem in one service should not cascade and cause system-wide failures.

• Disaster recovery: A robust backup and recovery strategy, along with multi-region deployments,
can ensure that applications survive even catastrophic events.

In GitOps workflows, the desired state in the repository reflects these high-availability configurations,
enabling the system to self-heal by automatically re-deploying failed components.

Efficiency with proactive optimization

Efficiency in cloud-native deployments is about doing more with less – less time, less resources, and less
manual intervention. You can achieve early efficiency if the following aspects are optimized in advance:

• Auto-scaling: Implement auto-scaling policies to adjust resources in response to real-time
metrics, ensuring efficient use of infrastructure

• Load balancing: Effective load balancing distributes traffic across instances to optimize resource
utilization and ensure consistent performance

• Resource limits: Setting appropriate resource limits and requests in Kubernetes helps prevent
any single service from consuming more than its fair share of resources, leading to a more
efficient system

GitOps automates the process of enforcing these policies by triggering actions based on the configurations
defined in the Git repository.

Tailoring designs with GitOps

Designing architectures with scalability, resilience, and efficiency in mind requires careful planning and
the right set of tools to manage the deployment and operation of cloud-native applications. Consider
the following aspects when tailoring the design:

Centralized control – managing clusters with a solo Argo instance 157

• IaC: Define your infrastructure and policies as code to maintain a clear and auditable trail of
how resources are allocated and managed

• Observability: Implement comprehensive logging, monitoring, and alerting to gain insights
into the system’s performance and health, informing decisions about design adjustments

• Continuous improvement: Use GitOps to continuously deploy updates and improvements to
the architecture, ensuring it evolves to meet changing needs and challenges

Tailoring designs for scalability, resilience, and efficiency is vital for cloud-native deployments to thrive
in the elastic and often unpredictable cloud environment. By leveraging GitOps, teams can ensure that
these design principles are consistently applied across all environments, enabling them to respond
quickly to changes and maintain robust, efficient systems. As cloud technologies continue to evolve,
so too must the architectures and practices that support them, with GitOps providing a framework
for that ongoing evolution.

In Chapter 11, we’ll explore the practical use of different GitOps approaches to deploy real-world
applications. The next section delves into the significance of application design in GitOps, emphasizing
the importance of the operational setup. A team’s focus shouldn’t just be on deploying applications,
but also on choosing the right GitOps instance strategy for effective deployment. Before implementing
GitOps with tools such as Argo CD, you must carefully consider the required number of clusters. We
briefly introduced single instance approaches in the previous chapter while focusing on scalability.
The next section will examine various approaches, their real-world application by organizations, and
the advantages and disadvantages that are experienced in these scenarios, with a particular emphasis
on the operational control of GitOps instances.

Centralized control – managing clusters with a solo Argo
instance
As organizations grow and evolve, the demand for scalable, secure, and efficient deployment strategies
becomes increasingly critical. Argo CD, a key player in the GitOps field [1, 2], stands out for its
comprehensive capabilities in scaling across various aspects, such as performance, security, usability,
and failover processes. In this section, we’ll delve into the nuances of different architectural models
and the intricacies of operational management. However, before we dive into these topics, it’s essential
to address a few preliminary points that significantly influence decision-making in this realm:

• Security considerations: Security in scaling with Argo CD involves a robust combination of
role-based access control (RBAC) and single sign-on (SSO) mechanisms. A key security
feature is the client-side rendering of manifests, which reduces the threat landscape. However,
the power of tools such as Helm, Kustomize, and Jsonnet in manifest generation introduces
potential risks as they allow arbitrary code to be executed. This necessitates careful consideration,
especially in larger instances, to prevent abuse in manifest generation.

GitOps Architectural Designs and Operational Control158

• Usability at scale: Argo CD’s reputation for ease of use and extensibility remains intact even as
it scales. However, managing applications across numerous Kubernetes instances can lead to
complexities, such as the need for unique application naming conventions and the challenge of
managing a large number of applications within a single UI instance. The tool’s UI filters, while
powerful, are not savable, leading teams to find creative solutions such as using bookmarks
for saved filters.

• Failover strategies: The GitOps approach, embodied by Argo CD, facilitates rapid changes and
recovery through simple git commits. However, this ease of setup and teardown also brings to
light the potential for significant impact due to misconfigurations. For instance, a minor error
in updating a config management plugin could lead to widespread application failures. This
raises the question of the “blast radius” – the extent of impact that a single misconfiguration
could have.

• Performance scaling: Argo CD is available in two versions: the standard and the high-availability
(HA) version. The latter is specifically designed for scalability, deploying multiple replicas of
key components such as the repo-server. Argo CD’s scalability is evident in its capacity to
support, without major adjustments, up to 1,500 applications, 14,000 objects, 50 clusters, and
200 developers. This benchmark, though conservative, accounts for variations in applications,
such as their object count, manifest complexity, and update frequency. These figures, sourced
from a KubeCon talk by Joseph Sandoval and from Adobe and Dan Garfield from Codefresh
[3], provide a foundational guideline for planning scaling needs.

In summary, while Argo CD is a robust tool that’s capable of handling the complexities of scaling in
modern software environments, it requires careful consideration in terms of its performance capabilities,
security risks, usability challenges, and failover strategies. The correct architectural choices, tailored
to an organization’s specific needs, can leverage Argo CD’s strengths while mitigating potential risks
associated with scaling.

The approach – centralized control

This approach may be familiar to you. In the managed cluster approach, a single Argo CD instance is
utilized by various teams for different purposes. The platform team employs this shared instance to
deploy the necessary platform context for other teams.

Important note
The term platform context, tailored to individual company needs, includes essential tools such
as Ingress Controllers and Cert-Managers for effective Kubernetes platform operations.

Centralized control – managing clusters with a solo Argo instance 159

Developers use the same Argo CD instance to deploy their applications. Similarly, SRE teams leverage
it to deploy tools that help in identifying bottlenecks, analyzing performance issues, and more. The
security team also makes use of this shared Argo CD instance to deploy its policies and enforce them
through a policy engine. Additionally, they deploy security tools such as kubeclarity [4] or the trivy
operator [5] to monitor vulnerabilities in images running in the cluster, track used packages, and check
licenses. However, the significant change now is that instead of one Argo CD instance managing the
platform and applications on a shared control and workload cluster, there is one Argo CD instance
managing multiple clusters (Figure 6.1):

Figure 6.1 – Difference between centralized control and one cockpit to rule them all

The following table outlines the advantages and disadvantages:

Advantages Disadvantages

Centralized view and control: Unified view
for deployment activities across all clusters

Scaling and performance: Scaling
necessitates tuning individual components

Simplified management: Managing a single
Argo CD instance for multiple Kubernetes
clusters eases administrative tasks

Single point of failure: Potential single point
of failure for deployments

API/CLI integration: With only one server
URL, API and CLI integration becomes
more straightforward

Security implications: Centralization of
admin credentials for all clusters

GitOps Architectural Designs and Operational Control160

Advantages Disadvantages

Network traffic and cost implications:
The application controller, responsible for
Kubernetes watches, can incur significant
network costs, especially if clusters are located
in different regions

Table 6.1 – Advantages and disadvantages of the centralized control approach

The single control plane approach involves one Argo CD instance managing all clusters, a popular
approach for offering a unified application view and enhancing developer experience.

For organizations that delegate access based on environment and are concerned about managing all
applications under one instance, RBAC policies and AppProjects can establish necessary boundaries,
defining deployment locations and access controls.

This architecture also mandates establishing and maintaining a dedicated management cluster to host
the Argo CD control plane, with direct access to all other clusters. The location of this management
cluster could lead to security concerns, especially if it involves public exposure.

The key question here is how to ensure tenant separation while maintaining collaboration. In the GitOps
approach with Argo CD, built-in custom resources such as projects, roles, and groups are utilized to
implement a multitenancy framework. However, determining who is responsible for implementing,
maintaining, and extending this approach to optimize the shared Argo CD instance is crucial.

If the platform team is in charge, they must also manage the security, governance, and compliance
aspects, especially if they have admin rights over the cluster. The feasibility of this depends on the
team’s resources and expertise. For instance, a well-resourced platform team with core knowledge of
the platform and specialized skills in areas such as security and FinOps can manage this effectively.
However, smaller teams may find it challenging to maintain security.

A solution some companies adopt involves collaboration between different teams:

• Platform team ↔ security team

• Platform team ↔ developers

• Platform team ↔ FinOps team

• Platform team ↔ SRE teams

Dedicated instances – instance per cluster with Argo CD 161

The platform team is responsible for liaising with these teams and implementing commitments. They
must also justify necessary changes enforced by the security team. This model works well for smaller
companies with up to 30-50 mixed IT employees. Beyond 50 employees, the increased interaction
between the platform team and developer/SRE teams can slow down development.

When to use the centralized control approach

The centralized control approach is often the initial choice for teams operationalizing Argo CD across
many clusters. It’s particularly effective for managing dev, staging, and production environments
within a small team framework. The model supports high availability, scalable components, RBAC,
and SSO, making it suitable for smaller-scale operations and straightforward network configurations.

When to avoid the centralized control approach

Larger organizations with multiple independent teams, extensive networks, or a need for high flexibility
should be cautious. The model’s potential for a large “blast radius” during critical failures and its limited
flexibility with large numbers of users can be detrimental. For networks hosting Kubernetes in virtual
private clouds or behind firewalls, while possible, the addition of network tunnels can add complexity.

In summary, the single control plane approach of the centralized control approach, while offering
numerous advantages in terms of simplicity and ease of management, carries risks related to security,
scalability, and performance. Organizations must weigh these factors carefully while considering their
specific needs, team size, and network architecture before adopting this model.

The next section deals with dedicated Argo CD instances per Kubernetes cluster and the
associated challenges.

Dedicated instances – instance per cluster with Argo CD
An Argo CD instance is installed and co-located with the cluster it manages, meaning each cluster
has its own dedicated Argo CD instance. This approach provides several advantages and challenges.
This section aims to help you understand and implement standalone Argo CD instances in your
Kubernetes environment. Each Argo CD instance will be installed and co-located with the cluster it
manages, providing a dedicated instance per cluster, as shown in Figure 6.2.

Each cluster and each team benefits from having a dedicated Argo CD instance. This means that every
cluster can be configured, managed, and monitored independently, allowing for tailored management
strategies that align with the specific needs of each cluster. But this approach also means that each
Argo CD instance necessitates its own set of resources. Ensuring that each cluster has the necessary
resources to support its Argo CD instance is crucial. This requirement calls for detailed planning and
assessment to allocate resources efficiently and avoid potential shortages or imbalances:

GitOps Architectural Designs and Operational Control162

Figure 6.2 – Example of dedicated Argo CD instances per cluster

Let’s take a look at some pros and cons to better understand this approach:

Advantages Disadvantages

Reliability improvement: Each cluster
operates independently, enhancing
overall reliability

Management complexity: Each instance
requires individual management and updates,
increasing the overall complexity

Isolation of concerns: This setup offers better
security as each cluster is self-contained

Access complexity: Providing access to users
across multiple instances can be challenging

No external networking access required:
Standalone Argo CD instances operate
independently of external network access,
which is crucial for edge deployments and
even air-gapped environments where updates
might occur via a USB drive

Disaster recovery considerations: Special
planning is needed for disaster recovery due
to the decentralized nature of the setup

Suitability for Edge deployments: Its
standalone nature is ideal for clusters
at the Edge, ensuring each operates
completely independently

Table 6.2 – Advantages and disadvantages of the dedicated instances approach

Dedicated instances – instance per cluster with Argo CD 163

At first glance, it appears that the advantages would outweigh the disadvantages. Two significant
benefits have been proven in practice over the years.

Heightened security is perhaps the most standout benefit. By employing individual Argo CD instances,
security measures can be precisely tailored to meet the unique requirements and vulnerabilities of
each cluster. This level of customization ensures that the security protocols are not only robust but also
intricately designed to address specific threats, providing a fortified defense for each unique environment.

Another critical advantage is isolated risk management. In conventional setups, a single failure
or breach could potentially escalate into a system-wide crisis. However, with dedicated Argo CD
instances, such risks are contained within the affected cluster, significantly reducing the likelihood of
widespread issues. This isolation of risk is vital in a landscape where a single vulnerability can lead to
significant operational disruptions.

However, from practical experience, there is a disadvantage that outweighs many advantages, especially
as the number of clusters and Argo CD instances increases and maintenance effort escalates significantly.

The maintenance overhead is another significant factor. Managing multiple Argo CD instances means
that each one demands individual attention – from updates and configuration tweaks to regular
monitoring. This increased workload can place a strain on IT teams, necessitating more robust and
efficient management strategies to handle the additional administrative tasks.

When to use dedicated Argo CD instances

Standalone Argo CD instances are most beneficial in scenarios where the greatest reliability and
accessibility are required, especially in situations where external networking is limited or non-existent.
These instances are the default choice for deploying to clusters at the edge, given their complete
operational independence. To scale these deployments, integration with infrastructure management
tools such as Crossplane or Terraform is often employed to streamline setup and teardown. Another
variation involves using a hub-and-spoke model to manage multiple standalone Argo CD instances
across numerous clusters.

When to avoid dedicated Argo CD instances

However, standalone instances come with significant management overhead. In scenarios where a
single team manages a simple staging-to-production workflow, it might not be efficient to separate
Argo CD for each cluster. Testing and implementing changes across multiple instances also present
challenges. Adopting a canary release approach to update a fleet of instances, while effective, adds
another layer of complexity to the process.

In conclusion, the decision to use standalone Argo CD instances should be based on the specific needs
and capabilities of the organization. While they offer improved reliability and security, the complexities
in management, updates, and disaster recovery planning must be carefully considered. For certain
environments, especially those at the Edge, the standalone approach is ideal, but for simpler setups
or smaller teams, this approach might introduce unnecessary complexity.

GitOps Architectural Designs and Operational Control164

Deciding to use an Argo CD instance per cluster depends on your organization’s specific needs and
capabilities. While they offer greater reliability and security, this approach requires careful consideration
in terms of the complexities in management, updates, and disaster recovery. This strategy is highly
effective for Edge deployments and environments with limited external networking but may be too
complex for simpler setups or smaller teams.

The next section deals with dedicated Flux CD instances per Kubernetes cluster and the
associated challenges.

Dedicated instances – instance per cluster with Flux CD
In the realm of GitOps tools, the distinction between Argo CD and Flux CD is crucial, particularly
when considering their application in dedicated instances per cluster. While Argo CD is a well-known
entity in the GitOps conversation, Flux CD holds a significant place, with a robust community and a
substantial user base. This diversity of tools is essential to understanding the range of options available
for Kubernetes cluster management.

My journey in GitOps began with Flux CD, a tool that served effectively over a long period, especially
in projects where scaling and managing multiple clusters wasn’t a requirement. This context-specific
suitability of Flux CD stems from its distinct approach and capabilities compared to Argo CD.

At first glance, the use of Flux CD might appear like that of Argo CD, almost as if it’s a simple icon
swap, as visually represented in Figure 6.3, where there’s a dedicated Flux CD instance per cluster.
However, practical experience with Flux CD reveals a deeper layer of complexity. Unlike Argo CD,
Flux CD requires a higher level of expertise in Kubernetes and Helm, demanding proficiency from
teams in tools such as Helm, Kustomize, and Kubernetes:

Figure 6.3: Example of dedicated Flux CD instances per cluster

Dedicated instances – instance per cluster with Flux CD 165

Flux CD’s approach to managing deployments revolves around Helm releases and the Helm controller.
These elements are crucial for handling package deployments and life cycle management in Kubernetes.
The Helm controller in Flux CD offers a declarative way to install, upgrade, and manage Helm charts
in a Kubernetes environment, aligning with the GitOps principles. This requires teams to have a solid
understanding of Helm charts and their management.

Additionally, Flux CD utilizes Kustomizations for applying Kubernetes manifests. This feature
allows resources to be customized before they are applied to the cluster, providing a powerful tool for
managing complex deployments. Understanding and effectively using Flux Kustomization requires
a deep knowledge of how Kubernetes manifests work and how they can be customized for specific
deployment needs.

In terms of organizational structure, adopting Flux CD effectively usually involves small, autonomous
teams, typically consisting of 5-7 members. These teams handle projects as independent units within
a larger organization, delivering specific products or services. This structure, while beneficial for
focused and efficient delivery, poses challenges in onboarding due to the complexity of Flux CD and
the advanced skills it demands.

The key advantages of using Flux CD for individual cluster management per team lie in its flexibility
and adaptability, making it an ideal choice for complex deployment scenarios. Flux CD’s support for
advanced customization options is particularly beneficial for teams with comprehensive knowledge
of Kubernetes and Helm.

However, this sophistication comes with a steep learning curve. The advanced functionalities and
customization options of Flux CD add to the complexity of its setup and operation. As a result,
integrating teams into a Flux CD workflow can be time-consuming, demanding a higher level of
technical proficiency.

This discussion isn’t centered around comparing Flux CD and Argo CD, but rather on the fact that
the “instance per cluster” approach works effectively with both. The previously mentioned pros and
cons apply to Flux CD as well since both tools operate on Kubernetes and employ native Kubernetes
methods to facilitate deployments into clusters. However, it’s important to note that while Flux CD
demands a higher skill level and prior experience with Helm charts or Kustomization, Argo CD can
also be utilized directly with plain Kubernetes manifests.

This distinction highlights that both Argo CD and Flux CD, despite their different complexities
and requirements, can be effectively integrated into the instance per cluster model. While Argo CD
offers a more user-friendly approach suitable for less complex scenarios, Flux CD’s adaptability and
technical demands make it ideal for more intricate deployments, especially for teams well-versed in
Kubernetes and Helm.

GitOps Architectural Designs and Operational Control166

Understanding the operational nuances, strengths, and requirements of each tool is crucial for
organizations looking to optimize their Kubernetes management strategies. The choice between Argo
CD and Flux CD in the instance per cluster approach should be informed by the specific needs of the
deployment scenario and the skill level of the managing team. By aligning the tool’s capabilities with
the team’s expertise and the project’s requirements, organizations can achieve efficient and effective
management of their Kubernetes clusters.

The next section will be an exciting one as various concepts that have already been presented will be
combined to help you find a middle way.

The middle way – instance per logical group with Argo CD
The middle way – instance per logical group with Argo CD is an approach that centers around
using a control cluster with Argo CD to manage a group of clusters. This approach presents a refined
architecture that seeks to balance scalability, manageability, and efficiency in Kubernetes cluster
management. It involves running one Argo CD instance per logical group of clusters, such as per
team, region, or environment, depending on the organizational structure and requirements.

In this model, Argo CD is deployed on a control cluster that belongs to a specific group. From this
central point, Argo CD manages all clusters within that group. This arrangement aims to streamline
the management process by consolidating control, yet it still maintains a level of separation between
different groups of clusters (Figure 6.4):

Figure 6.4 – Example of an instance per logical group in Argo CD-based projects

This architecture balances the demands of managing multiple clusters by effectively partitioning them
into logical groups. It offers a solution that alleviates the challenges of maintaining too many individual
instances while providing a more manageable and scalable approach. This grouping not only improves
operational efficiency but also enhances the security and reliability of the system. The developer
experience is also improved compared to an instance-per-cluster architecture as following a clear and
understood convention for grouping reduces the cognitive load and simplifies integration processes.

The middle way – instance per logical group with Argo CD 167

Let’s look at the possible and most sensible groupings. For example, groups can be logically sorted
by departments:

• Department-based: Different departments such as development, operations, or QA each have
their own Argo CD instance for managing their specific clusters.

 � Development: An instance for developers working on new product features

 � Operations: A separate instance for the operations team to manage deployment
and infrastructure

 � QA: An instance for the QA team to test and validate products

At this point, developers have a development environment with different workload clusters that they can
use autonomously. The operations department also has cluster groups and can operate infrastructure
components that are important for the organization, such as LDAP servers, DNS servers, ACME
servers, databases, and more. The QA department can test delivered software features on different
clusters, in different versions, and conduct load tests with their tools.

Now, let’s look at projects and geographical location:

• Project-based: For companies handling multiple projects, each project can be assigned a
separate instance, facilitating focused management and autonomy:

 � E-commerce platform: An instance dedicated to the e-commerce project team

 � Mobile application development: A separate instance for teams working on mobile apps

 � Internal tools: For teams developing and maintaining internal company tools

In this scenario, each project is assigned its own Argo CD instance. For instance, the team
working on the e-commerce platform can fully control their deployment pipelines and feature
rollouts, tailoring their workflows to the specific needs of the project. Similarly, teams dedicated
to mobile application development can manage their deployments with a focus on mobile-
specific requirements and testing environments. For internal tools, a dedicated instance allows
the team to rapidly iterate and deploy updates, ensuring that internal operations run smoothly
and efficiently.

• Geographical location: Companies with global operations can group clusters based on
geographical regions for better localization and compliance management:

 � North American operations: An instance for clusters in North American regions

 � Europe: A dedicated instance for managing clusters in European countries

 � Asia-Pacific (APAC): An instance focused on the APAC region’s specific needs and compliance

GitOps Architectural Designs and Operational Control168

For example, a dedicated Argo CD instance for North American operations allows teams to
manage clusters as per local compliance and operational standards. In Europe, teams can address
specific regional requirements, such as GDPR compliance, through a Europe-focused instance.
Similarly, for the APAC region, an instance can cater to the unique operational and regulatory
landscape, ensuring that deployments are optimized for local preferences and legal requirements.
This geographical grouping not only enhances efficiency but also ensures adherence to regional
regulations and cultural nuances, making it an essential strategy for global operations.

These groupings are valid, and I have personally seen this setup in various companies. However, it’s
more related to the organizational structure and how projects are managed. I have not yet seen the
Argo CD setup in productive use in practice; I only know it from concepts or proof of concepts.

Although the centralized controller reduces certain disadvantages, such as the potential for a single
point of failure in deployments, the centralization of admin credentials for all clusters, and the need
for tuning individual components for scaling, these issues are shifted to the group level.

Through this setup, the following advantages and disadvantages arise:

Advantages Disadvantages

Load distribution: By grouping clusters, this
approach distributes the workload more
evenly across groups, easing the burden on
application controllers, repo servers, and
API servers.

Multiple instance maintenance: The approach
requires maintaining multiple Argo CD
instances, one for each group, which can add
to the administrative workload.

Group-specific credentials: Credentials are
scoped per group, which simplifies access
management while maintaining security.

Reducing single points of failure: While
having a control cluster as the central
management point per group reduces single
points of failure, it also introduces a new
vulnerability. If the control cluster encounters
issues, it could potentially disrupt the
management of all grouped deployments.

Unified view for deployment activities: Each
group has a single view for all deployment
activities, streamlining the monitoring and
management process.

Centralized administration credentials:
Admin credentials for all clusters in a group
are stored in the control cluster, streamlining
access management. This centralized
approach can enhance security measures as it
reduces the number of access points that need
to be secured.

The middle way – instance per logical group with Argo CD 169

Advantages Disadvantages

Reduced configuration duplication: As
clusters in a group are likely to have similar
RBAC, AppProject, and other configurations,
this model significantly reduces the need for
duplicate configurations.

Management cluster requirements: The
requirement for a separate management
cluster to host Argo CD instances adds a
layer of infrastructure that needs to be set up
and maintained, potentially complicating the
overall system architecture.

Table 6.3 – Advantages and disadvantages of the middle-way approach

When to use the middle-way approach

The middle-way approach is particularly suited to organizations that manage a diverse range of
clusters per logical group. It excels in scenarios where different departments, such as development,
operations, or QA, require independent control over their respective clusters. This method is ideal
for businesses handling multiple projects, each with unique requirements, allowing for focused and
autonomous management. Additionally, for multinational companies, this approach facilitates effective
management of clusters based on geographical locations, ensuring compliance with regional standards
and operational efficiency.

When not to use the middle-way approach

Despite its benefits, this approach may not suit every scenario. For smaller organizations with limited
resources, the task of maintaining multiple Argo CD instances can be daunting and resource-intensive.
The need to tune each instance at scale, coupled with the necessity of a separate management cluster,
adds layers of complexity that smaller or less complex environments might not warrant. In cases where
centralized control is more practical and efficient, particularly in smaller setups, this approach might
introduce unnecessary complications.

This approach presents a compromise between individual and centralized management models,
distributing workloads across groups and reducing configuration duplication. It enhances the security
and reliability of the system by limiting the impact of potential failures on specific groups. However, it
requires careful planning and consideration of the organizational structure, resource availability, and
the scale of operations to ensure it aligns with the specific needs of the organization. This approach,
while not universally applicable, offers a flexible and efficient solution for medium to large-scale
Kubernetes environments.

The next section deals with how to use a central Argo CD instance to provide the clusters with the
necessary tools and how to ensure developer autonomy with dedicated Argo CD instances on the clusters.

GitOps Architectural Designs and Operational Control170

The cockpit and fleet approach with Argo CD
In the dynamic world of Kubernetes and GitOps, The cockpit and fleet approach offers an innovative
solution that combines centralized management with individual autonomy. This approach involves
a platform team utilizing a central Argo CD instance for overarching control while also providing
individual Argo CD instances for each developer’s cluster (Figure 6.5). This approach is specifically
designed for organizations that aim to streamline their Kubernetes operations and concurrently
empower individual teams or departments with autonomy in their cluster management. Since July
2023, Flux has had an implementation that allows a similar approach and is called Hub and Spoke [6]:

Figure 6.5 – Example of the cockpit and fleet approach

The central principle of this approach is anchored in two pivotal components – the cockpit and the fleet:

• The cockpit: Managed by the platform team, the cockpit involves operating a centralized Argo
CD instance. This central instance functions as a command-and-control center that’s responsible
for deploying and managing essential infrastructure components across all the Kubernetes
clusters within the organization. The primary role of the cockpit is to ensure that there’s a
uniform application of critical infrastructure elements across all clusters. This includes enforcing
compliance with organizational standards and policies, thereby establishing a consistent and
secure infrastructure framework.

• The fleet: In contrast to the centralized nature of the cockpit, the fleet provides individual
developers or specific teams with dedicated Argo CD instances for each of their clusters. This
decentralization empowers teams to manage their applications’ life cycle independently, from
configuration to deployment and updates. Such autonomy is vital in fostering innovation and
agility, particularly in fast-paced development environments where rapid deployment and
iterative updates are the norm.

The cockpit and fleet approach with Argo CD 171

Delving deeper into the approach

The dual-layered nature of the cockpit and fleet approach is crafted to address the diverse needs of
large organizations with multiple clusters:

• The centralized cockpit offers a streamlined, holistic view of the organization’s Kubernetes
infrastructure. This centralization is crucial for large-scale operations where consistency in
infrastructure management and policy enforcement is necessary. By having a unified control
point, the platform team can efficiently manage shared resources, apply global security policies,
and ensure compliance across all clusters.

• The decentralized fleet, on the other hand, caters to the specific needs of individual development
teams or departments. Each team has the flexibility to tailor its cluster according to its project
requirements. This setup is particularly beneficial in environments where different teams work
on varied projects, each with its unique set of requirements and deployment strategies.

Operational dynamics

Implementing the cockpit and fleet approach necessitates a well-orchestrated operational model that
balances centralized governance with decentralized autonomy:

• On one side, the platform team must ensure that the centralized cockpit is effectively managing
the shared components and maintaining the required standards across all clusters. This involves
regular updates, security patching, and monitoring of the centralized infrastructure.

• On the other side, individual teams managing their clusters via the fleet model need to align their
development and deployment strategies with the broader organizational goals. They must also
ensure their practices comply with the security and policy guidelines set by the platform team.

The following table compares some of the advantages and disadvantages of this approach:

Advantages Disadvantages

Centralized view and control: Offers a
unified view for platform context deployment
activities across all clusters.

Security implications: Centralizing admin
credentials for all fleet clusters could pose
security risks.

Simplified management: Managing a single
Argo CD instance for multiple Kubernetes
clusters simplifies administrative tasks, easing
the process of provisioning and maintaining
the platform context for the fleet clusters.

Resource consumption: Additional resources
are consumed, both for the management
cluster and the fleet clusters, including
hardware and engineering resources.

GitOps Architectural Designs and Operational Control172

Advantages Disadvantages

Reliability improvement: Each fleet cluster
operates independently, which enhances
overall reliability and allows for strict
separation between teams.

Single point of failure: There’s a potential risk
of a single point of failure for fleet cluster
deployments to provide the platform context.

Maintenance and expansion of fleet clusters:
For platform teams, it’s easier to roll out
new tools or policies simultaneously across
all clusters. This also impacts the process of
maintaining or upgrading tools within the
platform context.

Scaling and performance: Scaling requires
tuning individual components within the
platform context.

Table 6.4 – Advantages and disadvantages of the cockpit and fleet approach

When to use the cockpit and fleet approach

The cockpit and fleet approach is particularly well-suited for large-scale organizations managing a
diverse range of projects across numerous clusters. This strategy is ideal for environments that require a
combination of centralized control for shared resources and decentralized autonomy for individual teams
or departments. It’s especially beneficial in complex multi-cluster environments where a streamlined
operation is needed to manage common infrastructure elements and policies efficiently. Moreover,
organizations with different teams or departments, each having unique operational requirements,
can leverage this approach to provide each unit with the necessary tools and autonomy for their
specific projects. Global companies with operations across multiple regions also find this approach
advantageous as it allows for centralized management of global standards while enabling local teams
to manage clusters as per regional requirements.

When not to use the cockpit and fleet approach

Conversely, the cockpit and fleet approach may not be the most suitable for small to medium-sized
businesses with a limited number of clusters and less complexity. In such cases, the overhead of creating
a setup of maintaining both centralized and decentralized systems might outweigh the benefits.
Organizations with uniform cluster needs across the board might find a simpler, more centralized
approach more efficient and practical. Additionally, companies with limited resources in terms
of personnel or infrastructure might face challenges in maintaining the dual management system
effectively. Environments with simplified workflows, where development and deployment processes
are straightforward and uniform across the organization, may not derive significant value from the
added complexity of a hybrid approach.

The cockpit and fleet approach with Argo CD 173

The cockpit and fleet approach stands as a testament to the evolving landscape of Kubernetes management,
offering a solution that is both comprehensive and flexible. It adeptly addresses the challenges of
managing a vast Kubernetes infrastructure in large organizations, balancing the need for centralized
control with the agility of decentralized management. The approach fosters a collaborative and efficient
environment where the platform team and individual development teams work in harmony, each
with their distinct yet interconnected roles. As organizations continue to grow and evolve in their
Kubernetes journey, approaches such as cockpit and fleet become increasingly vital in navigating the
complexities of cluster management at scale.

Choosing the right approach for your GitOps needs

Deciding on the right approach for GitOps can be challenging as there is no one-size-fits-all solution.
In my experience across various industries and companies, two primary approaches have emerged:
the cockpit and fleet approach in larger organizations, which scales with project needs, and the
dedicated instance per cluster approach for smaller, independent teams. However, each approach has
its drawbacks, particularly concerning security, especially in public cloud operations. To address these
challenges and mitigate disadvantages, take a look at Chapter 13, Security with GitOps. Companies
such as Akuity have begun offering SaaS and self-hosted solutions, which build upon GitOps with
Argo CD but invert the principle.

This is illustrated in the following figure:

Figure 6.6 – Example of Akuity Platform’s Argo CD SaaS and self-hosted offerings [6]

GitOps Architectural Designs and Operational Control174

The Akuity Platform ingeniously integrates the cockpit and fleet approach of Argo CD management,
where the Argo CD instances on fleet clusters register themselves with the central Argo CD “cockpit”
in the Akuity Platform. This model blends the benefits of both instance-per-cluster and single-instance
architectures, effectively addressing most of their limitations.

In this hybrid agent architecture, an agent runs inside each fleet cluster and establishes outbound
communication back to the control plane in the cockpit. This setup significantly reduces the network
traffic between the control plane and the cluster, addressing common security concerns as it does
not require direct cluster access or admin credentials. This architecture is particularly advantageous
for connecting external Argo CD instances to clusters in restricted environments, such as a local
development cluster on a laptop.

The Akuity Platform simplifies the operational aspects of Argo CD. Unlike traditional models, which
require a dedicated management cluster to host Argo CD, the Akuity Platform hosts the Argo CD
instance and the custom resources. This innovation not only streamlines the management process
but also introduces automatic snapshotting and disaster recovery features, effectively eliminating
concerns around single points of failure.

From a visibility standpoint, the Akuity Platform offers a centralized view of all organizational Argo CD
instances, akin to the single-instance architecture. The platform enhances open source capabilities by
providing a dashboard for each instance, showcasing application health metrics and synchronization
histories. It facilitates the management of settings, allowing configurations, typically complex YAML
files, to be crafted easily using user-friendly wizards. Additionally, the inclusion of an audit log feature
for all activity across the Argo CD instances greatly simplifies compliance reporting and monitoring.

If you look at the disadvantages of the cockpit and fleet approach, you can see why Akuity provides
an innovative solution.

The following table shows how the Akuity Platform has minimized or eliminated most of the
disadvantages mentioned in Table 6.4:

The cockpit and fleet approach with Argo CD 175

Disadvantages Explanation

Security implications: Centralizing admin
credentials for all fleet clusters could pose
security risks.

The agent within the fleet cluster eliminates
central credentials in the cockpit. It operates
with outbound access back to the cockpit,
removing the need for direct cluster access
or admin credentials, thereby mitigating
security concerns.

Resource consumption: Additional resources
are consumed, both for the management
cluster and the fleet clusters, including
hardware and engineering resources.

Network traffic between the control plane
and fleet clusters is reduced. Argo CD no
longer needs to establish connections to fleet
clusters at specific intervals. The syncing of
applications is reduced as they now reside on
the fleet clusters, lessening the load.

Single point of failure: There’s a potential risk
of a single point of failure for fleet cluster
deployments to provide the platform context.

Fleet clusters autonomously retrieve and
store the platform context through custom
resources within the fleet cluster itself.
This ensures continuity even in case of
connection loss.

Scaling and performance: Scaling requires
tuning individual components within the
platform context.

No elimination. Tuning requirements shift
to different aspects, such as setting specific
domain filters for External-DNS per fleet
cluster, which is essential for scaling. This
necessitates tuning values so that they can be
adapted to each cluster’s needs.

Table 6.5 – How the Akuity Platform minimizes or eliminates most

of the disadvantages mentioned in Table 6.4

In essence, the Akuity Platform adopts and enhances the cockpit and fleet approach, allowing fleet
clusters’ Argo CD instances to connect back to a central “cockpit,” thereby providing a seamless, secure,
and efficient method of managing large-scale Kubernetes environments. Akuity’s approach stands out
as an innovative solution, particularly for organizations grappling with the complexities and security
concerns inherent in managing Kubernetes clusters.

So far, we have looked at approaches where Kubernetes clusters already exist. Next, we’ll take a step
back and create the Kubernetes clusters ourselves using the GitOps approach.

GitOps Architectural Designs and Operational Control176

Centralized Kubernetes cluster creation – leveraging
Cluster API and Argo CD for streamlined cluster
deployment
In the world of modern software deployment, the synergy between Cluster API and Argo CD stands
as a testament to the power and efficiency of GitOps practices. This approach not only facilitates the
operation of Argo CD within clusters but also harnesses GitOps methodologies for deploying clusters
themselves. These clusters form the foundational infrastructure for Argo CD and the workloads it
manages, including various applications deployed through it.

This section delves into how Argo CD can be utilized, or how a self-service portal for teams can be
provided, to streamline the deployment of Kubernetes clusters. The effectiveness of this approach is
evidenced by companies such as Kubermatic, CLASTIX, and Giant Swarm, which have leveraged
it to offer diverse managed Kubernetes solutions. These solutions range from standalone products to
comprehensive managed services, aiming to simplify Kubernetes deployment for their clients.

This strategy allows organizations to centralize and automate the creation and management of Kubernetes
clusters, ensuring a consistent and reliable infrastructure for deploying and managing applications
using Argo CD. The use of GitOps in this context not only enhances the efficiency of these processes
but also offers the scalability and flexibility needed to manage complex, multi-cluster environments
effectively. By integrating Cluster API with Argo CD, organizations can create a powerful pipeline for
deploying and managing Kubernetes clusters, which, in turn, can be used to deploy a wide range of
workloads, including the Argo CD toolset itself and the application stacks for developers.

This approach represents a significant shift in how Kubernetes clusters are provisioned and managed,
moving toward a more automated, scalable, and developer-friendly environment. It exemplifies the
potential of GitOps to streamline not just application deployment but also the underlying infrastructure
management, thereby enabling organizations to focus on innovation and development.

Introduction to Cluster API

The Cluster API [7] project represents a key initiative within the Kubernetes ecosystem that focuses
on making the setup, update, and oversight of Kubernetes clusters more streamlined. Launched by the
Kubernetes Special Interest Group (SIG) Cluster Lifecycle, this project utilizes Kubernetes-conformant
APIs and design principles to automate the process of managing cluster life cycles for those responsible
for platform operations. It facilitates defining and managing underlying infrastructure components –
such as virtual machines, network resources, load balancers, and virtual private clouds (VPCs) – in
a manner akin to how application developers handle application deployments. This approach ensures
uniform and reliable deployment of clusters across diverse infrastructure settings.

Centralized Kubernetes cluster creation – leveraging Cluster API and Argo CD for streamlined cluster deployment 177

A key aspect of Cluster API is its ability to provision Kubernetes-native, declarative infrastructure
that applies to AWS. This incorporates principles and experiences from previous cluster managers,
such as kops and kubicorn. Its features include being able to manage VPCs, gateways, security groups,
and instances, support for Elastic Kubernetes Service (EKS), and the ability to deploy Kubernetes
control planes in private subnets with a separate bastion server. SSH is not used for bootstrapping
nodes, and only the minimal components are installed to bootstrap a control plane and worker nodes.

Cluster API is licensed under the Apache-2.0 license and offers an active community for developers
and enthusiasts who wish to contribute to further development. There are regular office hours with
maintainers where developers can participate in discussions and get support.

Cluster API offers a range of use cases in the realm of Kubernetes cluster management that cater to
different needs within cloud-native ecosystems. Here are some common scenarios where Cluster API
proves to be particularly useful:

• Multi-cluster management: Cluster API simplifies the management of multiple Kubernetes
clusters across various environments. It allows for consistent and automated provisioning,
upgrading, and operational tasks for many clusters, making it ideal for organizations managing
a vast fleet of Kubernetes clusters.

• Automated cluster life cycle management: It automates the entire life cycle of Kubernetes
clusters, including creation, scaling, upgrading, and deletion. This automation is particularly
beneficial in scenarios where clusters need to be frequently scaled up or down based on demand
or updated with the latest Kubernetes versions.

• Hybrid cloud and multi-cloud deployments: For organizations that operate in a hybrid or
multi-cloud environment, Cluster API enables consistent deployment and management of
Kubernetes clusters across different cloud providers. This uniformity is crucial for businesses
looking to avoid vendor lock-in and maintain flexibility in their cloud strategy.

• IaC: Cluster API aligns with the IaC paradigm, allowing teams to define and manage clusters
declaratively. This approach is beneficial for DevOps teams aiming to maintain infrastructure
and configuration consistency through code.

• Self-service clusters: In larger organizations, different teams may require their own Kubernetes
clusters. Cluster API enables a self-service model where teams can provision and manage their
clusters autonomously while adhering to centralized policies and standards.

• CI/CD pipelines: Integrating Cluster API with CI/CD pipelines can streamline the process of
testing and rolling out new applications or updates. It allows for dynamic creation and disposal of
clusters as part of the CI/CD process, enabling more efficient testing and deployment workflows.

• Disaster recovery: Cluster API can be instrumental in disaster recovery strategies. Automating
the creation of backup clusters and enabling quick replication of cluster states helps reduce
downtime and ensures high availability.

GitOps Architectural Designs and Operational Control178

• Edge computing: For Edge computing scenarios where Kubernetes clusters need to be deployed
at multiple Edge locations, Cluster API provides a unified way to manage these clusters from
a central point.

• Learning and experimentation: For educational purposes or experimentation, Cluster API
allows users to quickly spin up and tear down Kubernetes clusters. This is useful for learning
Kubernetes, testing new features, or experimenting with different configurations.

Each of these use cases demonstrates the versatility and utility of Cluster API in managing Kubernetes
clusters efficiently and at scale, catering to the diverse needs of modern cloud-native applications
and infrastructures.

How Cluster API is leveraged by different companies

In exploring the diverse landscape of Kubernetes management, it becomes evident that different
organizations have unique requirements and strategies. These vary based on their specific operational
needs, infrastructure preferences, and long-term technological goals. As a result, various implementations
of Cluster API have emerged, each tailored to meet these differing demands. Some organizations opt
for fully managed Kubernetes services, while others lean toward self-managed solutions to avoid
vendor lock-in and maintain greater control over their infrastructure.

The following are only a fraction of the companies that use Cluster API in their substructure:

• VMware Kubernetes solution (vSphere with Tanzu): VMware’s integration of Kubernetes
directly into the vSphere platform demonstrates a deep use of Cluster API, particularly with
the vSphere provider. This allows developers to deploy and manage Kubernetes clusters directly
from vSphere.

• Cluster API Provider Azure (CAPZ): This is Microsoft’s implementation of Cluster API for
Azure and replaces AKS Engine for self-managed Kubernetes clusters. CAPZ leverages Azure’s
robust, scalable infrastructure to provide a seamless and efficient way to operate Kubernetes,
simplifying cluster management tasks and enhancing the automation capabilities inherent in
Azure’s cloud services. This implementation ensures that users can maintain full control over
their Kubernetes environments while benefiting from the native integrations and services
offered by Azure.

• Giant Swarm (Kubernetes platform): Giant Swarm uses Cluster API to create a unified
application point for multiple self-managed Kubernetes clusters across different cloud provider
endpoints. It offers a managed Kubernetes solution with the flexibility to deploy to various target
cloud providers, emphasizing low vendor lock-in and subscription-based pricing.

• CLASTIX (Kamaji): An entirely open source implementation of Cluster API, Kamaji is noted
for its efficiency in scaling control planes on a management cluster, thereby reducing costs.
The approach involves creating worker nodes and enabling them to join the respective tenants.

Centralized Kubernetes cluster creation – leveraging Cluster API and Argo CD for streamlined cluster deployment 179

• Kubermatic Kubernetes Platform (KKP): This platform, which started early with the first
version of Cluster API, focuses on creating and managing instances for worker nodes and
joining them to a cluster. The architecture includes a Master Cluster and Seed Clusters with a
special machine controller for precise management.

Each of these implementations reflects different strategies and priorities, such as vendor lock-in
considerations, customization capabilities, resource conservation, and integration with existing
infrastructure. The choice of a specific implementation depends on the organization’s requirements,
including governance, compliance, and operational needs.

In this context, examining how different companies utilize Cluster API provides valuable insights into
the practical applications and benefits of this tool. For instance, the Azure Provider for Cluster API
(CAPZ) bridges the gap between Microsoft Azure’s managed Kubernetes service, AKS, and Kubernetes-
native management, aligning with Cluster API’s standardized, declarative approach. Meanwhile, open
source solutions such as CLASTIX’s Kamaji emphasize flexibility and control, catering to organizations
keen on avoiding vendor lock-in. In contrast, VMware’s vSphere with Tanzu integrates Kubernetes
into its platform, streamlining workflows and offering a seamless Kubernetes-native environment.
Similarly, Giant Swarm and Kubermatic Kubernetes Platform target specific operational needs such
as compatibility with Cluster API versions and resource conservation. Each of these implementations
showcases the adaptability of Cluster API, underlining its importance in providing flexible, cloud-
agnostic Kubernetes solutions in the modern technological landscape.

Cluster API, like any technology, comes with its own set of advantages and disadvantages. Understanding
these can help in determining whether it’s the right tool for a specific Kubernetes management scenario.

Here are a few advantages of Cluster API:

• Consistency and standardization: Cluster API provides a standardized way to manage
Kubernetes clusters. This consistency is crucial for large-scale and multi-cloud environments.

• Automation and scalability: It automates the process of creating, configuring, and
managing Kubernetes clusters, which is beneficial for organizations that need to scale their
operations efficiently.

• Declarative API: Aligning with the Kubernetes principle of declarative configuration, Cluster
API allows users to define their desired state for clusters, which the system then works to achieve.

• Integration with the cloud-native ecosystem: It integrates well with other tools in the
Kubernetes ecosystem, offering a seamless experience for managing clusters as part of the
broader cloud-native infrastructure.

• Multi-cloud and hybrid cloud support: Cluster API supports multiple cloud providers, making
it easier to manage clusters in a hybrid or multi-cloud environment.

• Community support: Being a part of the Kubernetes project, it benefits from strong community
support and ongoing development efforts.

GitOps Architectural Designs and Operational Control180

Here are a few disadvantages of Cluster API:

• Complexity: Cluster API can be complex to understand and implement, especially for users
new to Kubernetes or cloud-native technologies

• Limited customization in some areas: While it offers a standardized approach, this can
sometimes limit customization options for specific use cases or environments

• Dependency on Kubernetes expertise: Effective use of Cluster API requires a good understanding
of Kubernetes concepts and architecture

• Resource overhead: Running additional controllers and resources for managing clusters could
lead to increased resource consumption in your Kubernetes environment

• Learning curve: For teams not familiar with Kubernetes’ declarative model and API-centric
management, there can be a significant learning curve

In summary, Cluster API is a powerful tool for organizations looking to automate and standardize
their Kubernetes cluster management, especially across large-scale and multi-cloud environments.
However, its complexity and the need for Kubernetes expertise might pose challenges for some teams.
As with any technological decision, it’s important to evaluate these factors in the context of specific
organizational needs and capabilities.

In the next section, we will go hands-on and use Cluster API and GitOps to deploy Kubernetes
clusters on Azure.

A deep dive into Cluster API and GitOps – hands-on
In this section, we’ll use Cluster API to provision a Kubernetes cluster in Azure by using the declarative
approach with Argo CD on VMs.

First, let’s see what our environment looks like:

• Azure:

 � Azure tenant ID

 � Azure subscription

 � Azure app registration with Contributor access to the subscription

 � Azure Kubernetes Service (AKS)

 � The necessary Azure infrastructure, including Virtual Machines Scale Sets (VMSS), virtual
networks, and more

A deep dive into Cluster API and GitOps – hands-on 181

• Managed cluster – AKS:

 � Argo CD running on a managed cluster

• Workload cluster – VMSS:

 � Control plane

 � Nodes

• Tools:

 � kubectl

 � clusterctl

 � az cli

 � helm

Initializing the management cluster

The clusterctl command takes a list of providers to install as input. When executed for the first
time, clusterctl init automatically includes the cluster-api core provider in the list. If
not specified, it also adds the kubeadm bootstrap and kubeadm control plane providers:

#export AZURE_SUBSCRIPTION_ID="<SubscriptionId>"
Initialize Azure Service Principal credentials and Azure related
config below
export AZURE_TENANT_ID="<Tenant>"
export AZURE_CLIENT_ID="<AppId>"
export AZURE_CLIENT_SECRET="<Password>"
export AZURE_SUBSCRIPTION_ID="<SubscriptionId>"

Define the names and namespace for AzureClusterIdentity resources
export AZURE_CLUSTER_IDENTITY_SECRET_NAME="cluster-identity-secret"
export CLUSTER_IDENTITY_NAME="cluster-identity"
export AZURE_CLUSTER_IDENTITY_SECRET_NAMESPACE="default"

Convert credentials to Base64 for secure storage
export AZURE_SUBSCRIPTION_ID_B64="$(echo -n "$AZURE_SUBSCRIPTION_ID" |
base64 | tr -d '\n')"
export AZURE_TENANT_ID_B64="$(echo -n "$AZURE_TENANT_ID" | base64 | tr
-d '\n')"
export AZURE_CLIENT_ID_B64="$(echo -n "$AZURE_CLIENT_ID" | base64 | tr
-d '\n')"
export AZURE_CLIENT_SECRET_B64="$(echo -n "$AZURE_CLIENT_SECRET" |

GitOps Architectural Designs and Operational Control182

base64 | tr -d '\n')"

Construct a Kubernetes secret for Azure Service Principal, to be
used by AzureCluster
This step secures the Service Principal's password within the
Kubernetes environment
kubectl create secret generic "${AZURE_CLUSTER_IDENTITY_SECRET_
NAME}" –from-literal=clientSecret="${AZURE_CLIENT_SECRET}" –namespace
"${AZURE_CLUSTER_IDENTITY_SECRET_NAMESPACE}"

Begin the setup of the management cluster with Cluster API for Azure
clusterctl init --infrastructure azure

You should get an output similar to the following:

Fetching providers
Skipping installing cert-manager as it is already installed.
Installing Provider="cluster-api" Version="v1.6.0"
TargetNamespace="capi-system"
Installing Provider="bootstrap-kubeadm" Version="v1.6.0"
TargetNamespace="capi-kubeadm-bootstrap-system"
Installing Provider="control-plane-kubeadm" Version="v1.6.0"
TargetNamespace="capi-kubeadm-control-plane-system"
Installing Provider="infrastructure-azure" Version="v1.12.1"
TargetNamespace="capz-system"

Your management cluster has been initialized successfully!

You can now create your first workload cluster by running the
following:

 clusterctl generate cluster [name] --kubernetes-version [version] |
kubectl apply -f -

The output also mentions that the installation of cert-manager is skipped because it is already
installed. This step is important because cert-manager plays a critical role in managing certificates
within Kubernetes environments, ensuring secure communication between cluster components by
automating the issuance and renewal of TLS certificates.

Moreover, the output reflects the successful setup of a management cluster with essential providers
for Kubernetes cluster management, including Cluster API, Kubeadm, and Azure infrastructure,
each installed in specific namespaces. This step is crucial for streamlining Kubernetes operations
as workload clusters can be created with a simple command, thereby facilitating efficient cluster
deployment and management.

A deep dive into Cluster API and GitOps – hands-on 183

Creating your first workload cluster

Once the management cluster is ready, you can create your first workload cluster.

Important note
Make sure you select a VM size that is available in your desired location for your subscription.
To see the available SKUs, use the az vm list-skus -l <your_location> -r
virtualMachines -o table command.

Please replace the following variables with your specific values:

Specify the Virtual Machine sizes for the control plane and nodes.
export AZURE_CONTROL_PLANE_MACHINE_TYPE="Standard_D2s_v3"
export AZURE_NODE_MACHINE_TYPE="Standard_D2s_v3"
Define the Azure region for resource deployment. Modify to match
your preferred region
export AZURE_LOCATION="centralus"

The following command prepares a YAML manifest for deploying a Kubernetes cluster named capi-
quickstart and specifies Kubernetes version 1.29.0, one control plane machine, and three worker
machines. By saving this configuration to capi-quickstart.yaml, it enables automated and
consistent cluster deployment, encapsulating the desired state and structure of the cluster in a single file.

Now, you are ready to generate the cluster YAML manifest:

clusterctl generate cluster capi-quickstart \
 --kubernetes-version v1.29.0 \
 --control-plane-machine-count=1 \
 --worker-machine-count=3 \
 > capi-quickstart.yaml

At this point, you should have a file that contains the following custom resources in the capi-
quickstart.yaml file:

• KubeadmConfigTemplate: This is the schema for the kubeadmconfigtemplates API.

• AzureClusterIdentity: This is the schema for the azureclustersidentities API.

• AzureMachineTemplate: These templates define the specifications for creating Azure
VMs within the cluster. This is the schema for the azuremachinetemplates API.

• MachineDeployment: This custom resource specifies the desired number of worker nodes
and their properties. It helps in scaling the cluster by automatically managing the creation and
scaling of worker nodes.

GitOps Architectural Designs and Operational Control184

• KubeadmControlPlane: This defines the control plane for the Kubernetes cluster, including
settings such as the number of control plane nodes and their configurations.

• AzureCluster: This custom resource represents the Azure-specific details of the cluster,
such as the network configuration and virtual network details.

• Cluster: This defines the high-level cluster configuration, including control plane settings,
worker node references, and provider-specific details. This is the top-level resource that represents
the entire Kubernetes cluster.

Now, you can apply the file using kubectl. However, we’ll leverage GitOps with Argo CD to maximize
the benefits of the declarative approach. So, create an application, like this:

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: capi-capz-quickstart
spec:
 destination:
 name: ''
 namespace: capi-capz-quickstart
 server: 'https://kubernetes.default.svc'
 source:
 path: >-
 ./chapter-6-gitops-architectural-designs-and-operational-
control/chapter-6-centralized-kubernetes-cluster-creation/
 repoURL: git@github.com:PacktPublishing/Implementing-GitOps-with-
Kubernetes.git
 targetRevision: HEAD
 sources: []
 project: default
 syncPolicy:
 automated:
 prune: false
 selfHeal: true
 syncOptions:
 - CreateNamespace=true
 - Validate=false

At this point, you can view the provisioning of the cluster:

kubectl get cluster
#Output like:
NAME CLUSTERCLASS PHASE AGE VERSION
capi-quickstart Provisioning 2m

A deep dive into Cluster API and GitOps – hands-on 185

Now, view the provisioning state of the cluster:

clusterctl describe cluster capi-quickstart
#Output like:
NAME
READY
Cluster/capi-quickstart
True
├─ClusterInfrastructure - AzureCluster/capi-quickstart
 True
├─ControlPlane - KubeadmControlPlane/capi-quickstart-control-plane
True
│ └─Machine/capi-quickstart-control-plane-dct9z
True
└─Workers
 └─MachineDeployment/capi-quickstart-md-0
 └─3 Machines...

From the preceding output, it’s evident that the cluster is partially operational. Having READY True
across various components in the output indicates the operational status of the cluster. Specifically, the
readiness of the cluster (Cluster/capi-quickstart), its Azure infrastructure (AzureCluster/
capi-quickstart), and KubeadmControlPlane/capi-quickstart-control-plane
being marked as True shows that these critical parts of the cluster are fully operational. The control
plane nodes are running, but the worker nodes haven’t started yet.

Important note
The control plane won’t be ready until we install a container network interface (CNI).

The worker nodes are not yet operational because we need to deploy the CNI components. It’s important
to note that Azure does not currently support Calico networking. CAPZ clusters that use the default
Calico configuration will experience issues with DNS functionality. To address this, we will deploy
a Calico spec that utilizes VXLAN encapsulation for Pod traffic. You can deploy the Azure Calico
CNI using the template provided here.

To obtain kubeconfig so that you can interact with the cluster, follow these steps:

1. The following command retrieves the kubeconfig details for the capi-quickstart
Kubernetes cluster and saves it to a file:

clusterctl get kubeconfig capi-quickstart > capi-quickstart.
kubeconfig

GitOps Architectural Designs and Operational Control186

2. Now, we need to install the CNI plugin on the workload cluster using the following command:

helm repo add projectcalico https://docs.tigera.io/calico/charts
--kubeconfig=./capi-quickstart.kubeconfig && \
helm install calico projectcalico/tigera-operator
--kubeconfig=./capi-quickstart.kubeconfig -f https://raw.
githubusercontent.com/kubernetes-sigs/cluster-api-provider-
azure/main/templates/addons/calico/values.yaml --namespace
tigera-operator --create-namespace

After performing the previous steps, you should observe that, after 5-10 minutes, the cluster’s
status changes to provisioned, and you gain access to the nodes:

kubectl --kubeconfig=./capi-quickstart.kubeconfig get nodes

#Output like:
NAME STATUS ROLES
AGE
capi-quickstart-control-plane-kcqmm Ready control-plane
8m26s
capi-quickstart-md-0-2kj9c Ready <none>
6m58s
capi-quickstart-md-0-7krx6 Ready <none>
6m56s
capi-quickstart-md-0-b8m7r Ready <none>
7m2s

3. Now you can add the cluster to your Argo CD cockpit as a fleet ship and continue working.

In Azure, due to the peculiarities of CNI, doing this requires some additional work, such as setting up a
webhook that deploys the CNI plugin as soon as status control-plane=true is achieved. This
slightly restricts the self-service aspect and requires extension in the form of CI/CD and webhooks,
for example. However, Cluster API offers various other providers where this may not be necessary:

Summary 187

Figure 6.7 – Workflow visualized

In this example, we demonstrated how to utilize Cluster API to create a declarative setup that can be
deployed by Argo CD to provision the infrastructure or workload clusters. Figure 6.7 illustrates this
process. Subsequently, Argo CD can be layered on top of it using argocd cluster add. This
allows you to utilize tools such as Kubernetes Service Catalog (KSC) to deploy services based on labels.

Summary
In this chapter, we embarked on a comprehensive exploration of GitOps within Kubernetes environments,
uncovering pivotal insights and strategies that are crucial for modern cloud-native deployments.
We began by examining the criticality of tailoring architectural designs for scalability, resilience,
and efficiency, all of which are foundational principles in today’s dynamic cloud landscapes. This
journey through architectural frameworks underscored the indispensability of IaC, not only for its
collaborative and version control benefits but also for establishing immutable infrastructure that resists
manual alterations in live environments. Emphasizing modular design, we highlighted how efficient
microservices management can transform operational workflows.

GitOps Architectural Designs and Operational Control188

Then, our exploration delved into the depths of architectural choices and their significant impact on
the effectiveness of GitOps. We learned the importance of adopting a declarative model, an approach
that seamlessly integrates version control, change management, and automated synchronization. This
section illuminated the considerations necessary when selecting repository structures, weighing the
merits of monolithic against multi-repository strategies. It also discussed the vital role of deployment
strategies, environment isolation, scalability, and security, each a cornerstone in realizing a robust
GitOps implementation.

We then transitioned to understanding the role of GitOps in enforcing systematic improvements in
cloud-native architectures. Key aspects such as horizontal scaling, microservices, stateless applications,
high availability, fault isolation, and disaster recovery were dissected. We explored how GitOps can
manage deployments, ensuring resilience and efficiency through tactics such as auto-scaling, load
balancing, and setting resource limits.

The second part of this chapter shifted our focus to various architectural approaches tailored for
GitOps in Kubernetes environments. As organizations evolve, the need for scalable, secure, and
efficient deployment strategies becomes paramount. We delved into the world of Argo CD, examining
its capabilities in scaling performance, security, usability, and failover processes. We compared and
contrasted the nuances between managing clusters with a centralized Argo CD instance and dedicated
instances per cluster. The differences between Argo CD and Flux CD were also highlighted, providing
a balanced view of their respective strengths and weaknesses.

Moreover, we explored the innovative cockpit and fleet approach with Argo CD, a strategy that goes
beyond mere Kubernetes cluster management and includes provisioning clusters declaratively using
Cluster API.

As we pave the way for the next chapter, we will delve into the necessary cultural shifts for successfully
implementing and operating GitOps. We’ll explore the transformation of treating infrastructure as an
application and the principles of immutable infrastructure before delving into various DevOps Research
and Assessment (DORA) metrics. We’ll also discuss the critical need for continual improvement
in GitOps and overcoming cultural barriers that may hinder its adoption. This sets the stage for a
profound understanding that successful GitOps is not just about the right tools and technologies but
also about cultural adaptation and evolution within the IT landscape.

References 189

References
• [1] https://akuity.io/blog/argo-cd-architectures-explained

• [2] https://codefresh.io/blog/a-comprehensive-overview-of-argo-
cd-architectures-2023/

• [3] https://www.youtube.com/watch?v=p8BluR5WT5w

• [4] https://github.com/openclarity/kubeclarity

• [5] https://github.com/aquasecurity/trivy-operator

• [6] https://github.com/fluxcd/flux2/releases/tag/v2.0.0

• [7] https://cluster-api.sigs.k8s.io

https://akuity.io/blog/argo-cd-architectures-explained
https://codefresh.io/blog/a-comprehensive-overview-of-argo-cd-architectures-2023/
https://codefresh.io/blog/a-comprehensive-overview-of-argo-cd-architectures-2023/
https://www.youtube.com/watch?v=p8BluR5WT5w
https://github.com/openclarity/kubeclarity
https://github.com/aquasecurity/trivy-operator
https://github.com/fluxcd/flux2/releases/tag/v2.0.0
https://cluster-api.sigs.k8s.io

7
Cultural Transformation in IT

for Embracing GitOps

In the rapidly evolving landscape of information technology, the adoption of GitOps marks a
significant paradigm shift, heralding not just a technological transformation but also a profound
cultural metamorphosis within IT departments. This chapter delves into the multifaceted layers of this
change, highlighting how GitOps fundamentally redefines operational processes and methodologies.

At its core, GitOps represents a fusion of software development and IT operations, driven by the principles
of version control and collaboration, which are intrinsic to Git. It’s a methodology where infrastructure
and application deployment are treated as code, enabling a high degree of automation and precision
in IT operations. This approach ensures that the same rigor that’s applied to application development
is now extended to the management of infrastructure, particularly within Kubernetes environments.

One of the most transformative aspects of GitOps is the establishment of an immutable infrastructure.
Using reconciling and synchronization loops, GitOps automates the process of aligning the actual
state of the infrastructure with the desired state defined in a Git repository. This alignment minimizes
the need for manual interventions, reducing the potential for human error and improving the overall
reliability and security of the IT systems.

A significant part of this chapter is dedicated to understanding the impact of GitOps on IT performance.
We’ll explore this through the lens of the DevOps Research and Assessment (DORA) metrics, a widely
recognized set of indicators used to measure the effectiveness of DevOps practices. By applying these
metrics to GitOps, organizations can quantitatively assess improvements in areas such as deployment
frequency, change lead time, change failure rate, and mean time to recovery.

However, the journey of adopting GitOps extends beyond the implementation of tools such as Argo
CD. It necessitates a continuous engagement with evolving GitOps trends and practices. As with
any emerging technology, GitOps comes with its own set of challenges. These include the need for
upskilling teams, adapting existing workflows, and continuously optimizing processes to align with
best practices in GitOps.

Cultural Transformation in IT for Embracing GitOps192

The final section of this chapter addresses the broader organizational impact of implementing GitOps.
Adopting GitOps is not just a technical upgrade; it’s a catalyst for a cultural shift that permeates various
departments within an organization. We’ll share insights and experiences from multiple projects
across diverse companies, illustrating how GitOps can drive a more collaborative, transparent, and
efficient IT culture. These real-world examples provide valuable lessons on the challenges, strategies,
and successes of integrating GitOps into the fabric of an organization.

This comprehensive examination of GitOps, from its technical foundations to its cultural implications,
aims to provide you with a clear understanding of the transformative power of this methodology. It’s
a journey that transcends mere technology adoption, charting a path toward a more agile, responsive,
and innovative IT culture.

We will cover the following main topics in the chapter:

• Treating infrastructure as an application

• The principles of immutable infrastructure

• An introduction to DORA metrics

• Understanding the need for continual improvement in GitOps

• Overcoming cultural barriers to adopt GitOps

Treating infrastructure as an application
In the evolving landscape of DevOps, the concept of treating infrastructure as applications – commonly
known as infra-as-apps – is gaining momentum, especially in the context of GitOps. To understand
this, we need to get a quick overview of Infrastructure as Code (IaC). IaC will be covered in detail in
Chapter 10. This is a crucial component that’s laid out, for example, by Terraform with its declarative
approach, allowing infrastructure to be treated like an application.

Understanding IaC

IaC is a modern approach for managing and provisioning IT infrastructure using code instead of
traditional manual processes. This method allows you to automate the setup, management, and
configuration of computing resources such as servers, storage, networks, and applications. Treating
your infrastructure as if it were software, IaC applies software development practices such as version
control and testing to infrastructure management.

The main aim of IaC is to enhance efficiency, reliability, and consistency in infrastructure deployment
and management. By using code to define infrastructure, manual intervention is reduced, decreasing
human error, and speeding up deployment. IaC enables a more consistent and repeatable process for
provisioning and configuring resources, simplifying the scaling and management of infrastructure
over time.

Treating infrastructure as an application 193

Important note
Imperative: Directly use kubectl commands to create, update, or delete Kubernetes resources,
offering quick, on-the-fly adjustments suitable for development and experimentation.

Declarative: Define the desired state in YAML manifests and apply them, letting Kubernetes
ensure the actual state aligns with the declared one. This is ideal for production with benefits
such as version control and reproducibility.

IaC typically employs a declarative or imperative approach to define the infrastructure’s desired state.
This specification allows the IaC tool to make necessary changes automatically, leading to a more agile,
efficient, and reliable IT environment that better supports modern business demands.

The importance of IaC

The rise of cloud computing has been a significant driver behind IaC’s growing adoption. Organizations
face the challenge of managing and deploying resources across multiple environments, such as public,
private, and hybrid clouds. IaC automates the deployment and management of these resources, easing
the management of complex environments.

Additionally, the need for businesses to deliver applications and services swiftly and efficiently has
made IaC increasingly important. In today’s fast-paced digital world, organizations must rapidly
adapt to market and customer demands. IaC streamlines IT operations, enabling quicker and more
adaptable scaling.

Furthermore, IaC supports DevOps principles, bridging the gap between software development and
IT operations. Treating infrastructure as code allows organizations to apply software development
methodologies to infrastructure, enhancing collaboration and communication between development
and operations teams.

How IaC works

The fundamental concept of IaC is treating infrastructure like software. This includes employing
rigorous software development practices such as version control, infrastructure code testing, and
continuous integration and deployment. This approach ensures infrastructure consistency, reducing
downtime and maintenance time.

The IaC process starts with writing scripts that describe the infrastructure’s desired state using declarative
language. These scripts, stored in a version control system like any software, allow for versioning,
auditing, and rollbacks. An IaC tool then applies these scripts to the actual infrastructure, ensuring it
matches the desired state. This repeatability ensures consistency and reduces manual errors.

Cultural Transformation in IT for Embracing GitOps194

Understanding infrastructure as applications in Argo CD’s GitOps
framework

In the realm of Argo CD, the concept of an application extends beyond its traditional definition [1].
Here, an application encompasses not just the software but also its desired state configuration, the
targeted deployment environment, and the policies governing how these resources are synced and
managed. This approach marks a significant shift from the conventional understanding of applications.

Typically, engineering teams have viewed applications as software layers that run on a separate
infrastructure. The standard process involves setting up the infrastructure first, often manually or
using tools such as Terraform or Cloud Formation templates. Once this groundwork is laid, another
team deploys their applications onto this prepared infrastructure. However, Argo CD introduces
a more integrated perspective. In this GitOps-driven environment, an application’s deployment is
continuously monitored. Argo CD vigilantly compares the real-time state of the application against
its predefined desired state. This constant comparison is crucial for maintaining consistency and
reliability. The divergence between the actual state and the desired state can occur due to two primary
reasons. First, there could be a drift in the actual state, which refers to unanticipated changes or
modifications in the environment. Secondly, the desired state itself might be updated, necessitating
a change in the deployment.

Whenever such divergences occur, Argo CD steps in to reconcile these differences. This act of
reconciliation is at the heart of the GitOps style of deployment, which Argo CD upholds. This method
aligns with the principles set by the OpenGitOps standards, ensuring a systematic and standardized
approach to deployment and infrastructure management.

This paradigm shift, where infrastructure is treated akin to applications, brings about a more seamless
and integrated workflow. It emphasizes the importance of treating infrastructure management with
the same level of detail and care as application development, underscoring a holistic approach to
system deployment and management.

Embracing infra-as-apps – bridging GitOps and infrastructure
management

Traditionally, creating and managing infrastructure through declarative configurations has been a
challenge, despite the popularity of tools such as Terraform, Cloud Formation templates, Pulumi,
Cloud Development Kit for Terraform (CDKTF), and others. These tools offer a one-time or change-
triggered application of the desired state, typically via CI/CD pipelines. However, this method falls
short in one critical aspect of GitOps: ongoing state monitoring.

The gap lies in the fact that CI/CD pipelines, while efficient in deploying new plans or updates, do
not continuously monitor for state drift. For instance, if a Terraform plan is executed and the actual
state is altered externally later, the CI/CD system remains oblivious to these changes. This is where a
GitOps operator such as Argo CD becomes indispensable. Argo CD’s role is to relentlessly monitor the
actual state of the infrastructure and ensure it aligns with the desired state, thereby preventing drift.

Treating infrastructure as an application 195

Adopting this no-drift-allowed approach has proven beneficial for teams, not only in managing their
applications more efficiently but also in enhancing their ability to recover from failures rapidly. In this
model, rolling back to a previous state is as simple as performing git revert.

The benefits that teams have experienced in managing applications can now be extended to infrastructure
management, thanks to this paradigm shift. Our focus, however, will be on Crossplane. As an open
source CNCF project, Crossplane enables users to provision and manage diverse cloud resources
through the Kubernetes API. When integrated with a GitOps operator such as Argo CD, Crossplane
allows for the deployment of applications representing a variety of cloud resources such as Azure
Key Vault, databases, Kubernetes clusters, and load balancers across Azure, AWS, and other cloud
platforms. This integration heralds a new era in infrastructure management, blending the robustness
of GitOps with the versatility of modern cloud resources.

How IaC can be used to deploy infrastructure

Now that we have all the necessary background information and hopefully a sufficient understanding of
the difference between the GitOps approach and using Terraform in terms of treating your infrastructure
as an application, let’s clarify this in practice by examining three use cases.

Before we begin, let’s briefly explain the selected tools for this setup and why they were chosen.
Starting with Azure:

• Azure Kubernetes Service (AKS): This service offers a managed Kubernetes environment
that simplifies how containerized applications are deployed, managed, and scaled with the
robustness of Azure’s infrastructure.

• Container Registries: This service provides a secure, scalable, and private registry for Docker
container images, enhancing the management and deployment of containerized applications.

• PostgreSQL Server on Azure: This service offers a reliable and scalable cloud database service,
ensuring efficient management and storage of application data.

• Azure Key Vault: This is a tool for securely storing and accessing secrets, keys, and certificates.
It’s crucial for managing sensitive information and enhancing overall security.

For Kubernetes, we have the following:

• Argo CD: A declarative, GitOps continuous delivery tool for Kubernetes, enabling automated
deployment and management of applications

• External-DNS: This tool automates the management of DNS records, streamlining the process
of connecting Kubernetes services with external DNS names

Cultural Transformation in IT for Embracing GitOps196

• Cert-Manager: This tool manages SSL/TLS certificates for Kubernetes, automating certificate
issuance and renewal processes

• External-Secrets Operator: This tool integrates with systems such as Azure Key Vault to securely
inject secrets into Kubernetes, enhancing secure access to sensitive data

For deployments for the IaC part, we have the following:

• Terraform modules: These are components within Terraform, an IaC tool, that are designed to
enable modular and reusable infrastructure definitions. They facilitate a declarative approach by
allowing users to define the desired state of their infrastructure in code, which Terraform then
executes to create and manage the actual infrastructure, ensuring it matches the specified state.

• Crossplane: This is an IaC tool that integrates with the Kubernetes ecosystem, allowing for
external resources, such as cloud services, to be managed through Kubernetes custom resource
definitions (CRDs). It adopts a declarative model where users define their infrastructure
requirements in a Kubernetes-native way, enabling consistent and unified management of both
Kubernetes internal resources and external cloud infrastructure.

In combination, these tools form a comprehensive ecosystem. Azure’s services provide a secure and
scalable cloud platform, while Kubernetes tools such as Argo CD and Cert-Manager ensure efficient
and secure application deployment and management. The integration between Azure Key Vault and
the External-Secrets Operator in Kubernetes exemplifies how cloud infrastructure and Kubernetes
can work seamlessly together for enhanced security and operational efficiency. Now, let’s look at the
use cases.

Use case 1 – deploy everything over Terraform

In the first use case, as illustrated in Figure 7.1, everything is deployed via Terraform. This means that
initially, the required cloud infrastructure is deployed using Terraform:

Treating infrastructure as an application 197

Figure 7.1 – Use case 1 – deploy everything over Terraform

To simplify this example, we’ve removed any unnecessary complexity, such as CI/CD pipelines. In
a production setup, you would hopefully not execute this manually as a user, unless it’s for initial
bootstrapping or solving the chicken-and-egg problem. Once the infrastructure is deployed, additional
Terraform modules are used to deploy further infrastructure in a Kubernetes context.

Important note
It’s worth noting that there are native approaches available for integrating Terraform with GitOps,
such as the Terraform Controller. This tool enables a variety of GitOps models tailored for
Terraform resources, including full automation, hybrid automation for partial infrastructure
management, state enforcement, and drift detection, all within a native framework. However,
this chapter focuses more on the native use of tools.

This approach is sound and was even standard a few years ago. Here, the infrastructure is treated and
deployed as an application through the declarative module approach.

However, there are some drawbacks to this method:

• Lack of continuous monitoring: This approach does not continuously monitor the infrastructure
state for any drift, which is a key component in GitOps

• Complexity in scalability: As the infrastructure grows, managing it through Terraform alone
can become increasingly complex, especially in terms of state management, multiple stages,
and module dependencies

Cultural Transformation in IT for Embracing GitOps198

• Limited dynamic response: The approach lacks the dynamic response to changes that a
GitOps workflow offers, where real-time adjustments to the infrastructure can be managed
more seamlessly

• Overhead in managing modules: Relying heavily on Terraform modules for every aspect of
deployment can lead to overhead in module management and version control

• Potential for configuration drift: Without continuous reconciliation, there’s a higher risk of
configuration drift over time as manual updates may not be tracked or recorded consistently

Use case 2 – integrating Terraform and Argo CD for deployment processes

The next approach, illustrated in Figure 7.2, combines the first method and then delegates the task
to Argo CD. This approach is common in practice and often encountered in various projects with
different clients. In this method, the Azure infrastructure is initially rolled out using Terraform modules.
Subsequently, Argo CD is deployed as the initial instance using Terraform modules. Afterward,
Argo CD takes over the GitOps part and deploys the Kubernetes context-related infrastructure. In
this approach, a declarative method is best. Terraform modules are laid out declaratively, and the
infrastructure, such as Cert-Manager, is also presented declaratively as Applications or ApplicationSets,
as described in previous chapters:

Figure 7.2 – Use case 2 – integrating Terraform and Argo CD for deployment processes

Treating infrastructure as an application 199

While this approach has its advantages, there are potential drawbacks to consider:

• Complexity of integration: Combining Terraform with Argo CD can add complexity, requiring
a solid understanding of both tools

• Initial learning curve: For teams new to either Terraform or Argo CD, the learning curve
might be steep due to the integration of these two different paradigms

• Overhead in maintenance: The combined approach might require more maintenance effort
as it involves managing two systems rather than one

• Risk of misconfiguration: With two powerful tools at play, there’s an increased risk of
misconfiguration, which can lead to deployment issues or security vulnerabilities

• Update coordination: Coordinating updates between the infrastructure managed by Terraform
and applications managed by Argo CD requires careful planning to avoid conflicts and ensure
smooth operations

Use case 3 – unified management on Kubernetes – full-scale orchestration
with CRs and Crossplane

The next approach, depicted in Figure 7.3, fully utilizes the Kubernetes API while focusing on CRDs
and custom resources (CRs), which allows users to define their resource types and instantiate these
types for custom configurations and functionality. This approach uses Crossplane for provisioning
cloud infrastructure and deploying third-party tools necessary for Kubernetes infrastructure, such as
Cert-Manager. It treats infrastructure as applications through the declarative nature of CRs, providing
a fully trackable solution that leverages the Kubernetes ecosystem as an orchestration platform to
keep resources in sync. This concept can be expanded so that virtually all cloud infrastructure is
provisioned through Argo CD in combination with Crossplane. Everything is maintained within
the cluster, requiring only an understanding of Kubernetes manifests – in this case, CRDs and CRs:

Figure 7.3 – Use case 3 – unified management on Kubernetes – full-

scale orchestration with CRs and Crossplane

Cultural Transformation in IT for Embracing GitOps200

For a better understanding of how to create a resource in Azure with Crosslplane, CR, and Argo
CD, here is a small example using the CR VirtualNetwork type. The requirement for this is that
Kubernetes is installed and that the Azure provider is installed and configured [3].

Once the preparation is complete and the network provider is installed, we can create a managed
resource of the VirtualNetwork type that can be used for AKS, for example.

First, create a CR, like so:

apiVersion: network.azure.upbound.io/v1beta1
kind: VirtualNetwork
metadata:
 name: crossplane-quickstart-network
spec:
 forProvider:
 addressSpace:
 - 10.0.0.0/16
 location: "West Europe"
 resourceGroupName: docs

Then, push the CR to your Git repository that will be managed by Argo CD. The CD part should now
happen over GitOps with Argo CD and you should see the created managed Azure network resource
in the portal.

However, this setup assumes the existence of a managed cluster where the necessary tools are deployed
and configured. It comes with the following potential weaknesses:

• The complexity of a Kubernetes ecosystem: It requires a thorough understanding of Kubernetes,
including CRDs and CRs, which might be challenging for teams less familiar with these concepts

• Dependency on a managed cluster: The approach is contingent on a managed Kubernetes
cluster, limiting its applicability in environments where such a setup is not available

• Resource intensiveness: The approach might be resource-intensive, requiring more compute
power and memory within the cluster

• Configuration and maintenance: Managing and maintaining the configurations of CRDs
and CRs can be cumbersome and error-prone, especially in large-scale deployments and
version upgrades

As you can see, there is no one-size-fits-all approach that meets all requirements. The right approach
for a team depends greatly on the company’s specific needs, the size of the teams, the team’s skill set
in various areas, and more. However, we should still take a moment to revisit why treating infra-as-
apps is a game-changer.

Treating infrastructure as an application 201

Why infra-as-apps is a game-changer?

To summarize, here’s a list of the benefits of infra-as-apps that makes it a game-changer:

• Security: By centralizing key management and shifting from direct cloud access to change
management via Git, infra-as-apps enhances security. This approach minimizes risks associated
with direct cloud access and improves audit trails by tracking changes through version control.

• Efficient resource management: This model streamlines the provisioning of new resources
and the upgrading of existing ones. It allows for more agile and responsive infrastructure
management, reducing the time and effort required for resource allocation and updates.

• Improved CI/CD for pull requests: Infra-as-apps focuses on enhancing pull requests within
CI/CD pipelines, offering automated rollbacks and more thorough testing. This leads to
more robust and reliable deployment processes, ensuring higher quality and stability in
production environments.

• Easier multi-cloud provisioning: With tools such as Crossplane, infra-as-apps facilitates
provisioning across various cloud environments. This capability simplifies the implementation
of multi-cloud strategies, making it easier to manage and deploy resources across different
cloud platforms efficiently.

• Simplified infrastructure management: This approach significantly streamlines the process
of managing infrastructure, making it more efficient and less prone to human error.

• Ease of onboarding and resource provisioning for developers: It simplifies the process for
developers to get started and manage resources, reducing the time and complexity involved in
setting up and deploying applications.

• Faster mean time to recover (MTTR): It improves the speed of recovery from failures.

• Solid auditability: It provides comprehensive audit trails and clear accountability, making it
easier to track changes and maintain compliance with regulatory standards.

There are numerous companies, such as CERN, Splash, Grafana Labs, IBM, and SAP, that have already
adopted Crossplane for a variety of use cases. A prime example of infra-as-apps in action can be
seen at CERN, as presented by Ricardo Rocha at GitOpsCon US 2021, A Multi-Cluster, Multi-Cloud
Infrastructure with GitOps at CERN [2]. CERN, renowned for operating the Large Hadron Collider,
leverages infra-as-apps to manage an extensive infrastructure, including over 600 clusters, 3,000
nodes, 13,000 cores, 30 TBs of RAM, and 160 TBs of raw storage, to process vast amounts of data from
experiments. They manage a massive array of clusters and computing resources using Kubernetes.
CERN’s implementation involves Helm charts with Crossplane configurations for cluster and resource
management, allowing rapid scaling and multi-cloud resource allocation.

Cultural Transformation in IT for Embracing GitOps202

As a second example, IBM’s use of Crossplane and GitOps to manage the infrastructure life cycle and
application deployments is noteworthy. In GitOpsify Everything: When Crossplane Meets Argo CD [4],
presented by Ken Murray, a CI/CD engineer at IBM, and Ying Mo, a software engineer, they explore
the integration of Crossplane with Argo CD in various IT environments. IBM’s approach involves using
Crossplane as an abstraction layer for infrastructure provisioning and cluster management, enabling
them to maintain a pool of Kubernetes clusters efficiently. This method leverages Helm templates for
defining resource configurations and simplifies cluster management by allowing users to interact with
simple resource types while Crossplane handles communication with cloud providers.

Infra-as-apps distinguishes itself from traditional infra-as-code by fully embracing GitOps at all levels.
This approach treats manual changes to infrastructure as deviations from the Git-defined desired state,
enhancing security and predictability in infrastructure management. It represents a significant shift
in how infrastructure is managed, aligning it more closely with the dynamic and automated nature
of application development and deployment.

GitOps has changed a lot, creating an immutable infrastructure that also has an impact on a company’s
culture. In the next section, we will look at immutable infrastructure.

Understanding the principles of immutable infrastructure
The principles of immutable infrastructure, combined with the GitOps approach, offer a transformative
way of managing infrastructure and deployments in modern software development environments.
Immutable infrastructure refers to a model where servers, once deployed, are never directly modified.
Instead, changes require the server to be replaced with a new instance. This model drastically reduces
issues caused by configuration drift and enhances the reliability of systems by treating servers as disposable
units that can be replaced quickly, offering greater scalability and efficiency in deployment processes.

Incorporating GitOps into this model amplifies these benefits. GitOps leverages Git as the central
source of truth for managing both software applications and infrastructure. It applies cloud-native
patterns to deployments, often associated with Kubernetes but also applicable to various platforms. The
core principles of GitOps include treating infrastructure as code, ensuring versioned and immutable
deployments, automatic pulling of the desired state, and continuous reconciliation between the desired
and actual states.

The essence of immutable infrastructure

Immutable infrastructure is a concept where servers, once deployed, are never modified; if a change
is needed, a new instance is created and replaced. This approach is fundamentally different from
traditional mutable infrastructure, where servers are continually updated and modified. The immutable
model brings several key advantages.

Understanding the principles of immutable infrastructure 203

The advantages of immutable infrastructure are as follows:

• Consistency and reliability: Immutable servers remain in a known, stable state, significantly
reducing the risk of unexpected issues due to environmental drift or inconsistencies

• Enhanced security: With servers not being modified post-deployment, the attack surface
remains constant, simplifying security management and anomaly detection

• Simplified management and debugging: Troubleshooting becomes more straightforward as
the infrastructure stays in a predictable state

• Scalability and performance: New instances can be spun up and down efficiently to meet
demand, maintaining a consistent performance level

However, this approach isn’t without its challenges:

• Increased storage and resource needs: Immutable infrastructure can require more storage
since each change involves creating a new instance

• Potential deployment overhead: Setting up an entirely new instance for every change can be
more resource-intensive than updating an existing one

• Complexity in configuration management: Managing numerous server instances can become
complex, particularly in large-scale environments

Integrating immutable infrastructure with GitOps

Incorporating GitOps into immutable infrastructure leverages Git’s core principles – version control,
collaboration, and automation – to operational management, enabling a system where infrastructure
is treated as code, with all configurations and states meticulously maintained in Git repositories for
enhanced consistency and traceability.

The advantages of GitOps are as follows:

• Single source of truth: Having a single repository for both application and infrastructure code
ensures consistency and traceability

• Automated, reliable deployments: Continuous deployment via GitOps operators automates
and simplifies the deployment process

• Enhanced collaboration and transparency: Pull request workflows enhance collaboration,
providing clear audit trails and ensuring accountability in changes

• Improved security and compliance: Git’s inherent features facilitate robust access control,
encryption, and compliance adherence

Cultural Transformation in IT for Embracing GitOps204

Despite these benefits, GitOps is not without its drawbacks:

• Complexity in scaling: Managing multiple repositories and dealing with the complexity of
large-scale deployments can be challenging.

• Git limitations for operational tasks: Git, primarily designed for code version control, may
not be the best fit for operational updates, leading to potential conflicts.

• Learning curve and adoption resistance: Teams may face a steep learning curve or resistance
to adopting new workflows, tools, and mindsets. I will cover this part later.

Synergy and challenges

When immutable infrastructure and GitOps are combined, they create a powerful synergy:

• Infrastructure as a dynamic, version-controlled entity: Infrastructure is treated similarly to
application code, with changes tracked, reviewed, and deployed using GitOps methodologies

• Rapid recovery and rollback capabilities: The combination allows for quick recovery from
failures and easy rollbacks to previous stable states

• Streamlined operations: This approach reduces the need for manual intervention, minimizing
human error and streamlining operations

However, this integration also presents unique challenges:

• Complex workflow management: Balancing the immutable aspects of infrastructure with the
dynamic nature of GitOps workflows requires careful planning and execution

• Dependency on tooling and processes: The effectiveness of this approach is heavily reliant on
the right tooling and well-defined processes

• Balancing security and agility: Ensuring security in a rapidly changing environment necessitates
a fine balance between rigid controls and operational flexibility

Achieving an effective production environment using immutable
infrastructure

The optimal immutable infrastructure for production environments can be conceptualized by integrating
several key practices, refined through experience. Here’s how an effective production environment
might look and why:

• Read-only access to a Kubernetes prod cluster: In a productive environment, a Kubernetes
cluster should be treated like a managed service or a black box from a developer’s perspective.
This means that access to the cluster should be primarily read-only. Developers should not be
permitted to make manual changes to the cluster, ensuring a controlled and stable environment.

Understanding the principles of immutable infrastructure 205

• Only create and delete resources through GitOps: This principle dictates that all resources
entering the cluster should be managed exclusively through GitOps. This includes the entire
creation process, covering elements such as namespaces, deployments, services, ingress, service
accounts, and more. This approach ensures that changes are traceable, reversible, and consistent
with the source of truth in the Git repository.

• Do not create namespaces over applications: In the context of Argo CD and its concept of
application, an application mustn’t be able to create namespaces. This is because Argo CD does
not support the deletion of namespaces created by an application [5]. This restriction is in place
to prevent uncontrolled namespace creation, which could lead to conflicts and management
issues in shared environments. In the following example, I will clarify the situation for you by
illustrating the practical implications and potential risks associated with managing namespaces
in a shared environment using Argo CD.

Consider a scenario where five teams share a single Kubernetes namespace. Each team creates
its own Argo CD application to deploy its service components, contributing to the overall
microservices architecture. Suppose Team A decides to decommission its service. They proceed
to delete their application and the associated deployed service, and they also attempt to delete
the shared namespace through their application. However, Argo CD applications do not
inherently have knowledge of or connections to other applications or unlinked resources within
the same namespace. Consequently, if such a deletion were permitted, it would inadvertently
result in the removal of the namespace and all other services deployed by the different teams
within it. Fortunately, this scenario is not feasible in practice, as the Argo project team does
not implement such a feature to avoid these kinds of disruptive and unintended consequences.

• Use the right tools, such as PR-Generator: Integrating tools such as PR-Generator in a
GitOps workflow with Argo CD can greatly enhance the testing and deployment processes.
PR-Generator can create resources with a specific prefix as soon as a PR is initiated, ensuring
that resources are correctly created and cleaned up, respecting the do not create namespaces
over application principle.

By adhering to these practices, several benefits can be realized:

• Every change is made through Git, ensuring a centralized and version-controlled change
management process

• Changes are recorded in the Git history, providing a transparent and traceable record of
all modifications

• Resources are cleanly managed, with no residual “orphaned” resources left in the cluster

• Clean and efficient workflow management using PRs and Git, facilitated by tools such
as PR-Generator

• It establishes a standard and commitment within the organization, allowing these practices to
be replicated across different projects

Cultural Transformation in IT for Embracing GitOps206

Implementing these principles in a production environment creates a robust, secure, and manageable
infrastructure that leverages the benefits of both immutable infrastructure and GitOps methodologies.

A potential folder structure for an application that utilizes both Kustomize and Argo CD might be
structured as follows:

.
├── base
│ ├── kustomization.yaml
│ ├── namespace.yaml
│ ├── role.yaml
│ ├── rolebinding.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ ├── statefulset.yaml
│ ├── templates
│ │ └── statefulset_template.yaml
│ └── values.yaml
└── overlays
 ├── production
 │ ├── kustomization.yaml
 │ ├── namespace.yaml
 │ └── statefulset.yaml
 └── staging
 ├── kustomization.yaml
 ├── namespace.yaml
 └── statefulset.yaml

This structure ensures that all resources can be deployed and cleaned up through Argo CD and
the GitOps approach, eliminating the need to set the AUTO-CREATE NAMESPACE option in the
Application Sync Options for namespace creation.

Application configuration for immutable infrastructure

Next, we will examine a potential application configuration that contributes to an immutable
infrastructure setup:

Understanding the principles of immutable infrastructure 207

Figure 7.4 – Example of an application sync policy configuration

The following flags should be set if you want to get the most immutable infrastructure setup:

• PRUNE RESOURCES: Enable this option to allow Argo CD to automatically delete resources
that are present in the cluster but no longer defined in the Git repository. This ensures that all
resources in the cluster are managed through the GitOps approach.

• SELF HEAL: Enable this option. It ensures that any changes made directly in the cluster that
deviate from the Git repository are automatically corrected by Argo CD, maintaining the
desired state as defined in Git.

• SET DELETION FINALIZER: Enable this option to ensure that resources are only deleted from
the cluster when they are removed from the Git repository. This prevents premature deletion
and ensures resources are cleaned up only after their removal from Git.

• RESPECT IGNORE DIFFERENCES: Enable this to instruct Argo CD to ignore specific
differences it doesn’t recognize. You can define in the Argo CD configuration what specific
differences to ignore.

• AUTO-CREATE NAMESPACE: Ensure this option is disabled to prevent Argo CD from
automatically creating namespaces. Namespaces should be explicitly defined as resources in
your Git repository.

By setting these policies, you ensure that resource creation, deletion, and synchronization are all
managed through changes in your Git repository while adhering to the principles of GitOps. This
approach ensures a tight coupling between the declared state in Git and the actual state in the cluster.

Cultural Transformation in IT for Embracing GitOps208

The combination of immutable infrastructure and GitOps represents a modern approach to IT
operations and development. It brings together the best of stability, security, and dynamic, automated
workflows. While it offers significant advantages in terms of reliability, security, and efficiency, it
also poses challenges in terms of complexity, resource demands, and dependency on specific tools
and practices. As with any IT methodology, success in implementing these concepts depends on a
clear understanding of their benefits and limitations, careful planning, and an adaptive approach to
evolving IT landscapes.

So far, we’ve looked at various aspects of transformation that come with GitOps. But what’s the point
of all this if you can’t get or measure any added value from it? That’s why, in the next section, we’ll
look at specific metrics that make product quality measurable.

Introducing DORA metrics
In this section, we’ll introduce you to DORA metrics and delve into a set of key performance indicators
developed by the DORA team. These metrics are pivotal in evaluating and improving software delivery
and operational performance within IT teams. The four principal DORA metrics are Deployment
Frequency, Lead Time for Changes, Change Failure Rate, and MTTR:

• Deployment Frequency: This assesses how often a team successfully deploys code to production.
Frequent deployments are indicative of an efficient and responsive development process,
allowing for quicker feedback and continuous improvement. To increase the frequency of
deployments, adopt CI/CD practices. Automate your build and deployment pipelines using
tools such as Jenkins, GitHub Actions, or GitLab CI. Regular, smaller deployments reduce risks
and facilitate quicker feedback. Additionally, feature flags can be used to manage deployments
and gradually roll out new features.

• Lead Time for Changes: This measures the duration from code commit to code deployment
in production. This metric indicates the speed and agility of the development process. Shorter
lead times often result in faster feedback from users and the ability to adapt and improve the
software swiftly. Improve lead time by optimizing your development processes. This includes
adopting Agile methodologies, increasing collaboration between teams, and integrating code
review and testing into the development process. Utilize automated testing and continuous
integration tools to ensure that code changes are tested and integrated quickly. Tracking tools
can be used to monitor the time from code commit to deployment, helping identify bottlenecks.

• Change Failure Rate: This focuses on the percentage of deployments that result in a production
failure. This metric is essential for understanding the reliability and stability of the software
development process. A lower change failure rate signifies higher quality and reliability in software
deployments. To reduce the change failure rate, focus on enhancing the quality of code and
the reliability of deployments. Implement automated testing, including unit tests, integration
tests, and end-to-end tests, to catch issues early. Employ static code analysis tools and conduct
thorough code reviews. Practice continuous deployment with automated rollbacks, and use
canary releases or blue-green deployments to minimize the impact of failed deployments.

Introducing DORA metrics 209

• MTTR: This is the average time taken to recover from a failure in the production environment.
This metric is crucial as it reflects the team’s ability to quickly rectify issues, thereby minimizing
downtime and maintaining service quality. Reducing MTTR involves improving incident response
and recovery processes. Implement monitoring and alerting tools such as Prometheus, Grafana,
or New Relic to quickly detect issues. Establish clear incident management protocols and on-call
rotations. Use IaC tools such as Terraform to enable fast and consistent environment recovery.
Regularly practice incident response drills to ensure the team is prepared for quick recovery.

These metrics align well with the GitOps approach, which emphasizes automation, monitoring, and
quick feedback. GitOps can enhance Deployment Frequency and Lead Time for Changes through
automated pipelines. It also helps in reducing the Change Failure Rate and MTTR by enabling quicker
rollbacks and promoting more reliable deployments through practices like continuous integration
and delivery.

However, while DORA metrics provide valuable insights, they come with challenges. Implementing
these metrics requires a mature DevOps team and established CI/CD processes. Data collection and
tagging need to be precise and actionable. The metrics must be adapted to the unique cadences and
processes of different teams and products.

In terms of measuring these metrics independently from specific Git Source Version Controls (SVCs)
such as DevOps, GitHub, or GitLab, organizations can look toward integrating various tools that
provide necessary data visualizations and dashboards. Teams can leverage APIs from different tools
to gather relevant data points for calculating these metrics. For example, Deployment Frequency can
be monitored using tools that track code deployments, while Lead Time for Changes can be calculated
by extracting timestamps for code commits and deployments from version control systems.

Organizations can choose to implement DORA metrics either by developing logic tailored to their
environments or by utilizing established tools such as GitLab’s Value Stream Analytics Dashboard.
GitLab’s dashboard [6] effectively visualizes the software development life cycle and computes DORA
metrics. It provides an interactive interface for tracing essential phases of the software delivery process
and enables teams to customize the dashboard to align with their specific workflow, enhancing the
understanding of lead time, cycle time, and other vital metrics. This feature aids in identifying bottlenecks
and areas needing improvement, thus boosting deployment frequency and overall DevOps performance.

Similarly, SquaredUp specializes in Azure DevOps integration [7] and offers a DORA metrics
dashboard designed specifically for DevOps teams. This dashboard presents a comprehensive view of
crucial performance indicators, including Deployment Frequency, Lead Time for Changes, Change
Failure Rate, and MTTR. It supports teams in monitoring and analyzing their software delivery
process, facilitating the identification of areas for enhancement. SquaredUp’s solution emphasizes
data-driven decision-making in software development, showcasing the importance of metrics in
optimizing DevOps workflows.

The key to successfully utilizing DORA metrics lies in understanding the context of these measurements,
interpreting them collectively rather than in isolation, and adapting them to suit the unique requirements
of individual teams and projects.

Cultural Transformation in IT for Embracing GitOps210

In conclusion, DORA metrics provide a structured and quantifiable approach to assessing and improving
DevOps performance. They offer a comprehensive view of the software delivery process, highlighting
areas for improvement and fostering a culture of continuous development and operational efficiency.

Understanding the need for continual improvement in
GitOps
In the ever-evolving landscape of software development, the adoption of GitOps marks a significant
transition in collaborative approaches and operational efficiencies. GitOps, a methodology that
combines Git with Kubernetes’ operational workflows, is more than just a set of practices – it represents
a continuous journey of improvement and adaptation. This section explores how GitOps necessitates
and facilitates continual improvement across various domains such as security, development, platform
engineering, and financial operations:

• Evolving security practices with GitOps: Security in the GitOps realm is dynamic and
continuously evolving. Teams deploy policies using tools such as Kyverno, adjusting to the
rapidly changing landscape of security threats. The emergence of new vulnerabilities and attack
vectors demands a proactive and adaptive approach. GitOps supports this by allowing for quick
iteration and deployment of security policies. However, the approach to managing secrets has
seen shifts – from using tools such as Sealed Secrets to adopting External-Secrets Operators.
This transition underscores the need for teams to constantly evolve their tools and practices,
staying ahead in a domain where stagnation equates to vulnerability.

• Developers’ continuous innovation through GitOps: For developers, GitOps is not just a
method of deployment but a catalyst for continuous innovation. Techniques such as blue-green
and canary deployments become more streamlined, while new tools such as PR-Generators
enhance the deployment processes. These innovations are vital in a landscape where deployment
strategies and tools are in a constant state of change. GitOps empowers developers to rapidly
deploy, experiment, and iterate, thereby fostering a culture of continual improvement and agile
responsiveness to market and technological changes.

• Platform engineering and scalable infrastructure: Platform engineering teams find GitOps
an ally for managing infrastructure with efficiency and scalability. Patterns such as App of Apps
and ApplicationSets with Cluster Generator in Argo CD demonstrate the evolving nature of
infrastructure management. Tools such as Crossplane and Cluster API extend the capabilities
of GitOps from mere application deployment to managing and provisioning diverse cloud
resources. This evolution highlights the necessity for teams to continually adapt and enhance
their skills and tools to manage increasingly complex and distributed systems effectively.

Overcoming cultural barriers to adopt GitOps 211

• FinOps – financial optimization in the age of GitOps: In the FinOps domain, GitOps introduces
tools such as OpenCost, enabling detailed cost tracking and allocation down to the namespace
level. Such granularity in cost allocation and the ability to adjust resource availability based
on usage patterns represent a significant shift in managing cloud costs. It also illustrates the
ongoing need for financial operations teams to integrate new tools and strategies to optimize
costs continually. The use of tools such as Kubegreen, which adjusts resources based on demand,
is a testament to the evolving nature of financial operations in cloud environments.

The journey with GitOps is ongoing and multifaceted. Teams across different domains – from security
to development and platform engineering to FinOps – must not only adopt GitOps but also embrace
its ethos of continual improvement. This involves regular evaluations, a willingness to adopt new tools
and practices, and a commitment to learning and adaptation.

In the final section of this chapter, we will explore overcoming cultural barriers, adopting GitOps,
and how different teams are currently working with varying approaches.

Overcoming cultural barriers to adopt GitOps
Adopting GitOps goes beyond just tool implementation; it involves a cultural shift within organizations.
This transition involves breaking down traditional departmental barriers, nurturing collaboration,
and uniting teams toward shared goals. GitOps acts as a unifying force, streamlining operations and
development toward a more efficient IT environment. Continual improvement in GitOps is essential
in the dynamic world of software development. This journey focuses on learning, adapting, and
evolving practices.

When examining different definitions or contrasting GitOps with DevOps, the technical aspects can
be summarized via the Weaveworks blog on GitOps culture, which elaborates on how GitOps extends
beyond a set of tools or practices to encompass a broader cultural shift within organizations. This
approach integrates Git at the heart of both operational and developmental processes, emphasizing
transparency, accountability, and collaboration. GitOps culture is characterized by the centralization
of Git in managing infrastructure, applications, and CI/CD processes, enhancing automation, stability,
and consistency. It fosters an environment where team members are engaged in a continuous cycle of
improvement, enabled by the visibility and control offered by Git-based workflows.

It might be right about the GitOps approach and the associated technical challenges, as well as the
responsibility, collaboration, and more. I’m not saying it’s wrong, because it isn’t. However, I want
to shift the focus to a perspective that also considers the daily work in various industries. Not every
company is a software company like Weaveworks.

A project’s story – exchange, experiences, and learnings

From my experience and discussions with DevOps professionals, CTOs, and platform engineers,
it’s clear that tool and approach changes are more straightforward than altering a team or company
mindset, which requires time for transformation.

Cultural Transformation in IT for Embracing GitOps212

Some companies handle this like so:

• In our use of GitOps with Argo CD for infrastructure and application services, we’ve noticed
significant improvements. For instance, we can easily identify drifts in our staging and production
environments, which are monitored closely. For development and ephemeral environments,
we use Helm and CD pipelines without tracking changes.

• Weaveworks on GitOps culture highlights how GitOps, particularly through Weave GitOps,
fosters a strong team culture characterized by excellent communication, coordination, and
collaboration. The clarity in roles and responsibilities provided by GitOps allows teams
to maintain autonomy, supported by Kubernetes namespaces for organizing and isolating
workloads. Additionally, Weave’s acquisition of Magalix emphasizes security policies in GitOps,
enabling admins to set and enforce policies throughout the GitOps process. This approach
underscores the operational nature of GitOps culture, distinct from the aspirational culture of
DevOps, focusing on precision and accountability.

And I believe Weaveworks hits the nail on the head when you look beyond the technical aspects and
read closely. The dialog suggests that the GitOps approach fosters a new culture among different teams,
who should master the same tool but for different use cases. The teams can work autonomously, but this
requires excellent communication, coordination, and collaboration. Additionally, it involves defining
roles and responsibilities. Every change or initiative should be clearly and transparently communicated
to the other teams. This all sounds great, but how does it look in real projects with different teams? I
will try to illustrate this with an example from one of my projects.

In the project, there’s a platform team, several developer teams, and a security team. The security team’s
role is to ensure not only that security guidelines are adhered to within the organization, but also IT
governance and compliance. Therefore, it feels responsible for using all possible means to protect the
company and enforce policies throughout the GitOps process.

The platform team provides the necessary Kubernetes clusters and context for the developers, so they
only need to focus on their applications and, at most, third-party tools. They see their role as enablers
for the developers, who purchase and use the platform as customers, with maximum emphasis on
self-service, availability, and performance. The developer teams consume Kubernetes as a product
and develop their applications. Let’s see how one team’s reasonable decision can unintentionally harm
another team:

• The security team enforces a policy that no application can run with elevated privileges, and
some applications, both in the platform context and those self-developed, stop working. This
results in application downtime and software failure.

Overcoming cultural barriers to adopt GitOps 213

The rationale for this action is to ensure that the company is protected.

• The platform team carried out a Kubernetes upgrade from 1.24 to 1.25 as support for the
previous version ended. As a result, the third-party tools used by the security team no longer
work. Some of the developers’applications also stop functioning. The change did not consider
that the upgrade replaced PodSecurityPolicies with PodSecurityStandards.

The rationale for this action is to ensure that a supported version is available and that the platform
remains up to date as required by the security team. This responsibility includes ensuring
that performance is optimized and reliable while maintaining adherence to the latest security
protocols and compliance standards associated with the Kubernetes ecosystem.

• The developers use their autonomy and open a NodePort on a node with an external IP address
for testing purposes. The application becomes externally accessible. The debugging works, but
testing takes longer. Fortunately, the application uses Log4j version 2.10 for logging, simplifying
the debugging process.

The rationale for this action is to increase the performance of testing and debugging. The developers
were under pressure to meet deadlines and chose a quick solution to test their applications,
prioritizing immediate functionality over long-term security and compliance considerations.

Possible causes that arise from the different actions are that customers are frustrated, the company
loses money per minute, and the reputation of the company declines. These are modified use cases
and fortunately, my projects were not affected by the Log4J incident. But the point here is not what
happened but that these cases occur and are justifiable from the team’s point of view.

Reflecting on the causes of recent challenges, it seems that the varying explanations provided by the
different teams are all valid. For example, when examining the changes made by the security and
platform teams, they took accountability from their perspective, ensuring that the company was
adequately protected and represented. However, they did not consider themselves responsible for
application outages or customer loss, believing their actions were justified. This situation could have
been potentially avoided with simple communication and transparency about the impending changes
between teams.

From the developers’ viewpoint, they were under pressure to meet a deadline to prevent further delays
for a feature, which is already behind schedule, causing frustration among customers. Debugging was
activated only in the development environment, and they assumed it was unnecessary to inform the
security or platform teams, believing that these teams wouldn’t understand the change and would
impede it without reason. The developers felt they were acting in the company’s best interest and
aiming to satisfy their customers.

From the developers’ viewpoint, they felt a strong sense of accountability to meet a deadline. However,
they overlooked the importance of simple communication and transparency with the security or platform
teams, assuming these teams wouldn’t comprehend the change and might unnecessarily impede it. In
their pursuit to act in the company’s best interest and satisfy customers, they missed an opportunity
for collaboration that could have harmonized their efforts with the broader organizational goals.

Cultural Transformation in IT for Embracing GitOps214

The learnings

The learnings from these incidents led to the creation of a guild, with representatives from each team
attending meetings. This allowed for changes and their impacts to be discussed and made visible,
fostering clear communication and collaboration between teams. Additionally, it helped different
teams understand each other’s perspectives, needs, and reasons, enhancing transparency. While not all
decisions were discussed, and changes were sometimes made rapidly due to time constraints or urgency,
such as in the case of critical security vulnerabilities, the overall situation improved. The increased
transparency helped in better understanding the impact of changes, reducing the blast radius of these
changes. Empathy among team members increased, and the culture of blaming significantly decreased.

Did things overall improve? Yes!

Were all decisions discussed and changes made only after consultation? No, as time constraints and
urgency often lead to decisions being made quickly.

Essential Q&A from another recent project

In this section, we’ll focus on specific questions and answers from a company, and various projects,
that are still in the process of transformation, having started with the DevOps approach and now
shifted to platform engineering, including their honest reasoning for this change:

• Q1: How did GitOps restructure your team organization?

A1: Initially, we had separate DevOps teams per project. GitOps led to the creation of a central
platform team to manage Kubernetes clusters efficiently.

• Q2: What were the challenges in transitioning to GitOps?

A2: Our main challenge was adapting to the immutable infrastructure GitOps offers, especially
understanding that all changes need to flow through Git commits.

• Q3: What benefits have you realized with GitOps?

A3: GitOps has brought us a clear, traceable workflow. Every change, big or small, is now
meticulously tracked via Git.

• Q4: How has GitOps affected team communication?

A4: Communication has significantly improved. Our platform team has developed a deeper
understanding of the developers’ needs, leading to more empathetic collaboration.

• Q5: Can you share any successful cultural transformations?

A5: Definitely. We’ve developed a proactive error culture, focusing on automation and continuous
learning, which has fundamentally changed our problem-solving approach.

Summary 215

• Q6: How has daily work evolved for your teams with GitOps?

A6: There’s a noticeable increase in motivation and responsibility among team members, with
a greater sense of autonomy in their roles.

• Q7: How did your team adapt to GitOps?

A7: Surprisingly, there was a little resistance. The team understood the necessity of this
transformation and was quite receptive to it.

• Q8: How do you measure the success of this transition?

A8: While we don’t have precise metrics yet, the reduction in manual interventions and the
increase in Git activities are strong indicators of success.

• Q9: What is your team size?

A9: Our team consists of around 20 developers and three platform engineers.

This conversation format allows for a clear understanding of how GitOps has transformed team
dynamics, challenges, and workflow efficiency.

Adopting GitOps is more than implementing a set of tools; it involves cultural shifts within organizations.
Overcoming traditional silos between departments, fostering a culture of collaboration and continuous
learning, and aligning diverse teams toward common operational goals are essential steps in this
journey. Thus, the adoption of GitOps becomes a unifying force, aligning varied operational and
developmental efforts toward a more efficient, transparent, and responsive IT environment.

In conclusion, the necessity for continual improvement in GitOps is not just a recommendation; it is
a requirement in the fast-paced and ever-changing world of software development and IT operations.
As teams navigate this journey, the focus should remain on learning, adapting, and evolving practices
to stay ahead in an environment where change is the only constant. So, GitOps is less of a destination
and more of a path toward operational excellence and continual improvement.

Summary
This chapter provided a compelling view of the cultural revolution in IT, brought about by the adoption
of GitOps. It started by establishing GitOps as not just a technological shift but a profound cultural
metamorphosis within IT departments. This approach, merging software development with IT
operations through Git, transforms operational processes and methodologies, treating infrastructure
as an application. It enables automation and precision and extends rigorous development practices
to infrastructure management.

Cultural Transformation in IT for Embracing GitOps216

A key transformation brought about by GitOps is the establishment of immutable infrastructure,
automating the alignment of the infrastructure’s actual state with its desired state, and reducing manual
interventions and errors. This chapter also explored the impact of GitOps on IT performance through
DORA metrics, offering a quantitative assessment of improvements in deployment frequency, change
lead time, failure rate, and recovery time. This chapter also addressed the broader organizational
implications of GitOps adoption. This goes beyond mere tool implementation; it’s a catalyst for a
far-reaching cultural shift, fostering a collaborative, transparent, and efficient IT culture. Real-world
examples from various organizations illustrated how GitOps drives these changes.

All in all, this chapter revealed the transformative power of GitOps, transcending technology to chart
a path toward a more agile and innovative IT culture.

In the next chapter, we’ll explore the application of GitOps in conjunction with OpenShift, a Kubernetes
downstream distribution from Red Hat, and examine how its management differs.

References
• [1] https://codefresh.io/blog/infrastructure-as-apps-the-gitops-

future-of-infra-as-code/

• [2] https://www.youtube.com/watch?v=h6xDWc6fXao

• [3] https://docs.crossplane.io/latest/getting-started/provider-
azure/

• [4] https://www.youtube.com/watch?v=9odjdVqJkws

• [5] https://github.com/argoproj/argo-cd/issues/7875

• [6] https://docs.gitlab.com/ee/user/analytics/value_streams_
dashboard.html

• [7] https://squaredup.com/dashboard-gallery/dora-metrics-dashboard-
devops-team/

https://codefresh.io/blog/infrastructure-as-apps-the-gitops-future-of-infra-as-code/
https://codefresh.io/blog/infrastructure-as-apps-the-gitops-future-of-infra-as-code/
https://www.youtube.com/watch?v=h6xDWc6fXao
https://docs.crossplane.io/latest/getting-started/provider-azure/
https://docs.crossplane.io/latest/getting-started/provider-azure/
https://www.youtube.com/watch?v=9odjdVqJkws
https://github.com/argoproj/argo-cd/issues/7875
https://docs.gitlab.com/ee/user/analytics/value_streams_dashboard.html
https://docs.gitlab.com/ee/user/analytics/value_streams_dashboard.html
https://squaredup.com/dashboard-gallery/dora-metrics-dashboard-devops-team/
https://squaredup.com/dashboard-gallery/dora-metrics-dashboard-devops-team/

Part 3:
Hands-on Automating

Infrastructure and
CI/CD with GitOps

In this part, you will get hands-on experience with automating infrastructure and CI/CD processes
using GitOps. You will explore specific implementations on platforms such as OpenShift, Azure, and
AWS, and integrate tools such as Terraform and Flux CD for enhanced automation. This practical
section is designed to equip you with the necessary skills to apply GitOps in diverse environments,
ensuring you can manage infrastructure and CI/CD pipelines effectively and efficiently.

This part includes the following chapters:

• Chapter 8, GitOps for OpenShift

• Chapter 9, GitOps for Azure and AWS Deployments

• Chapter 10, GitOps for Infrastructure Automation – Terraform and Flux CD

• Chapter 11, Deploying Real-World Projects with GitOps on Kubernetes

8
GitOps with OpenShift

In this chapter, we delve into the world of GitOps within the context of Red Hat OpenShift, an
approach that revolutionizes the way we deploy, manage, and operate containerized applications.

As we journey through this chapter, we will explore the foundational principles of GitOps, highlighting
how they seamlessly integrate with the robust features of Red Hat OpenShift. This combination not
only enhances the efficiency and reliability of deployments but also aligns with modern DevOps
practices, fostering collaboration between development and operations teams.

We will start by setting up a local OpenShift environment using CodeReady Containers (CRC),
providing a hands-on approach to understanding how OpenShift operates and how it can be managed
using GitOps principles. From there, we will dive into practical examples and best practices, including
configuring automated deployments, managing application configurations, and ensuring high availability
and security within your OpenShift cluster.

Whether you are new to OpenShift or looking to enhance your existing workflows, this exploration
into GitOps will provide valuable insights and techniques for optimizing your cloud-native
development processes.

In this chapter, we’ll focus on these key areas:

• Introduction to Red Hat OpenShift

• Setting up GitOps in Red Hat OpenShift

• Leveraging Red Hat OpenShift’s CI/CD for GitOps

• Automation and configuration best practices

• A Kubernetes-Red Hat OpenShift comparison

GitOps with OpenShift220

Technical requirements
For this chapter, ensure you have access to a Red Hat OpenShift cluster or a local setup via Red
Hat OpenShift Local. Familiarity with GitOps practices and tools such as Argo CD, as well as basic
development tools such as Git and a code editor, is necessary. A foundational understanding of container
technology, Kubernetes architecture, and YAML syntax will aid in following the practical exercises.
Ensure a stable internet connection for tool downloads and cluster access. If running OpenShift locally,
your machine should ideally have at least 16 GB of RAM and sufficient storage.

The relevant code and resource files for this chapter can be found in the Chapter08 folder of our
dedicated GitHub repository: https://github.com/PacktPublishing/Implementing-
GitOps-with-Kubernetes.

Introduction to Red Hat OpenShift
OpenShift (https://www.redhat.com/en/technologies/cloud-computing/
openshift), developed by Red Hat, is a leading enterprise Kubernetes platform that offers a
comprehensive suite of features designed to streamline the deployment, scaling, and operations of
containerized applications. It extends Kubernetes by simplifying many of the complex tasks associated
with deploying and managing a containerized infrastructure, making it an ideal choice for enterprises
looking to implement modern DevOps and GitOps practices.

One of the core strengths of OpenShift is its focus on developer productivity and operational efficiency.
It provides a rich set of developer tools and a user-friendly console that makes it easier for developers
to build, deploy, and manage their applications. OpenShift’s integrated development environment
(IDE) and built-in CI/CD capabilities enable developers to automate much of the software delivery
process, from code build through to testing, deployment, and monitoring.

Security is another area where OpenShift shines. It incorporates built-in security features at every level
of the application stack, from the operating system (OS) to the network, and up to the application
services. This integrated approach ensures that security is not an afterthought but is woven into
the very fabric of the application life cycle. Features such as Security-Enhanced Linux (SELinux)
enforced isolation, automated vulnerability scanning, and default secure configurations help to protect
applications and data from external threats and internal misconfigurations.

SELinux
SELinux is a kernel-integrated security feature that enforces mandatory access control (MAC)
policies to enhance system security. It operates on the principle of least privilege, restricting
system processes and users to the minimal permissions needed for their functions. SELinux
helps prevent unauthorized access and can operate in enforcing mode, where it blocks and logs
unauthorized actions, or in permissive mode, where it only logs violations without blocking
them. This adds an important layer of security to Linux-based systems, including OpenShift,
by controlling access with greater granularity than traditional access controls.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift

Introduction to Red Hat OpenShift 221

Furthermore, OpenShift is designed to support a wide range of workloads, from traditional monolithic
applications to microservices and serverless functions. Its flexible architecture supports a variety of
programming languages, frameworks, and databases, allowing teams to use the tools and technologies
that best fit their needs. Additionally, OpenShift’s container-native storage and networking solutions
provide the scalability and performance required for high-demand applications.

In the context of GitOps, OpenShift provides a powerful platform for implementing declarative,
version-controlled workflows for infrastructure and application deployment. By leveraging OpenShift’s
capabilities, teams can achieve higher levels of automation, repeatability, and consistency, which
are central to the GitOps philosophy. With its robust ecosystem, OpenShift enables organizations to
streamline their deployment pipelines, enhance security, and improve operational efficiency, making
it an excellent choice for adopting GitOps methodologies.

Red Hat OpenShift environment setup

When setting up an OpenShift cluster for learning, testing, or development purposes, you have several
options to consider, each with its own set of advantages. Understanding these alternatives will help
you choose the best fit based on your objectives, available resources, and technical comfort level:

• Developer Sandbox for OpenShift: This is an excellent starting point for beginners or for those
looking to test out OpenShift features without any setup. The Developer Sandbox (https://
developers.redhat.com/developer-sandbox) provides a free, pre-configured
OpenShift environment. All you need to do is register to gain 30 days of free access to a
shared OpenShift and Kubernetes cluster. This option is ideal for users who prefer to avoid
the complexities of manual setup and are looking for a quick way to start experimenting with
OpenShift capabilities.

• Cloud-based OpenShift cluster: Setting up an OpenShift cluster in the cloud (Azure, AWS,
or GCP) is a robust solution that offers scalability and real-world applicability. This approach
is suitable for users looking to simulate a production environment or to work on larger, more
complex projects. However, it’s important to note that running a cluster in the cloud can incur
costs, depending on the cloud provider and the resources consumed.

• Bare metal setup: Setting up OpenShift Local on bare metal is a challenging and resource-
intensive task. Unlike in cloud environments, you must manually manage networking, storage,
and hardware compatibility, requiring a high level of technical expertise. The system demands
significant memory, multiple CPU cores, and substantial storage, which can be daunting for
environments not initially designed for such loads. While a bare metal installation offers greater
control and potential performance benefits, it comes with complexities and potential hurdles
that need careful planning and understanding.

• Red Hat OpenShift Local: For those who prefer a local solution, setting up an OpenShift cluster
on your machine using Red Hat CRC, can be an effective approach. This method allows for a
more hands-on experience and works well for individual learning and development scenarios.

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/developer-sandbox

GitOps with OpenShift222

Red Hat OpenShift Local provides a fast and straightforward method for initiating OpenShift cluster
construction. Tailored for local machine operation, it streamlines the setup and testing process, offering
a cloud-like development environment right on your desktop. This tool supports various programming
languages and simplifies the development of container-based applications by providing a minimal,
pre-configured OpenShift cluster that requires no server-based infrastructure.

OpenShift Local enables the creation, building, and deployment of microservices directly into
Kubernetes-hosted containers, supporting a range of OSs including Linux, macOS, and Windows
10. This makes it an ideal platform for local development and testing, mirroring a real OpenShift
cluster’s environment.

For the remainder of this chapter, we have chosen to utilize OpenShift Local due to its convenience
and relevance to local development scenarios. It’s crucial to note that running the examples effectively
requires a minimum hardware allocation of 6 virtual CPUs and 12 GB of memory for the local cluster to
operate correctly. This requirement ensures that users can experience the full capabilities of OpenShift
Local in a GitOps context without significant performance issues.

To begin, navigate to https://developers.redhat.com/products/openshift-local/
overview and click on Install OpenShift on your laptop, as shown in Figure 8.1.

Figure 8.1 – The Red Hat OpenShift Local (CRC) homepage

To proceed with the setup of the cluster, it is necessary to download the installer by creating a Red
Hat account if you do not already have one. From the displayed page (Figure 8.2), choose the installer
corresponding to your OS (Linux, Windows, or macOS) where you plan to install the cluster. Additionally,
make sure to select the Download pull secret or Copy pull secret option, as the pull secret will be
required during the installation process. Remember, you can always return to this page if needed.

https://developers.redhat.com/products/openshift-local/overview
https://developers.redhat.com/products/openshift-local/overview

Introduction to Red Hat OpenShift 223

Figure 8.2 – Starting web page for downloading the CRC installer based on the target OS

At this point, it’s important to note that a detailed step-by-step guide for installation is beyond the
scope of this text. However, you can find comprehensive instructions in the official documentation
provided by Red Hat.

For a complete walkthrough, please visit the following link: https://access.redhat.com/
documentation/en-us/red_hat_codeready_containers/1.0/html/getting_
started_guide/getting-started-with-codeready-containers_gsg#doc-
wrapper.

This resource outlines all necessary steps to establish your local OpenShift cluster. As a standard
procedure to verify the correctness of the installation, execute the following command:

$ crc version

This should produce output like the following:

CodeReady Containers version: 1.25.0+0e5748c8
OpenShift version: 4.7.13

GitOps with OpenShift224

Troubleshooting OpenShift CRC setup issues

Setting up your environment can be an elaborate process with potential difficulties. It requires careful
attention to detail and an understanding of system configurations and dependencies. While following
the provided guidelines and documentation can streamline the process, you may still encounter
unexpected challenges. It’s important to approach this setup with patience and be prepared to engage
in some troubleshooting to address any issues that arise. Remember to properly start the cluster by
using the following command:

$ crc start --cpus 6 --memory 12288

This command ensures that your CRC instance starts with the specified amount of computational
resources: 6 CPUs and 12288 MB (approximately 12 GB) of memory. These settings are important
for the optimal performance of your OpenShift cluster.

If you experience any issues during the setup process, try executing the following sequence of commands
to troubleshoot and reset your environment:

• crc delete -f: This forcefully deletes the existing CRC instance, clearing any
current configurations.

• crc cleanup: This command helps clean up any residual files or configurations left from
previous instances, ensuring a clean slate.

• crc setup: Re-run the setup command to configure your system again for CRC.

• crc config unset proxy-ca-file: This removes any proxy configuration settings
that might be causing issues.

• crc start --log-level debug: Start the CRC instance again, this time with debug
logging enabled. This will provide more detailed output, which can be helpful in identifying
where the setup process is encountering problems.

To finalize the setup of our cluster, an additional crucial step is required: the installation of the OpenShift
command-line interface (CLI), commonly referred to as oc. This tool is essential for interacting with
OpenShift clusters, allowing users to perform various tasks via the command line, such as deploying
applications, inspecting cluster resources, and managing administrative activities. The oc CLI is
specifically designed for developers and system administrators, offering advanced functionalities that
surpass the basic features found in Kubernetes. This makes the oc CLI a vital component for those
looking to automate processes via scripts or manage their clusters more directly, ensuring efficient
operation within the OpenShift ecosystem.

Detailed steps for installing the oc CLI can be found in the official documentation. Please visit
Getting Started with the OpenShift CLI at https://docs.openshift.com/container-
platform/4.8/cli_reference/openshift_cli/getting-started-cli.html for
comprehensive instructions on how to download, install, and begin using the oc CLI for managing
your OpenShift clusters.

https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.8/cli_reference/openshift_cli/getting-started-cli.html

Setting Up GitOps in Red Hat OpenShift 225

Check that oc is correctly installed by typing the following command:

$ oc version

The expected output of the preceding command should be like:

Client Version: 4.15.2
Kustomize Version: v5.0.4-0.20230601165947-6ce0bf390ce3
Server Version: 4.14.12
Kubernetes Version: v1.27.10+28ed2d7

Now that our cluster setup is complete, we are ready to progress to the next section, where we will
focus on setting up GitOps in our Red Hat OpenShift cluster.

By applying GitOps, we can leverage the full potential of our newly configured OpenShift environment,
ensuring a more efficient and automated operational framework. Let’s move forward and explore the
exciting capabilities of GitOps within OpenShift.

Setting Up GitOps in Red Hat OpenShift
Begin by installing the necessary GitOps tools. Argo CD (see the Argo CD section in Chapter 4) is
a popular choice for OpenShift, as it integrates seamlessly with the Kubernetes environment. You
can install Argo CD directly into your OpenShift cluster using OperatorHub, which offers an easy
installation process and automatic management of the application life cycle:

1. To obtain the address of your local OpenShift cluster running on CRC, use the following
command in your terminal:

$ crc start

The expected output of the crc start command will typically include several important
pieces of information relevant to your local OpenShift cluster setup. Here’s an example of what
you might see:

INFO Loading bundle: crc_vfkit_4.14.12_arm64...
INFO A CRC VM for OpenShift 4.14.12 is already running
Started the OpenShift cluster.
The server is accessible via web console at:
 https://console-openshift-console.apps-crc.testing
Log in as administrator:
 Username: kubeadmin
 Password: C57Yw-465gL-NXcpv-nri5w

GitOps with OpenShift226

Log in as user:
 Username: developer
 Password: developer
Use the 'oc' command line interface:
 $ eval $(crc oc-env)
 $ oc login -u developer https://api.crc.testing:6443

This output provides you with the URL for the OpenShift web console, along with login
credentials for both the administrator and regular (developer) user accounts. It also includes
instructions for logging in to your cluster using the oc CLI. Ensure you save these details, as
you will need them to access your local OpenShift cluster.

2. Navigate to https://console-openshift-console.apps-crc.testing and log in
as Administrator using the credentials provided by the crc start command, as illustrated in
Figure 8.3. This will give you full access to the OpenShift cluster’s administrative functionalities.

Figure 8.3 – The Cluster page in the Administrator mode

3. In the OpenShift web console, navigate to the left-hand panel and expand the Operators section.

4. Click on OperatorHub. Then, in the search box on the right-hand side, type OpenShift
GitOps to locate the relevant operator for installation. This action will bring up the OpenShift
GitOps operator, which you can then proceed to install on your cluster (refer to Figure 8.4
for guidance).

OpenShift Operators
An OpenShift Operator is a method of packaging, deploying, and managing a Kubernetes
application. OpenShift Operators extend the Kubernetes API to create, configure, and manage
instances of complex stateful applications on behalf of a Kubernetes user. They automate the
entire life cycle of the software they manage, from initial deployment to upgrade to everyday
operations, following best practices. This approach simplifies the management of complex
applications and services, allowing developers and operators to focus on the specifics of their
applications while leveraging the scalability and reliability of Kubernetes systems. Essentially,
Operators encapsulate the human operational knowledge required to run services and provide
a more efficient and reliable way to manage applications in a cloud-native environment.

https://console-openshift-console.apps-crc.testing

Setting Up GitOps in Red Hat OpenShift 227

Figure 8.4 – Navigating to OperatorHub and searching for OpenShift GitOps Operator

5. Once you have located the Red Hat OpenShift GitOps operator, click on it to view more details.
Then, proceed to click on the Install button. When prompted, leave the default values as they
are and continue with the installation process (see Figure 8.5). This will initiate the setup of the
OpenShift GitOps operator on your cluster, equipping your environment with the necessary
tools for GitOps workflows.

Figure 8.5 – A panel displaying details prior to operator installation

GitOps with OpenShift228

6. For Installation mode, select All namespaces on the cluster (default) to allow the operator
to operate across all namespaces.

7. For Installed Namespace, choose Operator recommended Namespace openshift-gitops-
operator, which is specifically suggested for the GitOps operator.

8. Click on Install and wait for the installation operations to be completed. This might take a few
moments. After the installation is finished, click on View Operator to verify the installation’s
success, and ensure everything is set up correctly.

9. While remaining in the Administrator mode within the web console, navigate to Create
Project to start a new project. Fill in the project creation form with the necessary information,
following the guidelines or specifics you have for your project (Figure 8.6). This will establish
a dedicated namespace for your GitOps deployments and related resources.

Figure 8.6 – Red Hat OpenShift – Create Project

Be aware!
The display name of your project can be adjusted according to your preferences, but it’s important
to remember this name as you will need to use it consistently in subsequent steps. Ensure that
the name you choose is memorable and relevant to your project to avoid confusion later.

10. Once the project is created, the dashboard for your newly established project should appear
in the OpenShift web console, as illustrated in Figure 8.7. It will provide an overview of your
project’s resources, activities, and status. Make sure the details align with your expectations and
configurations, as this dashboard will be central to managing and monitoring your project’s
components in the upcoming steps.

Setting Up GitOps in Red Hat OpenShift 229

Figure 8.7 – Dashboard for the newly created project

11. In the OpenShift web console, go to Operators | Installed Operators. Find and click on Red
Hat OpenShift GitOps, then select All Instances to view and manage your GitOps operator
instances (refer to Figure 8.8 for guidance).

Figure 8.8 – List of instances where the operator has been installed and its status

12. Ensure that the project selected on the top-left is gitopsk8sdeployments before proceeding.
Then, navigate to Create new and select Argo CD to set up a new instance.

13. In the form that appears, enter argocd-for-gitops-deployments into the name
input box.

14. To create an external route for accessing the Argo CD server, click on Server | Route and ensure
that Enabled is checked. This will allow you to access the Argo CD interface externally from
your OpenShift cluster.

GitOps with OpenShift230

15. Wait for the Status value to change to Available as in Figure 8.9. This indicates that your Argo
CD instance is fully deployed and ready for use within your OpenShift cluster. The status
change might take a few minutes as the system finalizes the setup and deployment processes.

Figure 8.9 – New item displaying the created Argo CD instance for the specific namespace

Switch to the Developer mode in the OpenShift web console and click on Topology. This
view will give you a graphical representation of the resources deployed so far, allowing you to
visually understand the structure and relationships of your applications and services within
the selected project.Top of Form

Figure 8.10 – A graphical representation of the resources deployed

16. To further test that Argo CD has been correctly set up, you can use oc and run the
following command:

$ oc get pods -n gitopsk8sdeployments

Leveraging Red Hat OpenShift’s CI/CD for GitOps 231

This command will list all the pods within the gitopsk8sdeployments namespace,
allowing you to verify that the Argo CD pods have been successfully deployed and are running
as expected. If the Argo CD setup was successful, you should see the related pods listed without
issues (all of them in the Running status):

NAME READY
STATUS RESTARTS AGE
argocd-for-gitops-deployments-application-controller-0 1/1
 Running 0 6m1s
argocd-for-gitops-deployments-redis-6c9476c7dc-76c6n 1/1
 Running 0 6m1s
argocd-for-gitops-deployments-repo-server-65cdc966d4-qzpvt 1/1
 Running 0 6m1s

Now that we have successfully set up Argo CD and verified its correct installation, we are ready to
proceed with the deployment. Let’s move forward to the next steps where we will utilize our GitOps
workflow within the OpenShift environment to manage and deploy our applications efficiently.

Leveraging Red Hat OpenShift’s CI/CD for GitOps
In this section, we delve into leveraging Red Hat OpenShift’s CI/CD capabilities for GitOps. Specifically,
we will apply these principles to deploy the weather application, which was introduced previously in
the My city weather app section in Chapter 4. Utilizing a deployment YAML file, we will orchestrate
the application’s rollout on the OpenShift cluster through our Argo CD instance, targeting the
gitopsk8sdeployments namespace. This practical example will demonstrate how OpenShift’s CI/
CD tools, combined with GitOps methodologies, streamline and automate the deployment processes,
ensuring a consistent, traceable, and efficient application delivery pipeline.

Let’s explore how to integrate these powerful technologies to deploy our weather application seamlessly:

1. In the OpenShift web console, ensure you are in the Administrator mode.

2. Then, navigate to Networking and select Routes. Look for the entry named argocd-for-
gitops-deployments-server in the list.

Figure 8.11 – Routes section of the Administrator mode

GitOps with OpenShift232

3. Click on the URL provided in the Location field of this entry. This action will take you directly
to the Argo CD interface, where you can manage and monitor your GitOps deployments within
the gitopsk8sdeployments namespace.

Figure 8.12 – The login page for the created Argo CD instance for our demo project

4. To retrieve the admin credentials, switch to the Developer mode in the OpenShift web console.

5. Then, click on Secrets in the side menu. Look for and select the secret named argocd-for-
gitops-deployments-cluster. Within this secret’s details, find and copy the value of
the admin.password entry.

Figure 8.13 – Secrets section of the gitopsk8sdeployments project

Leveraging Red Hat OpenShift’s CI/CD for GitOps 233

6. Once you access the Argo CD interface, the application list should initially be empty, as illustrated
in Figure 8.14, since no applications have been deployed yet using Argo CD. At this point, you’re
ready to create a new application. This step will involve defining the source repository, the path
within the repository where your Kubernetes manifests are located, and the destination where
your application should be deployed, in this case, the OpenShift local cluster.

Figure 8.14 – Initial empty application list of the Argo CD instance

To create a new Argo CD application, you have the option to either use the Argo CD web UI or the
oc CLI. If opting for the CLI, as demonstrated in an earlier section, you can apply a deployment
file (e.g., argocd-deployment.yaml) that specifies the application’s configuration.

7. Utilizing the code provided in the repository accompanying this chapter, you can create the
new application by executing the following command:

$ oc apply -f argocd-deployment.yaml

The content of the argocd-deployment.yaml file is as follows:
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: my-weather-app
spec:
 destination:
 name: ''
 namespace: gitopsk8sdeployments
 server: 'https://kubernetes.default.svc'
 source:
 path: deployment/base

GitOps with OpenShift234

 repoURL: 'https://github.com/pietrolibro/gitops-k8s-
deployments-book-weather-app.git'
 targetRevision: main
 sources: []
 project: default
 syncPolicy:
 automated: null
 CreateNamespace: true

At this point, a new application titled my-weather-app will be visible in the Argo CD
dashboard that was previously opened.

Figure 8.15 – Argo CD instance populated with the newly created application

8. The app will initially appear in an OutofSync status, indicating that the actual state of the
cluster does not match the desired state defined in the Git repository. To resolve this, click on
Sync to synchronize the app with the desired state outlined in your repository. This action will
start the deployment process according to the configurations defined in your Git repository.

9. Once the application is synchronized, Figures 8.16-17, it will align with the configurations
defined in the manifest. This includes the deployment of two replicas, as specified in the manifest
settings. The application’s status should reflect that it is now in sync with the desired state, with
the two replicas running as intended within your OpenShift cluster.

Leveraging Red Hat OpenShift’s CI/CD for GitOps 235

Figure 8.16 – Application panel after successful synchronization

Figure 8.17 – Detailed status of deployed resources after synchronization

To test the GitOps CI/CD method of deployment, you can pull the repository locally using Git
and then modify the number of replicas specified in the deployment file.

GitOps with OpenShift236

Changes to the application code alone will not cause the sync status to be marked as out
of sync. The sync status is only affected by changes related to the deployment (e.g., YAML
configuration files). GitOps tools such as Argo CD monitor the state of the configuration files
in the repository. If there is a discrepancy between the desired state defined in the configuration
files and the actual state in the Kubernetes cluster, it will be marked as out of sync. Therefore,
only modifications to deployment files (such as YAML files) will impact the sync status, not
changes to the application code itself.

This action embodies the iterative and controlled changes typical in GitOps workflows. If using
Git directly is not your preference, you have the alternative to edit the file directly on GitHub,
which simplifies the process while achieving the same result.

10. Once you have made and committed your changes, the application status in Argo CD will shift
to Out of Sync. This indicates that the actual deployment no longer matches the desired state
as defined in your Git repository. In our demonstration, we are operating under a manual sync
approach, meaning that after any changes, you will need to manually trigger a sync in Argo
CD. This step is essential to apply the new configurations, highlighting the GitOps principle
where updates are made through version-controlled files, with manual intervention kept to a
minimum to ensure deliberate and recorded changes.

Figure 8.18 – Application in the OutOfSync status after changes to the manifest files

Automation and configuration best practices 237

11. To resynchronize the application and apply the updated configurations, simply click the Sync
button in the Argo CD dashboard. After initiating the sync, monitor the process to ensure it
completes successfully. Once the synchronization is successful, the application’s status will
update to reflect that it is now in sync with the desired state as defined in your Git repository,
incorporating the changes you made, such as the updated number of replicas.

As we transition from understanding the foundational aspects of Red Hat OpenShift and Kubernetes,
we now shift our focus toward applying automation and configuration best Practices within
these environments.

Automation and configuration best practices
OpenShift is widely adopted for hosting critical applications globally. As such, applications are expected
to meet high availability standards, often aiming for five nines (99.999%) to ensure continuous service
delivery. OpenShift assists in deploying applications in a highly available manner to mitigate outages,
even when instances or infrastructure are compromised.

This summary outlines some key practices for deploying highly available applications on OpenShift:

• Multiple replicas: Deploying multiple pod instances ensures that the deletion or failure of a
single pod doesn’t lead to downtime. A recommended practice is to have at least two replicas
for each application to ensure continuity.

• Update strategy: Employ rolling and recreate strategies to update applications. The rolling
strategy, which is the default, minimizes downtime by gradually replacing old pods with new
ones. For critical applications, RollingUpdate is recommended.

• Graceful shutdown: Ensure your applications handle the SIGTERM signal gracefully, allowing
them to shut down properly. Adjust terminationGracePeriodSeconds as needed to
give your applications sufficient time to close out tasks.

• Probes: Use liveness, readiness, and startup probes to monitor application health. Liveness probes
help restart applications in a failed state, readiness probes manage traffic flow to the application,
and startup probes allow time for initial app startup before other probes start monitoring.

• External dependencies: Manage your application’s external dependencies effectively. Use
initContainers or startupProbes to ensure dependencies are ready before starting
your main application and employ readiness probes to maintain health checks.

• PodDisruptionBudgets (PDBs): Implement PDBs to limit the number of pods that can be
simultaneously unavailable during maintenance, thus preserving application availability.

• Autoscaling: Utilize HorizontalPodAutoscaler (HPA) and VerticalPodAutoscaler (VPA) to
dynamically adjust the number of pod replicas or resources per pod based on the current load,
ensuring that your application can handle varying levels of traffic.

GitOps with OpenShift238

• Pod topology spread constraints: Spread your pod replicas across different failure domains
(e.g., nodes, racks, or zones) to avoid simultaneous downtime and ensure better availability
and resilience.

• Deployment strategies: Use blue/green or canary deployment strategies to minimize disruptions
during application updates. These strategies enable safer rollouts and easier rollback in case
of issues.

For critical applications hosted on OpenShift, adopting these best practices will significantly boost
availability, resilience, and continuous service delivery, meeting and even exceeding enterprise-level
expectations and service-level agreements (SLAs).

Moreover, factors such as node sizing, resource allocation, and scheduling strategies play a vital role in
enhancing the performance and dependability of your OpenShift framework. Regarding application
security, we strongly recommend adhering to the following best practices to fortify the security posture
of your applications:

• Utilize trusted base container images: Prioritize the use of official or vendor-provided container
images, as they are rigorously tested, secured, and maintained. If you opt for community-
supported images, ensure they are from reputable sources. Avoid images from unknown origins
found in public registries such as Docker Hub, as they may pose security risks.

• Regularly update base container images: Staying updated with the latest versions of container
images is crucial, as they include the most recent security patches and fixes. Implement
automated processes in your CI pipeline to pull the latest base images during the build process
and to trigger rebuilds of your application images when new base image updates are released.

• Differentiate between build and runtime images: Separate your build and runtime environments
by using distinct images for each phase. The build image should contain only what is necessary
for compiling and building the application, while the runtime image should be slimmed down
to include only the essentials needed for running the application. This approach minimizes the
attack surface by reducing unnecessary dependencies and vulnerabilities.

• Adhere to restricted security context constraints (SCCs): Whenever feasible, configure your
container images to comply with OpenShift’s restricted SCC. This constraint enforces stringent
security policies, limiting the potential for security breaches. Adapting your applications to
operate under the restricted SCC maximizes the security level, safeguarding the cluster in
the event of an application compromise. Refer to OpenShift’s documentation on supporting
arbitrary user IDs for additional guidance.

• Secure inter-component communications: Ensure that communication between application
components is secured, particularly if sensitive data is being transmitted. While OpenShift’s
network is designed to be secure, using Transport Layer Security (TLS) adds an extra layer
of protection. For a more streamlined approach, consider utilizing OpenShift Service Mesh,
which can manage TLS, taking the burden off individual applications and providing centralized
control over security policies.

A comparison of Kubernetes Red Hat OpenShift 239

Having explored key practices to enhance application availability, resilience, and security within
OpenShift, we conclude this section. These guidelines provide a foundation for maintaining robust,
secure applications that meet enterprise standards. As we transition, the forthcoming section will
delve into a comparative analysis between Kubernetes and Red Hat OpenShift. This comparison will
illuminate the distinct features and benefits of each platform, helping you understand their unique
advantages in various operational environments. Let’s proceed to uncover the differences and similarities
that define Kubernetes and Red Hat OpenShift, setting the stage for informed decision making in
your container orchestration strategies.

A comparison of Kubernetes Red Hat OpenShift
Table 8.1 provides a high-level comparison between Kubernetes and OpenShift. While Kubernetes
offers a flexible and widely adopted container orchestration platform, OpenShift provides a more
integrated and security-focused enterprise solution with extensive support and built-in features for
developer productivity and operational efficiency.

Feature/Aspect Kubernetes OpenShift

Origin Open-source project by Google Red Hat’s enterprise
Kubernetes distribution

Installation Manual, requires setup of
networking, storage, etc.

Streamlined with automated setups
and configurations

Web UI Basic dashboard available Comprehensive and user-friendly
console with advanced features

Security Basic security features: additional
tools are often needed

Enhanced security with built-in
authentication and authorization,
SELinux integration

CI/CD integration Plugins and third-party
tools required

Built-in CI/CD tools such
as OpenShift Pipelines and
Source-to-Image (S2I)

Networking Pluggable Container Network
Interface (CNI)

Default SDN with additional
networking features

Storage Supports PersistentVolumes with
manual configuration

Simplified storage integration with
automatic provisioning

Developer tools Limited in-built tools Extensive tools including OpenShift
Do (odo), S2I, and DevSpaces

Monitoring
and logging

Basic with third-party integration
(e.g., Prometheus)

Integrated monitoring and
logging stack

Registry Requires external or
third-party registry

Integrated container image registry

GitOps with OpenShift240

Feature/Aspect Kubernetes OpenShift

Enterprise support Available through
third-party providers

Direct support from Red Hat

Community
and support

Large open-source community Strong open-source community with
enterprise support

Pricing Free, costs associated with cloud
providers or infrastructure

Subscription-based with various
plans for enterprise use

Table 8.1 – A Kubernetes and Red Hat OpenShift feature/aspect comparison

In concluding our comparison between Kubernetes and Red Hat OpenShift, we’ve uncovered the
distinct features, advantages, and considerations of each platform. This analysis equips you with
the knowledge to make informed decisions based on your specific operational needs and goals. As
we move forward, let’s apply this understanding to further enhance our deployment strategies and
operational efficiencies within the context of container orchestration and cloud-native development.

Summary
In this chapter, we embarked on an in-depth exploration of leveraging GitOps within the Red Hat
OpenShift environment, highlighting the integration of automation and configuration best practices
to enhance operational efficiency and security. We began by setting up a local OpenShift cluster using
CRC, providing a sandbox for readers to apply real-world applications of GitOps principles. This
practical approach demystified the process of deploying and managing containerized applications
using declarative configurations and automated workflows.

We delved into various best practices, from using trusted base images and setting appropriate resource
limits to implementing robust security measures such as TLS for inter-component communication.
Each practice was designed to fortify the deployment process, reduce vulnerabilities, and ensure
applications remain resilient and available. By comparing Kubernetes with Red Hat OpenShift, we
provided insights into how OpenShift extends Kubernetes capabilities, offering enhanced features
that cater to enterprise needs.

Throughout the chapter, the emphasis was placed on hands-on examples, ensuring that readers not
only understand theoretical concepts but also how to apply them effectively in their own OpenShift
environments. As we conclude, the knowledge and strategies discussed here pave the way for more
secure, efficient, and reliable application deployments, reflecting the evolving landscape of cloud-native
development and the increasing importance of GitOps methodologies.

In the next chapter, we will explore the integration of GitOps practices within Azure and AWS,
unveiling advanced strategies for cloud-native deployments.

9
GitOps for Azure and

AWS Deployments

In the evolving landscape of cloud computing, the adoption of GitOps practices stands out as a
transformative approach to streamlining the deployment and management of applications and
infrastructure. This chapter embarks on a detailed exploration of applying GitOps principles within
the robust ecosystems of Azure and Amazon Web Services (AWS), two of the world’s leading cloud
platforms. This chapter aims to unravel the complexities of leveraging cloud-native capabilities,
providing readers with a comprehensive understanding of how to harness the full potential of Azure
Kubernetes Service (AKS), Azure DevOps, Elastic Kubernetes Service (EKS), and AWS CodePipeline
in a GitOps workflow.

Through real-world case studies, expert insights, and practical guidance, we delve into the nuances
of setting up continuous integration/continuous deployment (CI/CD) pipelines, managing
configurations, and ensuring consistent, automated deployments across these platforms. By the end of
this chapter, readers will be equipped with the knowledge to implement efficient, secure, and scalable
GitOps workflows, marking a significant step forward in their cloud-native journey.

In this chapter, we’ll focus on these key areas:

• Cloud GitOps essentials – Azure and AWS

• Deployment on Azure and AWS with GitOps

• Integrating Azure and AWS in GitOps workflows

• GitOps applications in cloud environments

• GitOps strategies for Azure and AWS deployments for Kubernetes

GitOps for Azure and AWS Deployments242

Technical requirements
Before delving into the intricacies of implementing GitOps for Azure and AWS deployments, it’s
important to build upon the foundational knowledge established in the preceding chapters of this
book. The principles of GitOps, containerization technologies such as Docker, Kubernetes concepts,
and CI/CD principles discussed earlier provide a solid starting point for understanding the advanced
applications highlighted in this chapter. Additionally, access to Azure and AWS accounts and a basic
understanding of their services will be crucial for following along with practical exercises and case
studies. Familiarity with version control systems, especially Git, will not only enhance comprehension
but also facilitate the effective application of the GitOps practices detailed in our exploration of cloud-
native deployments across Azure and AWS.

The relevant code and resource files for this chapter can be found in the Chapter09 folder of our
dedicated GitHub repository: https://github.com/PacktPublishing/Implementing-
GitOps-with-Kubernetes.

Azure and AWS accounts

While this book delves into the intricacies of implementing GitOps within Azure and AWS ecosystems,
providing a comprehensive exploration of their respective tools and practices, a detailed, step-by-step
guide for creating Azure and AWS accounts falls beyond our scope. To embark on the practical journey
of applying the concepts and examples outlined in the upcoming sections, it is essential for readers
to have active Azure and AWS accounts. We encourage you to consult the official documentation
provided by Azure at https://azure.microsoft.com/en-us/, and AWS at https://
aws.amazon.com/, for the most current and detailed instructions on setting up your accounts.
These accounts are indispensable for deploying the examples and applying the GitOps practices
discussed, serving as the foundation upon which you can build and experiment with the cloud-native
capabilities of Azure and AWS.

In the forthcoming section, we will assume that readers possess an active and properly configured
Azure or AWS account, along with basic knowledge of the Azure CLI, AWS CLI, or their respective
web portals.

Cloud GitOps essentials – Azure and AWS
As the cloud computing landscape continues to evolve, the adoption of GitOps principles has become
a cornerstone for achieving operational excellence and automation in cloud-native deployments.
This chapter introduces the GitOps essentials for both Azure and AWS, showcasing how these leading
cloud platforms support the seamless integration of GitOps workflows to enhance deployment speed,
reliability, and scalability.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://azure.microsoft.com/en-us/
https://aws.amazon.com/
https://aws.amazon.com/

Cloud GitOps essentials – Azure and AWS 243

Cloud-native developments and deployments
Cloud-native development represents a transformative approach to building and deploying
applications that fully exploit the advantages of the cloud computing model. At its core, it involves
leveraging managed services, microservices architectures, containers, and declarative APIs to
create applications that are scalable, resilient, and easily updated. This paradigm shift encourages
organizations to move away from monolithic architectures, enabling faster development cycles,
enhanced scalability, and greater flexibility in responding to market demands. Cloud-native
technologies, including Kubernetes, Docker, and serverless functions, play pivotal roles in this
ecosystem, providing the tools necessary for developers to build applications that are not only
highly available and fault tolerant but also capable of thriving in the dynamic environment of the
cloud. By adopting cloud-native practices, businesses can accelerate their digital transformation
journeys, enhancing their ability to innovate and compete in an increasingly digital world.

Azure and AWS each offer unique tools and services – such as AKS, Azure DevOps, EKS, and
AWS CodePipeline – that empower teams to implement GitOps practices effectively. Through a
comprehensive exploration of these essentials, readers will gain insight into leveraging the cloud-native
capabilities of Azure and AWS to streamline their deployment processes, ensuring that infrastructure
and application management is as efficient and error free as possible. This unified approach provides
a solid foundation for understanding how GitOps can be optimally applied within the distinct but
complementary ecosystems of Azure and AWS.

Azure GitOps essentials

Azure, with its rich ecosystem and integration capabilities, offers fertile ground for implementing
GitOps principles, enhancing automation, consistency, and scalability in deployments. At the heart
of Azure’s GitOps capabilities lies the AKS, which simplifies the deployment, management, and
operations of Kubernetes, enabling a seamless GitOps workflow. Coupled with Azure DevOps – a
suite that provides a range of tools including Azure Repos for Git hosting and Azure Pipelines for
CI/CD – developers can establish a robust GitOps pipeline that ensures continuous integration and
deployment with minimal manual intervention. Leveraging these services, users can maintain a high
degree of control and visibility over their deployments, benefiting from the declarative nature of GitOps
to manage infrastructure and applications efficiently.

Azure DevOps

Azure DevOps represents a suite of development tools provided by Microsoft, designed to support
the complete software development life cycle. At its core, Azure DevOps facilitates CI/CD practices,
enabling teams to automate the build, test, and deployment phases of their applications. Specifically, in
the context of GitOps, Azure DevOps becomes a powerful ally, allowing teams to manage infrastructure
and application code in a Git repository, automatically apply changes to Kubernetes environments,
and maintain a consistent state across development, testing, and production environments.

GitOps for Azure and AWS Deployments244

For implementing Kubernetes GitOps deployment with Azure DevOps, the following base steps can
guide you through the process:

1. Set up a Git repository: Begin by setting up a Git repository within Azure Repos or any other
Git hosting service. This repository will hold your Kubernetes manifest files, representing the
desired state of your application and infrastructure in a declarative manner.

2. Create Azure Pipelines: Utilize Azure Pipelines to define your CI/CD workflows. For GitOps,
the CD pipeline plays a crucial role. It should be configured to trigger automatically upon
changes to the main branch of your repository, where your Kubernetes manifest files are stored.

3. Define environments: In Azure DevOps, define environments to represent your deployment
targets, such as development, staging, and production. These environments can be linked to
your Kubernetes clusters managed by AKS or any Kubernetes clusters.

4. Automate deployment with Helm or Kustomize: Use Helm charts or Kustomize for managing
complex Kubernetes applications. Azure Pipelines can be configured to use Helm or Kustomize
to package and deploy applications, adhering to the GitOps principle of declarative configuration.

5. Implement CD: The CD pipeline should be designed to automatically apply changes to your
Kubernetes environment using kubectl, Helm, or a GitOps tool such as Flux or Argo CD. This
step involves fetching the latest configuration from your Git repository and applying it to the
designated environment, ensuring that the actual state matches the desired state declared in Git.

6. Monitor and rollback: Finally, leverage Azure Monitor and other observability tools to keep
an eye on your deployments. In case of any issues, your GitOps workflow should support easy
rollbacks by simply reverting changes in your Git repository and re-running the pipeline to
restore the previous state.

Kubernetes deployment with Azure DevOps

In this section, we embark on a hands-on journey to deploy a Kubernetes cluster on Azure, leveraging
the powerful combination of Terraform, Azure Container Registry (ACR), and Azure DevOps
pipelines. We’ll start by creating a straightforward AKS cluster and an ACR, and then establish a
system-managed identity between them to facilitate secure interactions. The climax of our journey
involves orchestrating the deployment of this image to the AKS cluster using a meticulously crafted
Azure DevOps pipeline. This practical walkthrough is designed to illuminate the seamless integration
of these components, illustrating how they converge to streamline the deployment process within
a GitOps framework. Through this example, readers will gain a comprehensive understanding of
deploying applications to Kubernetes using Azure’s robust ecosystem. The following are the necessary
steps to successfully complete this example.

Cloud GitOps essentials – Azure and AWS 245

In a real-world scenario, executing the Terraform script would involve creating an Azure service
principal with the appropriate permissions to provision resources. However, for this example, we are
simplifying the process by using an Azure administrator account with full authorizations. It’s important
to note that this approach is not recommended for production environments due to security concerns.
Log in to Azure by typing the following command in a new terminal window:

$ az login

To initialize Terraform, we use the terraform init command. For this step, we will utilize the
main.tf and versions.tf Terraform files located in the iac/azure folder of the GitHub
repository accompanying this chapter.

Why Terraform?
Terraform is a preferred tool for infrastructure as code (IaC) because it uses a declarative
configuration language, which simplifies defining and managing complex environments by
specifying the desired end state of the infrastructure. It supports multiple cloud providers,
including AWS, Azure, and Google Cloud, enabling consistent IaC practices across different
platforms. Additionally, Terraform’s state management feature keeps track of the current
infrastructure status, allowing it to efficiently plan and apply changes while minimizing errors.
Its extensive module ecosystem and robust community support further enhance its capability
to automate and manage infrastructure at scale.

The main.tf file orchestrates the setup of essential Azure services for a Kubernetes-based
deployment. Initially, it establishes a resource group called aks-k8s-deployments-rg in the
switzerlandnorth region, serving as a container for all related Azure resources. Following this,
an ACR named aksgitops3003204acr is provisioned within the same resource group and region,
with the Basic SKU option and administrative access disabled for enhanced security. The core of the
deployment, an AKS cluster named aksgitopscluster, is then created, featuring a single default
node pool configured with minimal resources to ensure cost efficiency. The cluster is set up with a
system-assigned identity, streamlining the authentication process across Azure services.

Finally, the Terraform configuration secures the integration between the AKS cluster and the ACR by
assigning the necessary role permissions, enabling seamless container image pulls from the registry
to the Kubernetes environment. Feel free to modify the names of the resource group or ACR and the
region where the resources are deployed. In a terminal window, execute the following commands.
The entire process will take a few minutes to complete:

$ terraform init
$ terraform plan -out aksplan
$ terraform apply -auto-approve aksplan

GitOps for Azure and AWS Deployments246

Await the successful provisioning of resources, then integrate the kubectl configuration for
cluster management:

$ az aks get-credentials --resource-group aks-k8s-deployments-rg
--name aksgitopscluster

The following are the necessary steps to create a new Azure DevOps project and properly set up an
Azure DevOps pipeline:

1. Establish a new Azure DevOps project, as illustrated in Figure 9.1, within your existing Azure
account to manage the CI/CD pipeline and project artifacts, opting for a Private Azure DevOps
project setting. For more information on setting up Azure DevOps, please visit https://
learn.microsoft.com/en-us/azure/devops/user-guide/sign-up-invite-
teammates?view=azure-devops&tabs=microsoft-account. Assign a name to
the project, such as gitops-k8s-deployment, and optionally add a project description.
Select Private for Visibility, and then click the Create button.

Figure 9.1 – The Azure DevOps window for creating a new project

Cloud GitOps essentials – Azure and AWS 247

2. In the Where is your code? window, select Pick next to the GitHub option to choose the correct
GitHub repository you wish to associate with the Azure DevOps project you previously created.
You can directly use the GitHub repository associated with this chapter or select one that you
have created, as seen in Figure 9.2.

Figure 9.2 – Selecting a repository panel

3. At this stage, we’re prepared to configure the pipeline. In the configuration panel, select Deploy
to Azure Kubernetes Service as illustrated in Figure 9.3.

Figure 9.3 – Configure your pipeline section of the wizard

GitOps for Azure and AWS Deployments248

4. When prompted, as visible in Figure 9.4, select the Azure subscription where the AKS cluster
was previously configured and deployed using the Terraform script.

Figure 9.4 – Popup window for selecting the Azure subscription

5. In the Deploy to Azure Kubernetes Service window, enter the required information as shown in
Figure 9.5. Deploy the application into a new namespace, such as weather-app-namespace.

Figure 9.5 – Deploy to AKS settings window

Cloud GitOps essentials – Azure and AWS 249

6. Click the Validate and configure button to review the YAML pipeline. Before continuing, since
the Dockerfile is not present in the root of the directory, but in the src subdirectory, we need
to edit the last line of the following code:

variables:
Container registry service connection …
dockerfilePath: '**/Dockerfile'

We edit the preceding code this way:
dockerfilePath: '**/src/dockerfile'

7. Then, click the Save and run button, leave the default values as they are, and click the Save and
run button again. The pipeline will be triggered as illustrated in Figure 9.6.

Figure 9.6 – Example of a triggered Azure DevOps pipeline

8. Click on the Build stage to view more details, as illustrated in Figure 9.7. This time, there’s no
need to build the image locally and then push it to the registry, as everything is handled within
the Azure DevOps pipeline.

Figure 9.7 – Details of building and pushing an image to the container registry

GitOps for Azure and AWS Deployments250

If required, authorize permissions for the pipeline, as illustrated in Figure 9.8.

Figure 9.8 – Popup window to grant permissions for the current and subsequent runs of the pipeline

9. At this point, after a few seconds, the pipeline should complete successfully, as illustrated
in Figure 9.9. An email should be sent to your account notifying you of the pipeline’s
successful completion.

Figure 9.9 – Successful completion of the pipeline

10. To verify the deployment, you can utilize tools such as Visual Studio Code or execute the
following command in the terminal:

$ kubectl get pods --namespace weather-app-namespace

The output should be as follows:
NAME READY STATUS RESTARTS AGE
myweathera… 1/1 Running 0 7m50s

At this juncture, we can execute a port-forward command to display the app in the browser,
as illustrated in Figure 9.10.

Cloud GitOps essentials – Azure and AWS 251

Figure 9.10 – A screenshot of weather-app running as a container on AKS

11. Now, to explore the CI/CD capabilities of Azure DevOps, you could, for example, edit the
data.csv file, changing the value for the 2023-01-04 day from 4.0 to, say, 5.0 (see
Figure 9.11). This file can be edited directly in your GitHub repository or by cloning the
repository locally and using Git.

Figure 9.11 – The updated data.csv file used as a data source from our weather-app application

GitOps for Azure and AWS Deployments252

At this stage, the pipeline will be automatically triggered once more, as illustrated in Figure 9.12.

Figure 9.12 – New execution of the pipeline after pushing the updated data.csv file

12. By executing a new port-forward command targeting the newly deployed pod, we will
have the opportunity to visualize the updated chart (see Figure 9.13).

Figure 9.13 – The weather-app application after a new deployment,

triggered by pushing the updated data.csv file

13. To avoid incurring unnecessary costs, remember to destroy all Azure resources created for this
example by typing the following command (or using the Azure portal):

$ terraform destroy --auto-approve

Congratulations! You have successfully completed your Azure DevOps CI/CD pipeline with deployment
to AKS using an ACR instance. Now, it’s time to transition to the AWS ecosystem to explore how
things operate on that side.

Cloud GitOps essentials – Azure and AWS 253

AWS GitOps essentials

AWS embraces the GitOps model by offering a suite of services designed to facilitate the management
of cloud-native applications and infrastructure with high efficiency and reliability. The EKS stands out
as AWS’s managed Kubernetes service, compared to other major cloud providers’ offerings such as
Google Kubernetes Engine (GKE) from Google Cloud and AKS from Microsoft Azure. Each provides
similar functionalities but with unique features tailored to their respective ecosystems, optimizing the
deployment process and ensuring the automatic scaling and management of containerized applications.
Integrating EKS with AWS CodePipeline, a service that automates the build, test, and deploy phases
of your release process, enables a GitOps approach where the entire infrastructure is treated as code.
This integration empowers teams to implement CD practices, allowing for rapid and safe application
updates. AWS’s commitment to GitOps is evident in its tooling and services, which support immutable
infrastructure, automated deployments, and detailed monitoring, aligning with the GitOps principles
of declarative configuration and version control.

AWS CodePipepline

AWS CodePipeline (https://aws.amazon.com/codepipeline/) is a fully managed CI/CD
service that automates the build, test, and deployment phases of your release process. It allows you to
create pipelines that automate the steps required to release your software changes continuously. With
CodePipeline, you can define your release process as a series of stages, where each stage performs a
specific action, such as fetching source code from a version control system, building and testing your
application, and deploying it to your infrastructure.

One of the key features of AWS CodePipeline is its flexibility and integration with other AWS services.
You can easily integrate CodePipeline with services such as AWS CodeBuild for building your
application, AWS CodeDeploy for deploying it to EC2 instances or AWS Lambda functions, and
AWS Elastic Beanstalk for deploying and managing web applications.

CodePipeline also supports integration with third-party tools and services through custom actions,
allowing you to extend its capabilities to fit your specific requirements. Additionally, it provides
visibility into your release process through its web-based console, allowing you to monitor the progress
of your pipelines and troubleshoot any issues that arise. The following are the steps for implementing
Kubernetes GitOps deployment with AWS CodePipeline:

1. Set up AWS CodePipeline: Begin by setting up AWS CodePipeline, which orchestrates the
CI/CD workflow for your Kubernetes deployment.

2. Connect to the GitHub repository: In the CodePipeline configuration, connect to your GitHub
repository where your Kubernetes manifests and deployment scripts are stored.

3. Configure source stage: Define the source stage in the CodePipeline configuration, specifying
the GitHub repository and branch to pull the Kubernetes manifests from.

4. Add build stage: Create a build stage in the CodePipeline configuration to execute any necessary
build steps for your Kubernetes deployment, such as compiling code or packaging artifacts.

GitOps for Azure and AWS Deployments254

5. Integrate with EKS: Incorporate EKS into your CodePipeline workflow. This may involve
setting up connections or permissions between AWS services and CodePipeline.

6. Implement GitOps principles: Ensure that your CI/CD pipeline adheres to GitOps principles,
such as storing all configuration and deployment manifests in version control, automating
deployment processes, and using pull-based synchronization for cluster updates.

7. Define deployment strategy: Define the deployment strategy for your Kubernetes application,
specifying parameters such as rollout strategy, scaling options, and health checks.

8. Trigger deployments: Configure AWS CodePipeline to trigger deployments automatically whenever
changes are pushed to the GitHub repository, maintaining the CD of your Kubernetes application.

9. Monitor and debug: Implement monitoring and logging mechanisms to track the performance
and health of your Kubernetes deployments. Ensure that you have tools in place to debug and
troubleshoot any issues that may arise during deployment.

10. Iterate and improve: Continuously iterate on your CI/CD pipeline, incorporating feedback and
making improvements to enhance the efficiency, reliability, and security of your Kubernetes
deployments over time.

Wrapping up, AWS CodePipeline streamlines the release process, empowering teams to deliver
software changes more rapidly and reliably. By automating the deployment pipeline, CodePipeline
helps accelerate time to market and enhances overall productivity, enabling organizations to respond
swiftly to customer needs and market demands.

Kubernetes deployment with AWS CodePipeline

In this section, we embark on a hands-on journey to deploy a Kubernetes cluster on AWS, leveraging
Terraform, EKS, and AWS CodePipeline. We’ll start by provisioning an EKS cluster and an Amazon
Elastic Container Registry (ECR). The highlight of our journey involves orchestrating the deployment of
this image to the EKS cluster using AWS CodePipeline. As done for Azure in the Kubernetes deployment
with Azure DevOps section, this practical walkthrough demonstrates the seamless integration of these
components, showcasing how they streamline the deployment process within a GitOps framework.
Through this example, readers will gain a comprehensive understanding of deploying applications to
Kubernetes using AWS’s powerful services.

For the following walkthrough example, we assume that the reader has a valid AWS account and has
already installed and configured AWS CLI version 2. Please review the following AWS links for reference:

• AWS CLI user guide: https://docs.aws.amazon.com/cli/latest/userguide/
cli-chap-welcome.html

• AWS CLI examples: https://docs.aws.amazon.com/cli/latest/userguide/
welcome-examples.html

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/welcome-examples.html
https://docs.aws.amazon.com/cli/latest/userguide/welcome-examples.html

Cloud GitOps essentials – Azure and AWS 255

The following are the necessary steps to successfully complete this example:

1. Ensure that AWS CLI is correctly configured by typing the following command:

$ aws –version

The output should resemble the following:
aws-cli/2.15.35 Python/3.11.8 Windows/10 exe/AMD64 prompt/off

2. To initialize Terraform, we use the terraform init command. For this step, we will
utilize the main.tf Terraform files located in the iac/aws folder of the GitHub repository
accompanying this chapter.

This main.tf Terraform configuration file orchestrates the setup of essential AWS infrastructure
components for deploying a Kubernetes cluster and managing container images. It begins
by defining the AWS provider and version required for the deployment. Following this, it
creates an ECR repository named eksgitops3003204ecr to store Docker images with
mutable tag mutability. Next, the configuration provisions a virtual private cloud (VPC) and
associated subnets using the terraform-aws-modules/vpc/aws module. This VPC,
named eks-cluster-vpc, spans across two availability zones in the eu-central-1
AWS region. Subsequently, the configuration sets up an EKS cluster utilizing the terraform-
aws-modules/eks/aws module. The cluster, named eksgitopscluster, operates on
version 1.29 and allows public access to its endpoint. It’s integrated with the previously created
VPC and utilizes private subnets for enhanced security.

Additionally, the configuration establishes a managed node group within the EKS cluster,
configured with one instance of the t3.small type. This node group provides the computing
resources necessary for running containerized applications within the Kubernetes environment.
To facilitate seamless interaction between the EKS cluster and the ECR repository, an identity and
access management (IAM) policy named ecr-pull-policy is created. This policy grants
EKS nodes the permissions required to pull container images from the specified ECR repository.

Finally, the IAM policy is attached to the IAM role associated with the EKS cluster, ensuring that
the cluster nodes have the necessary permissions to retrieve container images for deployment.

IAM policy
An IAM policy is a document that defines permissions and is used to manage access to AWS
resources. IAM policies grant specific rights to users, groups, or roles, determining what actions
they can perform on which resources. These policies are made up of statements that include
components such as Effect (allow or deny), Action (the specific actions permitted or denied),
and Resource (the specific resources to which the actions apply). IAM policies help ensure
secure and granular access control within an AWS environment, enabling administrators to
enforce the principle of least privilege by giving entities only the permissions they need to
perform their tasks.

GitOps for Azure and AWS Deployments256

3. Type the following commands to start the cluster creation:

$ terraform init
$ terraform plan -out aksplan
$ terraform apply -auto-approve aksplan

The entire process will take nearly 10 minutes to complete. Figure 9.14 illustrates the EKS cluster
in the AWS console, while Figure 9.15 shows the created ECR registry.

Figure 9.14 – The EKS cluster after the execution of the Terraform script

Figure 9.15 – The ECR registry after the execution of the Terraform script

4. Integrate the kubectl configuration for cluster management:

$ aws eks --region eu-central-1 update-kubeconfig --name
eksgitopscluster

5. Type the following command to test the access:

$ kubectl cluster-info

The output should be as follows:
Kubernetes control plane is running at
https://54CE9D2FAC3008E8E5B3D4873E92E7B2.yl4.eu-central-1.eks.
amazonaws.com
CoreDNS is running at https://54CE9D2FAC3008E8E5B3D4873E92E7B2.
yl4.eu-central-1.eks.amazonaws.com/api/v1/namespaces/kube-
system/services/kube-dns:dns/proxy

Cloud GitOps essentials – Azure and AWS 257

If you encounter authentication issues or generic issues after merging the cluster management, you
need to add an access entry for the EKS cluster. This involves adding the following permissions to the
user configured for the AWS CLI, as specified at the beginning of this section:

1. In the AWS console, navigate to the Access tab of the EKS cluster (e.g., eksgitopscluster)
and click on the Create access entry button, as illustrated in Figure 9.16:

Figure 9.16 – The EKS cluster page and the Access tab for creating a new access entry

2. In the IAM Principal ARN field, you have to select the IAM ARN that has been used to configure
the AWS CLI and execute AWS CLI commands, as illustrated in Figure 9.17:

Figure 9.17 – The IAM principal ARN selection for AWS CLI configuration

3. Then, click the Next button at the bottom of the page, and for this example, add all the following
policy names (see Figure 9.18) with Cluster as the selected Access scope:

GitOps for Azure and AWS Deployments258

Figure 9.18 – The Access policies section for attaching permissions to the new IAM principal

4. Click the Next button and then Create. Now, you should be able to administer the cluster
using AWS CLI without any issues. For more information and details, please refer to the official
documentation: https://docs.aws.amazon.com/eks/latest/userguide/
access-entries.html#updating-access-entries.

5. Before proceeding with the creation of an instance of AWS CodePipeline, we first need to create
an IAM role named GitOpsCodeBuildRole. This role will allow the pipeline to build a new
image for our weather-app application whenever new code is committed to the repository,
push the image to the created ECR, and deploy it to EKS. In the AWS console, navigate to IAM
|Roles, and click on the Create role button, as illustrated in Figure 9.19.

Cloud GitOps essentials – Azure and AWS 259

Figure 9.19 – The Roles page in the AWS Management Console,

where you can begin creating a new IAM role

IAM role
An IAM role in AWS is a set of permissions that define what actions can be performed on
AWS resources. Roles are used to delegate access to users, applications, or services within
AWS, allowing them to interact securely with various AWS services. Roles are defined with
policies that specify the actions allowed or denied, and they are assumed by entities such as
AWS services, IAM users, or AWS resources. This approach ensures secure access control and
helps enforce the principle of least privilege, where users and services have only the permissions
necessary to perform their tasks.

6. In the Select trusted entity section, choose AWS service, and in the Use case panel, select
CodeBuild, as shown in Figure 9.20.

Figure 9.20 – The Trusted entity type and Use case section on the Create role page

GitOps for Azure and AWS Deployments260

7. On the Add permissions page, add the following permissions:

 � AmazonEC2ContainerRegistryFullAccess

 � AmazonS3FullAccess

 � AWSCodeBuildAdminAccess

 � AWSCodeCommitFullAccess

 � CloudWatchLogsFullAccess

Then, add the following inline policy:
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "eks:Describe*",
 "Resource": "*"
 }
]
}

Inline policy
An inline policy is a set of permissions that can be directly attached to an IAM user, group,
or role. Unlike managed policies, which are standalone entities, inline policies are embedded
directly within the resources they are intended to control. This allows for more granular control
and management of permissions at a more specific level. Inline policies are often used when
certain permissions need to be applied only to a specific user, group, or role, rather than being
shared across multiple entities.

Cloud GitOps essentials – Azure and AWS 261

Before reviewing and creating the new IAM role, it’s important to ensure the addition of
the specified trust relationship to control who can assume the role, enhancing security and
compliance. This setup prevents unauthorized access and ensures that only designated entities
can access certain AWS resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "codebuild.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

To complete the process, simply click the Create button. Now, we’re all set to create the AWS
CodePipeline instance.

8. Following a similar approach as done for Azure DevOps, refer to the Kubernetes deployment
with Azure DevOps section in this chapter; it’s time to automate the application deployment to
AWS EKS using AWS CodePipeline.

To set up the CodePipeline correctly, navigate to the AWS console, go to Services | CodePipeline
| Create pipeline, and configure the pipeline settings with the following values, as illustrated
in Figure 9.21:

 � Pipeline name: weather-app-pipeline

 � Pipeline type: V2

 � Execution mode: Queued

 � Service role: New service role

GitOps for Azure and AWS Deployments262

Then, click the Next button.

Figure 9.21 – Initial configurations for the new AWS CodePipeline

9. In Add source stage, select GitHub (Version 2) as Source provider, then click on
Connect to GitHub and follow the instructions to authenticate your GitHub connection. Once
the connection is established, choose the GitHub repository in the Repository name field. Set
the Default branch to main. For Output artifact format, select the CodePipeline default.
Finally, click the Next button.

Cloud GitOps essentials – Azure and AWS 263

Figure 9.22 – Connection with the GitHub repository source

10. In Add build stage, select AWS CodeBuild as the build provider (refer to Figure 9.23). Choose
the same region where EKS and ECR resources have been previously deployed, and then click
on Create project.

GitOps for Azure and AWS Deployments264

Figure 9.23 – The section of the Build panel related to selecting the build provider and region

11. In the Create build project window, set weather-app-build as the project name and keep
all other values as default, except for Service role where you need to select Existing service role
and enter the previously created role (see Figure 9.24 for more details): arn:aws:iam::[AWS_
ACCOUNT_ID]:role/GitOpsCodeBuildRole.

Figure 9.24 – The section of the Build panel related to the selection of service roles and roles

12. In the Build panel, select Insert build commands, then click on Switch to editor, and add the
content of the buildspec.yaml file. Then, click the Continue to CodePipeline button.
Click on the Add environment variable button and add two environment variables (refer to
Figure 9.25):

 � ECR_REPOSITORY_URI: [AWS_ACCOUNT_ID].dkr.ecr.eu-central-1.
amazonaws.com

 � IMAGE_AND_TAG: weather-app:latest

Cloud GitOps essentials – Azure and AWS 265

Figure 9.25 – The section of the Build panel related to adding environment variables

13. For Build type, select Single Build. Click the Next button. At the Add deploy stage step, click
on the Skip deploy stage button, and then on Next. Review the pipeline at the final stage and
click the Create pipeline button. At this point, the CodePipeline will be triggered and completed
successfully in one minute (see Figure 9.26).

Figure 9.26 – weather-app-pipeline immediately after its definition

14. At the end of the pipeline execution, we can verify that the Docker image of weather-app
has been correctly built and pushed to the ECR, as illustrated in Figure 9.27.

GitOps for Azure and AWS Deployments266

Figure 9.27 – The weather-app:latest image successfully pushed to the ECR

15. To verify that the deployment has been successfully completed, execute the following command:

$ kubectl get deployments

Here is the output:
NAME READY UP-TO-DATE AVAILABLE AGE
my-city-weather-app 1/1 1 1 64m

16. At this point, we can execute a port-forward command to display the app in the browser,
as illustrated in Figure 9.28.

Figure 9.28 – weather-app rendered in the browser after the deployment

GitOps applications in cloud environments 267

17. Attempt to edit the data source file as described in Step 11 of the Kubernetes deployment with
Azure DevOps section. After pushing the changes, weather-pipeline will be triggered
immediately, as illustrated in Figure 9.29. Perform a new port-forward command to view
the updated version of the chart.

Figure 9.29 – The pipeline is immediately triggered after pushing the updated data.csv file

To avoid incurring unnecessary costs, remember to delete all AWS resources created for this example
after you’ve finished by executing the appropriate commands or using the AWS Management Console.

Congratulations! At this stage, you’ve successfully completed the deployment of the weather application
on Azure using Azure DevOps and on AWS using CodePipeline. Now, let’s delve into GitOps applications
in cloud environments in the next section.

GitOps applications in cloud environments
The advent of GitOps has significantly revolutionized the way cloud environments are managed and
deployed, by embedding the principles of version control and collaboration into the operational
fabric of cloud-native applications. GitOps applications extend beyond mere deployment automation,
encapsulating the entire life cycle of cloud resources and services. This includes provisioning, scaling,
updating, and decommissioning, all governed through Git pull requests. The methodology fosters a
transparent, auditable, and easily reversible process, enhancing both the security and compliance of
cloud applications. Moreover, GitOps practices ensure that the desired state of the cloud environment
is declaratively defined and maintained, promoting consistency and reliability across different stages of
development and production. This systematic approach minimizes discrepancies between environments,
significantly reducing it works on my machine issues and streamlining the path to production.

Cross-cloud strategies

In today’s multi-cloud landscape, organizations often leverage the unique advantages of Azure, AWS,
and other cloud providers to optimize their operations and costs. Managing deployments across
such diverse environments can present challenges, particularly in maintaining consistency and
efficiency. GitOps offers a unified strategy for managing these deployments, facilitating cross-cloud
interoperability and configuration management. The following is a list of benefits of adopting GitOps
in a cross-cloud setup:

• Unified configuration management: By storing infrastructure definitions and configurations
as code in a Git repository, teams can use the same GitOps workflows to manage deployments
across Azure, AWS, and other clouds. This centralizes control and ensures consistency across
cloud environments.

GitOps for Azure and AWS Deployments268

• Interoperability and portability: Leveraging containerization and Kubernetes, applications
can be designed to run seamlessly across different clouds. GitOps practices, coupled with these
technologies, simplify the process of deploying and managing these applications, irrespective
of the underlying cloud platform.

• Automated synchronization: Tools such as Argo CD or Flux can be used to automatically
synchronize the desired state in the Git repository with the actual state in each cloud environment.
This ensures that all environments adhere to the same configurations and policies, facilitating
a smooth and consistent operational workflow across clouds.

• Environment parity: GitOps enables teams to replicate environments across different clouds
with high fidelity. This is particularly useful for testing, where an application deployed on
Azure can be tested under similar conditions on AWS, ensuring that the application behaves
consistently across platforms.

• Secrets management: Managing secrets and sensitive information can be challenging in a
cross-cloud setup. GitOps workflows can integrate with cloud-specific secrets management
services such as Azure Key Vault or AWS Secrets Manager, allowing secure handling of secrets
while maintaining the flexibility of cross-cloud deployments.

Adopting a GitOps approach for cross-cloud strategies not only simplifies the complexity inherent
in multi-cloud environments but also enhances operational efficiency, security, and compliance.
By treating infrastructure and application configurations as code, teams gain the agility to adapt to
changes swiftly, ensuring their deployments remain aligned with organizational goals and industry
best practices. In the next section, we will introduce which GitOps strategies should be adopted for
Kubernetes deployments on Azure and AWS.

GitOps strategies for Azure and AWS deployments for
Kubernetes
In the realm of Kubernetes deployments, GitOps strategies offer a paradigm shift towards more
efficient, transparent, and reliable operations. By leveraging GitOps principles, organizations can
automate deployment processes, ensure consistency across environments, and significantly enhance
their operational workflows. The following are insights into GitOps strategies tailored for Kubernetes
deployments on Azure and AWS.

GitOps strategies for Azure and AWS deployments for Kubernetes 269

Azure GitOps strategies

Adopting GitOps strategies for AKS entails a detailed approach to integrating source control, CI/
CD pipelines, and configuration management to enhance deployment processes. A pivotal strategy
involves the deployment of IaC using tools such as ARM templates or Terraform, which are stored in
Git repositories. This approach enables the declarative management of AKS configurations. Chapters
10 and 11 will provide comprehensive examples of automating IaC with Terraform on Azure. These
automations facilitate automated and repeatable deployments, thereby improving the stability and
scalability of applications.

The use of Azure Policy in conjunction with GitOps further enforces compliance and governance
across Kubernetes clusters, ensuring that deployments adhere to organizational and regulatory
standards. Integrating Azure Monitor with GitOps workflows enables teams to implement observability
as a core component of their operations, allowing for proactive monitoring and troubleshooting of
AKS deployments.

AWS GitOps strategies

AWS offers a robust ecosystem for implementing GitOps with EKS. The foundation of AWS GitOps
strategies lies in leveraging Amazon ECR for the Docker container registry, AWS CodeCommit for
source control, and AWS CodePipeline for continuous integration and deployment. Similar to Azure,
AWS advocates for the use of IaC, with AWS CloudFormation or Terraform as preferred tools, to
manage EKS cluster configurations and resources in a declarative manner.

An effective GitOps strategy on AWS encompasses the integration of AWS CodeBuild and AWS
CodeDeploy within the CI/CD pipeline, automating the build, test, and deployment phases directly
from Git repositories. Moreover, the AWS App Mesh service can be integrated into GitOps workflows
to manage microservices more effectively, providing end-to-end visibility and network traffic control
across applications.

For both Azure and AWS, implementing GitOps for Kubernetes deployments revolves around four
key principles: version control, automated deployments, merge/pull requests for change management,
and observability. By adhering to these principles, organizations can achieve automated, predictable,
and secure application deployments at scale. Utilizing GitOps not only simplifies Kubernetes cluster
management but also aligns operational practices with development workflows, fostering a culture
of collaboration and continuous improvement.

GitOps for Azure and AWS Deployments270

Summary
By now, we have gained a thorough understanding of how GitOps can be effectively implemented
within the Azure and AWS cloud environments. The chapter covered the necessary tools and processes,
such as AKS, Azure DevOps, AWS EKS, and AWS CodePipeline, to establish robust CI/CD pipelines
and manage deployments seamlessly. With practical examples and expert advice, this chapter ensured
that readers can apply these concepts to achieve more automated, consistent, and secure cloud-native
deployments. Emphasizing the importance of a solid foundation in Git, Docker, and Kubernetes, the
chapter prepared readers to embrace the full potential of GitOps in their cloud computing ventures.
In the next chapter, we will explore the integration of GitOps with Terraform and Flux, focusing on
infrastructure. We’ll cover the essential steps to align infrastructure as code with real-time operations,
using Terraform for provisioning and Flux for CD. The discussion will also highlight best practices
and common challenges in this process.

10
GitOps for Infrastructure

Automation – Terraform
and Flux CD

In this chapter, we explore the powerful synergy between Terraform and Flux CD, two pivotal tools that
epitomize the principles of GitOps and Infrastructure as Code (IaC). As cloud architectures become
increasingly complex and dynamic, the need for sophisticated, automated tooling to manage these
environments has become critical. Terraform allows users to define and provision cloud infrastructure
using a high-level configuration language, creating a blueprint of resources that can be versioned and
reused. Complementing this, Flux CD automates the deployment of applications and infrastructure
changes by continuously syncing them from Git repositories to Kubernetes clusters. This integration
not only simplifies the management of cloud resources but also ensures consistency and reliability
across various stages of the deployment pipeline. Through detailed discussions, practical examples,
and expert insights, this chapter will equip you with the knowledge to harness the combined power
of Terraform and Flux CD, enabling you to automate your infrastructure efficiently and predictably
in a cloud-native world.

In this chapter, we will delve into the following key areas:

• Introducing infrastructure automation with Terraform and Flux CD

• Setting up Terraform in a GitOps workflow

• Exploring Flux CD – enabling continuous deployment (CD) in Kubernetes

• Combining Terraform and Flux CD for enhanced automation

• Version control and automation with Terraform and Flux CD

• Multi-environment management with Terraform and Flux CD

GitOps for Infrastructure Automation – Terraform and Flux CD272

Technical requirements
Before diving into the integration of Terraform and Flux CD for GitOps workflows, it is essential to
have a firm grasp of the foundational concepts discussed in earlier chapters of this book. Understanding
the fundamentals of IaC, key Kubernetes concepts, and continuous integration (CI)/CD principles
will significantly enhance your comprehension of the material in this chapter. Practical familiarity
with Terraform and initial setup experience with Kubernetes clusters are indispensable for applying
the techniques covered. Access to a version control system (VCS), particularly Git, is critical as it
forms the backbone of the GitOps methodology. This chapter assumes you have these prerequisites
in place, enabling you to fully engage with the advanced strategies of using Terraform and Flux CD
for efficient and scalable infrastructure automation. Before diving into deployment examples, it’s
essential that you have at least a local Kubernetes cluster running. For more information about the
different alternatives and OS bases, refer to the Local cluster setup section in Chapter 2. The relevant
code and resource files for this chapter can be found in the Chapter10 folder of our dedicated
GitHub repository: https://github.com/PacktPublishing/Implementing-GitOps-
with-Kubernetes.

Introducing infrastructure automation with Terraform and
Flux CD
In today’s rapidly evolving cloud computing landscape, the demand for agility, scalability, and reliability
in managing infrastructure is paramount. Traditional manual approaches are no longer sufficient for
modern applications. Enter IaC and GitOps, reshaping infrastructure management in cloud-native
environments. Manual work remains crucial for platform engineers, such as understanding cloud
resources to write effective Terraform scripts, and is often the first step before updating the Terraform
Git repository. Leverage the GitOps framework to address cloud-native delivery challenges such as
preventing configuration drifts and ensuring secure, error-free deployments. Implementing GitOps
on Kubernetes introduces challenges, including managing complex configurations and maintaining
synchronization between the Git repository and clusters. IaC is a methodology that treats infrastructure
provisioning, configuration, and management as code. In essence, it enables developers and operations
teams to define infrastructure resources—such as virtual machines (VMs), networks, and storage—
using declarative or imperative code. We have already explored the concept of IaC in the previous
chapter, where we utilized Terraform scripts to provision necessary resources in Azure and AWS.

This code is version-controlled, allowing for reproducible, consistent, and automated deployments.
By codifying infrastructure configurations, IaC streamlines the deployment process, reduces human
error, and enhances collaboration between development and operations teams.

GitOps, on the other hand, extends the principles of IaC to the realm of continuous delivery and
deployment. Changes to the infrastructure are made via Git commits, enabling versioning, auditability,
and collaboration. GitOps promotes a declarative approach to infrastructure management, where
desired state configurations stored in Git repositories are automatically reconciled with the actual state
of the infrastructure. This reconciliation is typically facilitated by specialized tools such as Flux CD.

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes

Introducing infrastructure automation with Terraform and Flux CD 273

Building on the foundational principles of IaC and GitOps introduced earlier, let’s consider a practical
example, as shown in Figure 10.1, of how companies can leverage Terraform and Flux CD for efficient
infrastructure management.

Imagine a technology company that needs to rapidly scale its operations across multiple cloud
environments while maintaining strict compliance and security standards. By using Terraform, the
company can codify its infrastructure requirements into version-controlled configurations, which
allows for quick deployment and easy replication of environments across AWS, Azure, or Google
Cloud. With Flux CD integrated into this setup, any changes to the Terraform configurations in the
Git repository automatically trigger updates within the Kubernetes clusters. This seamless integration
ensures that the infrastructure evolves consistently with the application code, reducing discrepancies
and potential errors. The result is a robust, scalable, and compliant infrastructure that can adapt swiftly
to the changing needs of the business, all while minimizing manual oversight and intervention:

Figure 10.1 – Example of a company leveraging Terraform and

Flux CD for efficient infrastructure management

GitOps for Infrastructure Automation – Terraform and Flux CD274

In the context of modern cloud environments, where agility and scalability are imperative, the adoption
of IaC and GitOps offers numerous benefits. Firstly, it enables organizations to achieve infrastructure
automation, allowing for rapid provisioning, scaling, and modification of resources. Secondly, it
enhances reproducibility and consistency across environments, mitigating the risk of configuration drift
and ensuring reliability. Thirdly, it fosters collaboration and visibility, as infrastructure configurations
are stored and version-controlled in accessible Git repositories. Finally, it promotes resilience and
observability, with automated reconciliation mechanisms ensuring that the infrastructure remains
in the desired state. We will delve deeper into the topics of IaC and GitOps in the upcoming sections
of this chapter, using practical examples.

Now, it’s time to begin configuring our environment.

Setting up Terraform in a GitOps workflow
Having established the foundational concepts of IaC and GitOps, we now understand how the integration
of Terraform and Flux CD can transform infrastructure management. With this robust groundwork
in place, we will guide you through configuring Terraform to work seamlessly with Flux CD, setting
the stage for a cohesive and automated infrastructure deployment process that aligns with modern
cloud-native practices. Terraform was introduced and briefly discussed in Chapter 4 and further
explored in the context of Kubernetes deployments with Azure DevOps and AWS CodePipeline in
Chapter 9. For the remainder of this chapter, we will assume that the reader has a solid understanding
of Terraform and that it is already properly set up locally. For more information on what Terraform is
and how to install it, please visit the following link: https://developer.hashicorp.com/
terraform/tutorials/aws-get-started/install-cli. To check that Terraform is
correctly installed, in a new terminal, type the following command:

$ terraform version

The output of the preceding command should be similar to this:

Terraform v1.7.5

In our example of setting up Terraform within a GitOps workflow, we’ll use Flux to monitor changes
in a Git repository containing Terraform scripts. Flux will then apply these changes to manage Azure
cloud resources, specifically targeting a designated resource group, a virtual network, and a subnet.

To successfully implement this setup, you must meet the following prerequisites:

• A functional Kubernetes cluster: For this tutorial, we’ll use minikube installed locally.
Alternatively, you could choose a managed cluster environment such as Azure Kubernetes
Service (AKS) or Amazon Elastic Kubernetes Service (EKS).

• Helm and kubectl: Ensure both tools are installed and configured correctly.

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

Setting up Terraform in a GitOps workflow 275

• GitHub account: While this example uses GitHub, Flux bootstrap supports other repositories
as well. For additional details, refer to the Flux documentation at https://fluxcd.io/
flux/installation/#bootstrap-providers.

• GitHub personal access token (PAT): This is necessary for private repositories or for operations
that require authentication. More information about PATs is available at https://docs.
github.com/en/authentication/keeping-your-account-and-data-
secure/managing-your-personal-access-tokens.

• An Azure account: You may also use an Azure account, based on your preference (please
note that the examples in this and the upcoming sections are specifically designed for Azure).

Before delving deeper into the setup of the workflow, the next section will discuss what Tofu Controller
is and why it is the engine and core of the reconciliation process.

Tofu Controller (formerly Weave TF-Controller)

Tofu Controller (refer to https://github.com/flux-iac/tofu-controller), formerly
known as Weave TF-Controller, serves as a pivotal element within the Flux ecosystem, enabling the
reconciliation of OpenTofu and Terraform resources in a GitOps manner.

OpenTofu
OpenTofu, formerly known as OpenTF, is an open source, community-driven fork of Terraform
managed by the Linux Foundation. Designed to enhance the management of IaC within
cloud-native environments, OpenTofu seamlessly integrates with existing GitOps workflows,
enabling users to declaratively manage their infrastructure using tools such as Terraform.
Both OpenTofu and Terraform use declarative HashiCorp Configuration Language (HCL)
syntax for provisioning infrastructure but differ in their licensing: Terraform now operates
under a Business Source License (BSL), while OpenTofu is released under the open source
Mozilla Public License (MPL). OpenTofu’s primary goal is to bridge the gap between complex
infrastructure setups and the scalable, automated management capabilities required by modern
cloud environments. By leveraging OpenTofu, organizations can efficiently apply GitOps
principles to their infrastructure, ensuring consistency, reliability, and swift deployment of
cloud resources.

With Tofu Controller, organizations can adopt GitOps practices for their infrastructure at a pace
that suits their operational needs and readiness—meaning that there is no requirement to convert all
resources to GitOps immediately.

Flexibility and pace emphasizing the at-your-own-pace approach, Tofu Controller allows for incremental
adoption of GitOps. This flexibility is crucial for organizations that may want to gradually shift their
operations without the need for a full-scale immediate transformation. It enables teams to manage
changes and adaptations more comfortably, ensuring that each step toward GitOps can be thoroughly
planned and implemented.

https://fluxcd.io/flux/installation/#bootstrap-providers
https://fluxcd.io/flux/installation/#bootstrap-providers
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

GitOps for Infrastructure Automation – Terraform and Flux CD276

Tofu Controller supports various GitOps models, each catering to different needs and stages of
infrastructure management:

• GitOps Automation Model: This model provides a comprehensive approach to GitOps,
encompassing everything from provisioning to enforcement. For instance, it could manage the
entire lifecycle of an AKS/EKS cluster via GitOps, automating numerous underlying processes.

• Hybrid GitOps Automation Model: Ideal for environments with pre-existing resources, this
model allows selective GitOps adoption. For example, if an organization already has an AKS/
EKS cluster, it can choose GitOps if only certain components such as the node group or security
group integrate new capabilities while maintaining existing configurations.

• State Enforcement Model: Ensures that the current infrastructure state matches the Terraform
state file (TFSTATE), using GitOps principles to enforce the desired state without making
additional changes and correcting any deviations to maintain consistency and reliability.

• Drift Detection Model: Monitors for configuration drifts between the actual state and
the Terraform state file, detecting changes not reflected in the TFSTATE file and allowing
organizations to proactively address and manage these changes.

For the current example and for the upcoming sections, we will utilize the GitOps Automation model
previously mentioned.

Getting started with the setup

Now that we have introduced the main topics and outlined the necessary requirements, we have
reached the hands-on part of the workflow setup. To complete the first part of this setup, we need to
complete the following numbered steps:

1. Create a dedicated minikube cluster for Flux: To create a minikube cluster dedicated to
Flux setup, in a new terminal, type the following command:

$ minikube start --profile flux-cluster

After a few minutes, the output should be like the following:
😄 [flux-cluster] minikube v1.33.0 on Ubuntu 22.04 (amd64)
✨ Automatically selected the docker driver
📌 Using Docker driver with root privileges
👍 Starting "flux-cluster" primary control-plane node in "flux-
cluster" cluster
…
🌟 Enabled addons: storage-provisioner, default-storageclass
🏄 Done! kubectl is now configured to use "flux-cluster"
cluster and "default" namespace by default

This indicates that your cluster is ready to be used.

Setting up Terraform in a GitOps workflow 277

2. Install the Flux CLI:

I. To set up the Flux CLI, type the following command:

$ curl -s https://fluxcd.io/install.sh | sudo bash

For more information or troubleshooting, please refer to the official Flux documentation
at https://fluxcd.io/flux/installation/.

II. To verify that the Flux CLI is correctly installed, type the following command:

$ flux –version

The output of the preceding command should look like this:
flux version 2.2.3

3. Create a GitHub repository: For this walkthrough, I’ve created a GitHub repository named
gitops-terraform-workflow, but feel free to create a repository according to your
preferences. We will use a private repository for this setup. To create a GitHub account, please
refer to the GitHub account section in Chapter 3 of this book. After creating the GitHub
repository, clone it locally to your laptop. For the Git commands, please refer to the Basics of
Git section in Chapter 3 of this book.

4. Flux bootstrap for GitHub:

I. The flux bootstrap GitHub command installs Flux controllers on a Kubernetes
cluster, enabling synchronization with a GitHub repository. This setup involves committing
Flux manifests to the repository and configuring Flux for self-updates from Git. Once
executed, all operations on the cluster, including Flux updates, can be managed via git
push, removing the need for direct cluster interaction. To interact with the GitHub API,
the command requires a GitHub PAT with administrative permissions, which can be set
as an environment variable:

$ export GITHUB_TOKEN=[GITHUB_PAT_TOKEN]

II. Now, you can run the bootstrap for a repository on your personal GitHub account by
entering the following command:

 flux bootstrap github \
 --token-auth \
 --owner=[GITHUB_ACCOUNT] \
 --repository=gitops-terraform-workflow \
 --branch=main \
 --path=clusters/local \
 --personal

https://fluxcd.io/flux/installation/

GitOps for Infrastructure Automation – Terraform and Flux CD278

The execution of the command should take a few minutes, and a successful output should look
like the following:

► connecting to github.com
► cloning branch "main" from Git repository "https://github.
com/pietrolibro/gitops-terraform-workflow.git"
…
► confirming components are healthy
✔ helm-controller: deployment ready
✔ kustomize-controller: deployment ready
✔ notification-controller: deployment ready
✔ source-controller: deployment ready
✔ all components are healthy

III. By running the following kubectl command, you should notice that a flux-system
namespace has been created:

$ kubectl get namespaces
NAME STATUS AGE
default Active 26m
flux-system Active 3m30s
kube-node-lease Active 26m
kube-public Active 26m
kube-system Active 26m

5. Install the TF-Controller: Now, we are ready to install the TF-Controller previously mentioned:

I. Enter the following command:

$ kubectl apply -f https://raw.githubusercontent.com/flux-iac/
tofu-controller/main/docs/release.yaml

II. Now, we are ready to install the previously mentioned Tofu Controller. Enter the
following command:

helmrepository.source.toolkit.fluxcd.io/tf-controller created
helmrelease.helm.toolkit.fluxcd.io/tf-controller created

6. Create an Azure service principal (SP): To provision Azure resources into a specific Azure
subscription, we need to create an SP with the Contributor role. To do this, type the
following commands:

subscriptionId="$(az account list --query "[?name=='AZURE_
SUBSCRIPTION_NAME'].id" --output tsv)"
az account set --subscription=$subscriptionId
az ad sp create-for-rbac --role="Contributor" --scopes="/
subscriptions/$subscriptionId" --name gitops-terraform-sp

Setting up Terraform in a GitOps workflow 279

The output contains sensitive credentials that you must protect. Ensure that you do not include
these credentials in your code or check them into your source control. For more information
on managing Azure SPs, visit https://aka.ms/azadsp-cli:

{
 "appId": "application-id",
 "displayName": "gitops-terraform-sp",
 "password": "generated-password",
 "tenant": "tenant-uid"
}

The values correspond to the Terraform variables as follows: appId serves as the client_id
variable, password is used as the client_secret variable, and tenant is the tenant_id
variable as defined previously.

7. Define Kubernetes Secrets:

I. We are running Terraform in a Kubernetes cluster using Flux to automate Terraform
operations, so we need to use Kubernetes Secrets to store Azure credentials and the PAT.
These secrets are then mounted into your Pod where Terraform executes. To define a
secret for the GitHub repository, please refer to the github-repository-secret.
yaml file located in the definitions folder of the chapter’s repository. The content of the
file is as follows:

apiVersion: v1
kind: Secret
metadata:
 name: github-repository-secret
 namespace: flux-system
type: Opaque
data:
 username: <github_accountname-base64>
 password: <github_pat-base64>

II. The username and password need to be base64 encoded. To encode these using the
command line, you can use the following command: echo -n 'your-string'
| base64. After encoding, apply the secret using kubectl in the usual manner:

$ kubectl apply -f github-repository-secret.yaml

III. Now, we need to create a Kubernetes secret for the Azure credentials of the SP we
previously created. Use the following command to do so:

$ kubectl create secret generic azure-creds \
 --from-literal=ARM_SUBSCRIPTION_ID='SP_SUB_ID' \
 --from-literal=ARM_TENANT_ID='SP_TENANT_ID' \
 --from-literal=ARM_CLIENT_ID='SP_APPID' \

https://aka.ms/azadsp-cli

GitOps for Infrastructure Automation – Terraform and Flux CD280

 --from-literal=ARM_CLIENT_SECRET='SP_PASSWORD' \
 --namespace flux-system

IV. To verify the creation of the secret, use the following command:

$ kubectl get secrets -n flux-system
NAME TYPE DATA AGE
azure-creds Opaque 4 16s
flux-system Opaque 2 34m
github-repository-secret Opaque 2 25s
…

Kubernetes Secret
A Kubernetes Secret is a resource used in Kubernetes to hold a small amount of sensitive data
such as passwords, tokens, or keys. This data is stored in base64-encoded format and can be
used by pods to handle operations that require confidentiality and security, helping to prevent
sensitive information from being exposed in your application code or logs. The term opaque
in the context of Kubernetes Secrets refers to the default type of Secret. It is used when the
specific type of Secret (such as a service account token or Docker configuration) doesn’t need
to be indicated. Essentially, opaque indicates that the content of the Secret is arbitrary and not
structured to represent any specific type of confidential data.

8. Now, we need to link the GitHub repository with the GitHub repository secret using the
github-repository-definition.yaml file located in the definitions folder (the
flux-gitops-definitions folder defined in the repository accompanying this chapter).
Apply it using the usual command:

$ kubectl apply -f github-repository-definition.yaml
gitrepository.source.toolkit.fluxcd.io/gitops-terraform-
repository created

9. Docker image for the TF-Controller: Now, we need to create a custom Docker image to run
the TF-Controller. The Dockerfile definition is contained in the Docker directory. For Docker
commands, please refer to Publishing the image to a container registry section in Chapter 2. To
build a custom Docker image, use the following command:

$ docker build -f ./Docker/dockerfile -t pietrolibro/gitops-
terraform:tf_az_cli_1_1 .

10. Then, you need to publish it in a repository reachable from your Kubernetes cluster. To push
the command, after logging in to Docker, use the following command:

$ docker push pietrolibro/gitops-terraform:tf_az_cli_1_1

Exploring Flux CD – enabling CD in Kubernetes 281

11. Create a Terraform script: Please refer to the Terraform script named main.tf in the iac/
azure/vnet subfolder of the repository accompanying this chapter. The Terraform script
provisions a set of network resources in Microsoft Azure. It configures the Azure provider
and defines a resource group named gitops-terraform-rg in the Switzerland North
region, serving as a container for related Azure resources. The script also establishes a virtual
network called gitops-terraform-vnet within this resource group, with an address
space of 10.0.0.0/16. Additionally, it creates a default subnet within this virtual network,
allocated with an address range of 10.0.0.0/24. This setup structures the Azure cloud
infrastructure effectively, facilitating the management and scalability of network components
within the specified region.

At this point, we can commit and push the code to the GitHub repository, concluding the first part
of our journey of setting up Terraform within our GitOps workflow. The next stop on our journey,
which will be described in the upcoming sections, focuses on enabling CD in Kubernetes with Flux.

Exploring Flux CD – enabling CD in Kubernetes
Flux CD automates the application of configurations and updates to a Kubernetes cluster based on
changes pushed to a Git repository. This approach not only ensures consistency across environments
but also enhances security and auditability by maintaining a clear, version-controlled history of all
deployments. Flux continuously monitors a designated Git repository for changes to Kubernetes
manifests, Helm charts, or configuration files. When a change is detected, Flux automatically applies
these updates to the corresponding Kubernetes cluster. This automation is comprehensive, extending
not only to applications but also to the Kubernetes infrastructure itself, enabling entire environments
to be managed as code.

Key features of Flux CD include the following:

• Automated synchronization: Flux regularly checks the Git repository for changes and
synchronizes the state of the cluster accordingly

• Immutable deployments: By treating infrastructure as immutable, Flux discourages manual
interventions and promotes reproducibility

• Security and compliance: Changes are pulled from Git, ensuring that only approved changes
are deployed, thereby enhancing security and compliance

It’s time to return to our journey, which we paused at the end of the previous section. Now, we need
to configure the Flux instance to track its respective directory or branch in the Git repository. This
is where the beauty of the Terraform Controller comes into play—it does all the hard work for you.

GitOps for Infrastructure Automation – Terraform and Flux CD282

We need to create a YAML file (refer to the azvnet-gitops-automation.yaml file defined
in the repository for this chapter) like so:

apiVersion: infra.contrib.fluxcd.io/v1alpha2
kind: Terraform
metadata:
 name: gitops-terraform-automation
 namespace: flux-system
spec:
 interval: 1m
 approvePlan: auto
 destroyResourcesOnDeletion: true
 path: ./iac/azure/vnet
 sourceRef:
…
 runnerPodTemplate:
 spec:
 env:
 - name: ARM_SUBSCRIPTION_ID
 valueFrom:
 secretKeyRef:
 name: azure-creds
 key: ARM_SUBSCRIPTION_ID
 …

This YAML file defines a Terraform resource for use within the Flux CD framework, specifically
designed to manage IaC deployments automatically. The configuration details the API version and
specifies that the resource type is Terraform, indicating its role in managing and applying Terraform
configurations through Flux.

The resource is named gitops-terraform-automation and is located within the flux-
system namespace, which is typically designated for Flux CD operations. The specifications include
an interval setting of 1 minute, indicating how frequently Flux checks the Git repository for changes in
the designated directory. It is configured to automatically approve and apply changes (approvePlan:
auto) and to destroy all managed resources if this Terraform configuration is deleted from Kubernetes
(destroyResourcesOnDeletion: true). The ./iac/azure/vnet path specifies where
in the Git repository the Terraform configurations are located, which Flux will monitor.

The sourceRef instance points to a Git repository named flux-system, identifying the specific
repository Flux should monitor. This setup allows Flux to automatically manage updates and maintain
the environment as specified in the repository.

Exploring Flux CD – enabling CD in Kubernetes 283

The runnerPodTemplate section configures the environment variables for the pod that executes
the Terraform commands, securing access to Azure services. Variables such as ARM_SUBSCRIPTION_
ID, ARM_CLIENT_ID, ARM_CLIENT_SECRET, and ARM_TENANT_ID are essential for Azure
interactions and are pulled securely from a Kubernetes secret named azure-creds. This ensures
that sensitive credentials are managed securely and only made available to the necessary processes.

By leveraging this configuration, Flux CD automates the deployment and management of Azure
virtual networks defined in the Terraform configurations at the specified path in the repository. The
automation encompasses monitoring for changes, applying updates, and ensuring the environment
remains consistent with the declared state in the repository. This setup epitomizes the principles of
GitOps by using Git as a single source of truth (SSOT) and automating the reconciliation process
between the desired state defined in Git and the actual state of the infrastructure in Azure.

To make the magic happen and bring the configuration to life, we need to apply it using kubectl:

$ kubectl apply -f ./definitions/azvnet-gitops-automation.yaml
terraform.infra.contrib.fluxcd.io/gitops-terraform-automation created

To monitor and verify the reconciliation process initiated by Flux CD, you can use the kubectl
command to query the status of resources managed by Flux. Here’s how to check the reconciliation process:

$ kubectl get terraforms.infra.contrib.fluxcd.io -n flux-system -w

This command displays the current status of the Terraform configuration:

NAME READY STATUS AGE
gitops-ter… Unknown Reconciliation in progress 9s
gitops-ter… Unknown Initializing 15s
gitops-ter… Unknown Terraform Planning 22s
gitops-ter… Unknown Plan generated 30s
gitops-ter… Unknown Applying 30s
gitops-ter… Unknown Applying 30s
gitops-ter… Unknown Applied successfully: main@
sha1:2eeaefba687fbd3d4caea404fc332ee7c5d8b144 43s
gitops-ter… True Applied successfully: main@
sha1:2eeaefba687fbd3d4caea404fc332ee7c5d8b144 44s

As indicated by the output of the previous command, the Terraform script has been successfully applied
at a certain point. For further confirmation, we can open the Azure portal and visually inspect the
provisioned infrastructure, as illustrated in Figure 10.2:

GitOps for Infrastructure Automation – Terraform and Flux CD284

Figure 10.2 – Azure resources provisioned by Terraform and GitOps

Fantastic work! You have successfully integrated IaC using Terraform along with GitOps principles
through Flux CD. By adopting this approach, you have laid a robust foundation for managing your
cloud resources in a way that promotes consistency, reduces errors, and streamlines operations.

Combining Terraform and Flux CD for enhanced
automation
Combining Terraform and Flux CD for enhanced automation offers significant advantages in managing
cloud infrastructure efficiently and resiliently. Here’s how this integration can be advantageous in
various practical scenarios.

Combining Terraform and Flux CD for enhanced automation 285

Providing new infrastructure by updating Terraform files

One of the standout benefits of integrating Terraform with Flux CD is the simplicity with which
new infrastructure components can be added. For example, suppose you need to add a new subnet
to an existing Azure virtual network. By merely updating the Terraform file to include the new
subnet definition and committing this change to your repository, Flux CD automatically detects the
update and applies it. This seamless process eliminates the need for manual intervention in the cloud
environment, thereby reducing the potential for human error and accelerating deployment times.
Automation ensures that infrastructure adjustments, such as scaling out to accommodate growth,
are handled promptly and accurately.

We can immediately test this aspect by updating the main.tf file presented in step 8 of the Setting
up Terraform in a GitOps workflow section. Append the following code block to the end of the file:

resource "azurerm_subnet" "azure_bastion_subnet" {
 name = «AzureBastionSubnet"
 resource_group_name = azurerm_resource_group.gitops_terraform_
rg.name
 virtual_network_name = azurerm_virtual_network.gitops_terraform_
vnet.name
 address_prefixes = [«10.0.1.0/26"]
}

This Terraform code block creates a subnet named AzureBastionSubnet within a specified Azure
virtual network and resource group. It assigns the subnet an IP address range of 10.0.1.0/26.
The subnet resource is identified within Terraform as azure_bastion_subnet, and it references
the names of both the virtual network and resource group from other resources defined in the
Terraform configuration.

At this point, simply commit and push the code to trigger a reconciliation loop. You will then see the
process in action, as illustrated next:

gitops-ter… Unknown Reconciliation in progress 3h12m
gitops-ter… Unknown Initializing 3h12m
gitops-ter… Unknown Terraform Planning 3h12m
gitops-ter… Unknown Plan generated 3h12m
gitops-ter… Unknown Applying 3h12m
gitops-ter… Unknown Applied successfully: main@
sha1:a3b32ed48dda027b0c5e40a65c7be56e1cc7dd50 3h13m
gitops-ter… True Applied successfully: main@
sha1:a3b32ed48dda027b0c5e40a65c7be56e1cc7dd50 3h13m

Open the Azure portal to visually verify the results, as illustrated in Figure 10.3:

GitOps for Infrastructure Automation – Terraform and Flux CD286

Figure 10.3 – After the reconciliation process, the gitops-terraform-vnet

virtual network in the Azure portal contains two subnets

Enhanced disaster recovery capabilities

In the event of a disaster, the combination of Terraform and Flux CD significantly enhances recovery
capabilities. Terraform’s ability to describe the complete IaC means that entire environments can be
replicated swiftly and accurately. Flux CD plays a crucial role by continuously ensuring that the state
of the cloud environment matches the configurations defined in your Git repository. If a disaster
strikes, you can quickly redeploy your infrastructure to a known good state as defined in the repository,
drastically reducing downtime and the complexity often associated with recovery processes.

Creating and managing multi-stage environments

When managing complex deployments that involve multiple stages, such as development, staging,
and production, the division of the repository becomes essential. With Terraform and Flux CD, you
can split your repository appropriately to manage these environments separately yet consistently.
Each environment can have its configuration files and Terraform plans, which Flux CD can manage
independently. This setup not only keeps your deployments organized but also enforces consistency
and isolation between environments. Changes can be tested in development or staging environments
through automated pipelines and only promoted to production once verified, ensuring stability and
reliability in your production deployments.

As seen so far, this strategic integration of Terraform and Flux CD not only streamlines the operational
aspects of cloud infrastructure management but also enhances strategic capabilities such as quick
scaling, robust disaster recovery (DR), and effective multi-environment handling. With Flux CD,
updates and changes are applied systematically and predictably, reducing the likelihood of human
error and the overhead associated with manual deployments.

In the next section, we will explore how Terraform and Flux CD utilize version control and automation
to enhance infrastructure management, ensuring transparency, collaboration, and security throughout
the deployment process.

Version control and automation with Terraform and Flux CD 287

Version control and automation with Terraform and Flux
CD
Terraform uses version control to manage the state of your infrastructure, which allows for tracking
changes, auditing, and collaborating on infrastructure development. By storing Terraform configurations
in version-controlled repositories, teams can review changes through pull requests, maintain a history
of configurations, and revert to previous states when necessary. This process enhances transparency
and collaboration among team members, fostering a more controlled and secure environment for
deploying infrastructure.

Security and best practices with Terraform and Flux CD

When combining Terraform with Flux CD, security is significantly enhanced by the inherent design
of GitOps and the nature of declarative infrastructure management. All changes to the infrastructure
are committed to version control, which means every change is auditable and traceable.

To enhance security further, we can deploy the following:

• Access control: Implement strict access controls on your Git repositories. Use branch protection
rules to ensure that changes are reviewed and approved before they are merged, preventing
unauthorized modifications to your infrastructure.

• Secrets management: Never store secrets directly in your Git repositories. Instead, leverage
Kubernetes Secrets or integrate with a secrets management tool such as HashiCorp Vault or
Azure Key Vault. Flux CD can securely pull secrets and inject them into the deployment pipeline.

• Automated compliance scans: Integrate compliance scanning tools into your CI/CD pipeline
to automatically check Terraform plans for compliance with security policies and best practices
before they are applied.

Best practices for configuration and maintenance

Here are some best practices for configuration and maintenance:

• Immutability: Treat infrastructure as immutable. Rebuild infrastructure from scratch frequently
to ensure that the actual state aligns with the state defined in Terraform configurations.

• Code review and pair programming: Enforce code reviews for all infrastructure changes.
Pair programming can also be used for critical changes, involving more than one set of eyes
before changes go live.

• CI: Integrate CI processes to test infrastructure changes automatically. This includes testing
Terraform plans and applying them to a non-production environment before they affect your
production infrastructure.

GitOps for Infrastructure Automation – Terraform and Flux CD288

Best practices for managing multi-environment configurations

Managing multiple environments (dev, staging, production) effectively requires a well-organized
repository structure.

Here are some best practices:

• Environment branching: Maintains a single repository, but uses different branches for each
environment, merging changes from development branches to production branches through
a controlled process.

• Parameterization: Use variables and outputs to customize Terraform configurations for different
environments. Avoid hardcoding values directly into Terraform files.

• Environment parity: Keep your development, staging, and production environments as similar
as possible. This reduces the chances of encountering unexpected behaviors in production
that weren’t evident in dev or staging. The optimal approach to managing multi-environment
configurations hinges on several factors, such as organization size, project complexity, regulatory
demands, and the balancing act between security and operational efficiency. For organizations
in highly regulated industries, such as finance or healthcare, where security is paramount,
using separate repositories for each environment might be advisable to enhance security by
isolating production settings from development and testing environments. This method limits
access to sensitive configurations and minimizes the risk of inadvertent changes. Alternatively,
if rapid development and deployment are critical, a single repository with separate directories
for each environment can simplify the management of changes across environments, though it
necessitates strict access controls and vigilant monitoring to protect production configurations.
For those seeking a balance between security and simplicity, a hybrid approach could be
suitable, involving a single repository for all non-sensitive environments and a separate one for
production. Regardless of the chosen strategy, implementing robust version control practices,
clear access controls, and automated deployment pipelines will be essential to maintain efficiency
and safeguard the integrity of environments.

Git workflow strategies

To effectively manage your infrastructure and streamline your development workflow, it’s essential
to adopt best practices that align with your team’s dynamics and project requirements. Consider the
following strategies:

• Trunk-based development versus Git Flow: Choose a Git workflow that suits your team’s needs.
Trunk-based development encourages shorter-lived branches and might be more suitable for
fast-paced environments, while Git Flow can provide more control through designated branches
for features, releases, and hotfixes.

Multi-environment management with Terraform and Flux CD 289

• Automated testing and promotion: Use automated testing to validate changes in lower
environments. Only promote changes to the next environment once they pass all tests. Automate
this promotion using Flux CD, which can monitor different branches or folders and apply
changes to the respective environments.

Now that we have a comprehensive understanding of Terraform, GitOps, and Flux, along with best
practices, we can combine all these elements in a practical example. This example will focus on
managing a multi-environment setup, which we will describe in the next section.

Multi-environment management with Terraform and Flux
CD
In the final section of this book, you’ll explore a detailed application of the concepts we’ve discussed,
using a Kubernetes cluster (minikube) to manage a multi-environment setup with Flux CD for
IaC. This real-world example will demonstrate how to effectively deploy separate environments
for development (dev), staging (staging), and production (prod). Figure 10.4 illustrates the
described example:

Figure 10.4 – Example of multi-environment management with Terraform and Flux CD

GitOps for Infrastructure Automation – Terraform and Flux CD290

GitHub will serve as the VCS, and the directory hierarchy will be organized as follows:

|---clusters/mgmt
|---flux-gitops-definitions
|---multi-env
 |---iac
 |---azure
 |---base
 |---dev
 |---staging
 |---prod

In this structure, we have the following:

• clusters/mgmt: Contains the Flux configuration files installed by the bootstrap for the
management cluster (minikube, running locally).

• multi-env/iac/azure: Contains subdirectories for the different environments (dev,
staging, and prod), each intended for managing infrastructure specific to that environment
using Terraform scripts.

• Base: Contains the main Terraform files (main.tf and variables.tf), which define the
Azure resources (such as AKS, virtual network, Azure Container Registry (ACR), and so on)
from an infrastructure perspective. These files are copied into the corresponding environment
subfolder as needed to tailor the infrastructure setup for each specific environment.

The flux-gitops-definitions directory contains various manifest YAML files essential for
configuring the GitHub repository and secret. This setup involves the following:

• GitHub repository configuration: YAML files in this directory help link the Flux installation
with the GitHub repository, specifying where Flux should listen for updates and which branch
to monitor.

• Secrets management: Includes the setup for Kubernetes secrets that store sensitive information,
such as GitHub access tokens or cloud provider credentials. These secrets ensure that Flux can
securely access the repository and interact with other services as needed.

• Resource definitions: Manifests that define how resources should be applied, rolled out, and
managed across different environments.

For the following example, we will continue using the same GitHub repository as before (although you
are welcome to create a new one if you prefer). Additionally, we will initiate a new minikube cluster:

1. To do this, start by opening a new terminal window and enter the following command:

$ minikube start --profile mgmt-cluster

Multi-environment management with Terraform and Flux CD 291

2. While waiting for the competition to start, we’ll need to export GITHUB_TOKEN. This can be
done by entering the following command in your terminal:

export GITHUB_TOKEN=ghp_XYZ

3. Now that GITHUB_TOKEN is set, you can proceed to install Flux on your cluster using the
bootstrap command. Execute the following in your terminal:

flux bootstrap github \
 --token-auth \
 --context=mgmt-cluster \
 --owner=[GITHUB_ACCOUNT] \
 --repository=[GITHUB_REPOSITORY] \
 --branch=develop \
 --path=clusters/mgmt \
 --personal

Once the command has finished executing, you should see an output similar to the following:
► connecting to github.com
► cloning branch "develop" from Git repository "https://github.
com/...
✔ cloned repository
► generating component manifests
…
✔ kustomize-controller: deployment ready
✔ notification-controller: deployment ready
✔ source-controller: deployment ready
✔ all components are healthy

4. Now that Flux is successfully bootstrapped, the next step is to install the TF-Controller. Here’s
how to proceed:

$ kubectl apply -f https://raw.githubusercontent.com/flux-iac/
tofu-controller/main/docs/release.yaml

5. Once the command is executed, you should verify that the TF-Controller has been installed
correctly and is running. You can check the status of the pods in the namespace where the
TF-Controller is installed, typically in the flux-system namespace or a specific namespace
designated for it:

$ kubectl get pods -n flux-system
NAME READY STATUS RESTARTS AGE
helm-controller… 1/1 Running 0 4m47s
kustomize-contr… 1/1 Running 0 4m47s
notification-co… 1/1 Running 0 4m47s
source-controll… 1/1 Running 0 4m47s

GitOps for Infrastructure Automation – Terraform and Flux CD292

Look for pods related to the TF-Controller and ensure they are in the Running state.

6. Since we are using a new minikube cluster (or alternative cluster) and our goal is to provision
resources on Azure, we need to create the corresponding secret:

$ kubectl create secret generic azure-creds \
 --from-literal=ARM_SUBSCRIPTION_ID='SP_SUB_ID' \
 --from-literal=ARM_TENANT_ID='SP_TENANT_ID' \
 --from-literal=ARM_CLIENT_ID='SP_APPID' \
 --from-literal=ARM_CLIENT_SECRET='SP_PASSWORD' \
 --namespace flux-system

7. To set up a multi-environment infrastructure using Terraform, you’ll need to create a new
(empty) main.tf file in each environment-specific subdirectory (dev, staging, prod)
within the multi-env/iac/azure main directory. Here’s how to structure the main.
tf file for each environment:

provider "azurerm" {
 features {}
}

8. Now, change your working directory to where flux-gitops-definitions is located. This
directory should contain your YAML files for the GitHub repository configuration (github-
repository-definition.yaml) and the secret (github-repository-secret.
yaml). First, apply the GitHub repository secret, which contains the credentials that Flux CD
will use to access your GitHub repository:

$ kubectl apply -f github-repository-secret.yaml

9. Next, apply the GitHub repository definition. This definition will link your Kubernetes setup with
the GitHub repository, setting the groundwork for Flux CD to monitor changes and manage
resources according to GitOps principles:

$ kubectl apply -f github-repository-definition.yaml

10. Before continuing, it’s important to commit and push the changes we’ve made so far. Then,
we need to apply the automation configurations for each environment by executing the
following commands:

$ kubectl apply -f dev-iac-automation.yaml
$ kubectl apply -f staging-iac-automation.yaml
$ kubectl apply -f prod-iac-automation.yaml

Multi-environment management with Terraform and Flux CD 293

11. Afterward, check the reconciling process to ensure that the configurations are being
applied correctly:

$ kubectl get terraforms.infra.contrib.fluxcd.io -n flux-system
-w
NAME READY
STATUS
 AGE
dev-cluster-tf-automation True
No drift: develop@sha1:c93... 3m48s
prod-cluster-tf-automation True
No drift: develop@sha1:c93... 3m31s
staging-cluster-tf-automation True
No drift: develop@sha1:c93... 3m37s
dev-cluster-tf-automation Unknown
Reconciliation in progress
 3m48s
staging-cluster-tf-automation Unknown
Reconciliation in progress
 3m38s
prod-cluster-tf-automation Unknown
Reconciliation in progress
 3m33s

12. At this point, the reconciliation process is in progress, but no resources will be provisioned
because the main.tf file in each directory does not define any resources. To address this,
copy the main.tf and variables.tf files from the base directory to each subdirectory
corresponding to the specific environments. Then, for each environment, open the variables.
tf file and update it according to the needs of the dev, staging, and prod environments:

variable "environment" {
 …
 default = "dev"
}
variable "location" {
 …
}
variable "rg" {
 …
 default = «gitops-dev-rg"
}

13. Now, it’s time to commit and push the updated code to your Git repository. After doing so, you
can observe the reconciliation process to see how Flux CD responds to the changes:

$ kubectl get terraforms.infra.contrib.fluxcd.io -n flux-system
-w

GitOps for Infrastructure Automation – Terraform and Flux CD294

This procedure provides real-time feedback on how Flux CD manages and applies updates
from your Git repository. The reconciliation process may take some time to fully provision the
resources defined in the Terraform scripts. The results are illustrated in Figure 10.5:

Figure 10.5 – Resources provisioned by the GitOps automation reconciliation process

Well done! Now, you can try making changes to the infrastructure code in one of the environments and
see how the GitOps automation updates and syncs the infrastructure with your repository. What we’ve
explored is just a glimpse of using GitOps for managing multi-environment setups. We haven’t covered
using pull requests or installing applications yet—these topics will be addressed in the next chapter.

Summary
In this chapter, we explored the dynamic synergy between Terraform and Flux CD, showcasing how
these tools bolster infrastructure automation using GitOps and IaC principles. The chapter introduced
Terraform for defining and provisioning cloud infrastructure, alongside Flux CD, which automates the
deployment process by continuously syncing changes from Git repositories to Kubernetes clusters. It
thoroughly covered the fundamentals of integrating Terraform within a GitOps workflow, ensuring
seamless management and scaling of cloud resources. Special attention was given to best practices for
maintaining multiple environments such as development, QA, and staging, emphasizing the importance
of environment-specific configurations to maintain consistency, reduce errors, and streamline operations
across various cloud setups. Practical examples throughout the chapter demonstrated how to utilize
these tools to effectively manage complex deployments, with a strong focus on the critical roles of
version control and automated reconciliation.

Building on the foundational concepts and best practices discussed, the next chapter will delve deeper
into practical applications and real-world scenarios, showcasing how these strategies can be effectively
implemented to optimize cloud infrastructure management.

11
Deploying Real-World Projects

with GitOps on Kubernetes

In this chapter, you will embark on a practical journey that bridges the gap between theoretical
knowledge and real-world knowledge application. As you delve into the intricate process of setting
up a GitOps and Kubernetes-based development environment, you will gain firsthand experience
in designing, developing, and deploying an application within this innovative framework. Through
detailed guidance on architectural design, Continuous Integration and Continuous Delivery (CI/
CD) processes, application scaling, and security, this chapter aims to equip you with the essential
skills and insights needed to implement these cutting-edge technologies effectively in your projects.
Whether you’re looking to enhance your organizational capabilities or to refine your personal technical
expertise, the comprehensive real-life example provided here will serve as an invaluable resource for
anyone aspiring to master GitOps and Kubernetes in practical settings.

In this chapter, our focus will be on the following key areas:

• Establishing a GitOps and Kubernetes development environment

• Implementing CI/CD with GitOps

• Designing for scalability and efficiency

• Resource management and scalability

• Monitoring and securing your application

Technical requirements
This chapter builds on your existing knowledge of Git, Kubernetes, and GitOps tools such as Argo
CD and Flux CD, which you acquired in earlier chapters. We will use an Azure AKS cluster deployed
by Terraform using a GitHub workflow. Ensure that you have access to a Kubernetes setup and are
familiar with CI/CD principles to fully benefit from the exercises.

Deploying Real-World Projects with GitOps on Kubernetes296

All necessary code and resources are provided in the Chapter 11 folder of our dedicated GitHub repository:

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes

Establishing a GitOps and Kubernetes development
environment
Establishing a proper development environment is crucial for the successful implementation of GitOps
practices. This environment serves as the backbone for both development and operations teams,
enabling seamless integration and continuous delivery of applications. A well-configured development
environment ensures that all changes to applications and infrastructure are version-controlled,
traceable, and aligned with the declarative configurations stored in Git. This consistency between the
development environment and production setups reduces the likelihood of errors and deployment
failures, fostering a more reliable and robust delivery pipeline. By emphasizing the importance of a
correct setup from the outset, teams can leverage GitOps to its fullest potential, ensuring that automated
processes govern deployments and infrastructure management efficiently and effectively.

Installing and configuring Kubernetes for GitOps involves setting up your Kubernetes cluster in a way
that integrates seamlessly with GitOps tools such as Flux CD (see the Flux integration with Kubernetes
section in Chapter 4) or Argo CD (see the Argo CD integration with Kubernetes section in Chapter 4).
What follows is a step-by-step guide that covers the setup process, ensuring that your Kubernetes
environment is ready for a GitOps workflow:

1. Install a Kubernetes cluster and choose your environment. For learning and development,
consider using K3s (refer to the Exploring K3s as a lightweight Kubernetes distribution section
in Chapter 2) or minikube. Both are suitable for running Kubernetes locally on your machine.
For production or more scalable environments, consider cloud solutions such as Amazon EKS,
Azure AKS, or Google GKE. To install minikube, follow the official minikube installation guide
at https://minikube.sigs.k8s.io. For deploying Kubernetes on cloud platforms,
refer to the specific setup guides provided by the respective cloud providers. For the real-world
scenario described in this chapter, we will use an AKS cluster.

2. Verify installation. Ensure that kubectl, the Kubernetes command-line tool, is installed and
configured to communicate with your cluster. You can verify this by running the following:

$ kubectl cluster-info

This command should return the cluster details confirming that Kubernetes is up and running:
Kubernetes control plane is running at https://127.0.0.1:32769
CoreDNS is running at https://127.0.0.1:32769/api/v1/namespaces/
kube-system/services/kube-dns:dns/proxy

https://github.com/PacktPublishing/Implementing-GitOps-with-Kubernetes
https://minikube.sigs.k8s.io

Implementing CI/CD with GitOps 297

3. Set up your namespace. It’s good practice to create a dedicated namespace for your GitOps tools:

$ kubectl create namespace gitops

4. Set up permissions. Set up Role-Based Access Control (RBAC) rules to ensure that your
GitOps tools have the necessary permissions to manage resources. Most GitOps tools have
specific RBAC configurations outlined in their setup guides. We will see a concrete example
of how to set up RBAC in the Configuring Kubernetes RBAC for user and role management
section of this chapter.

5. Install your GitOps tool. Depending on your preference, select from tools such as Flux CD,
Argo CD, Helm, or Kustomize. Each tool has unique strengths and supportive community
backing. For more details about the mentioned GitOps tools, refer to the Overview of popular
GitOps tools section in Chapter 4. Additionally, you can explore the A deep dive into Helm and
Kustomize, Argo CD integration with Kubernetes, and Flux CD integration with Kubernetes
sections of the same chapter.

6. Set up a Git repository. Configure the GitOps tool to track your Git repository where your
Kubernetes manifests are stored. For guidance, refer to the Kubernetes deployment with Azure
DevOps or the Kubernetes deployment with AWS CodePipeline section, both in Chapter 4. This
setup process involves pointing the tool to your repository and specifying which branch and
path to monitor for changes.

7. Validate and test. Start by deploying a simple application using your GitOps tool to confirm that
changes in your Git repository automatically trigger deployments in your Kubernetes cluster.
Monitor the deployment using the GitOps tool’s dashboard or CLI to ensure that the application
is deployed and running as expected. Test updates and rollbacks by modifying the application’s
manifest in your Git repository and noting whether the changes are automatically implemented.

Most of the pipeline points have already been covered in more detail in previous chapters. They will
be revisited in the next section, where will see how to implement a real-world scenario for CI/CD
with GitOps.

Implementing CI/CD with GitOps
To implement a real-world CI/CD GitOps scenario, we need an application that no longer uses mocked
data but instead utilizes concrete data.

In this section, we will expose a backend service for a weather application that fetches data from a
real weather service, such as OpenWeatherMap (https://openweathermap.org/), to the
public internet.

https://openweathermap.org/

Deploying Real-World Projects with GitOps on Kubernetes298

Given that the requirements for setting up our GitOps environment (installing a Kubernetes cluster
and choosing your environment, verifying installation, and installing your GitOps tool) have already
been met in the previous section of this chapter, the next step is to create a new GitHub repository.
For example, you might create gitops-for-real-world, with a directory named Step-01.
This directory will be used to add the code and files for subsequent steps.

Before proceeding, you need to create a free account with the OpenWeatherMap service or another
similar service of your choice. Services like these typically require a token to query their API, which is
used for authentication and billing purposes. It’s crucial to keep this token confidential and not share
it. Please refer to the OpenWeatherMap documentation to create a new token. Soon, we will add
this token as a secret in the Kubernetes cluster.

Final objective and implementation

To achieve our final objective, this section and the ones that follow will demonstrate the use of a
Python Flask application, packaged as a Docker image. This image is built with a new tag at each
commit and deployed on an Azure AKS cluster, which is provisioned automatically by the pipeline
using Terraform for the Infrastructure as Code (IaC) component. Initially, the entire deployment
chain—both IaC and the application—will be managed entirely by our GitHub CI/CD pipeline. Later,
we will transition to using Argo CD for the deployment while keeping the CI processes within the
GitHub workflow.

Ultimately, to test our service after it has been exposed to the public internet, we will perform
weather requests for a specified city via the query string in a URL, such as http://public-ip/
weather?city=zurich. The response will be in JSON format, which can be rendered directly
in the browser or with tools such as curl.

Our pipeline will be developed as a GitHub workflow and will be composed as illustrated in Figure 11.1.

Figure 11.1 – A GitHub workflow pipeline

http://public-ip/weather?city=zurich
http://public-ip/weather?city=zurich

Implementing CI/CD with GitOps 299

CI/CD pipeline using GitHub Actions and Terraform

The pipeline in Figure 11.1 leverages Terraform for infrastructure management and deploys a
Dockerized application to an AKS cluster, providing a practical example of modern DevOps practices.
The code of the pipeline is too long to be explicitly added as content in this chapter. What follows are
some important aspects that should be considered for a better understanding of that. The workflow
description is contained in the gitops-for-real-ci-cd-pipeline.yml file in the .github/
workflows/ directory of the repository accompanying this chapter.

Workflow trigger conditions

The pipeline is configured to trigger on any push or pull request to the main branch with one exception:
changes exclusively in the Step-01/deployment directory do not initiate the workflow. This
precaution prevents redundant runs when only Kubernetes manifest files are updated, ensuring efficient
use of resources and avoiding potential conflicts in continuous deployment scenarios.

Terraform plan and apply

The workflow begins with the terraform-plan job. This job executes several critical steps:

1. Environment setup: The job initializes by checking out the repository and setting up the Azure
CLI with credentials stored securely as GitHub secrets. This step ensures that the workflow has
access to manage resources in Azure.

All the passwords, tokens, and other sensitive information used in the pipeline need to be
configured as GitHub Actions Secrets, as illustrated in Figure 11.2.

Figure 11.2 – GitHub secrets on the Actions secrets and variables page

Deploying Real-World Projects with GitOps on Kubernetes300

2. Terraform initialization: In this step, the job runs terraform init to prepare the Terraform
environment, configuring backend storage for Terraform state files in Azure Blob Storage. The
following code is extracted from the main pipeline:

- name: Terraform Init
 run: |
 terraform init \
 --backend-config=»resource_group_name=${{ secrets.BACKEND_
RESOURCE_GROUP_NAME }}» \
 --backend-config=»storage_account_name=${{ secrets.BACKEND_
STORAGE_ACCOUNT_NAME }}» \
 --backend-config=»container_name=${{ secrets.BACKEND_
CONTAINER_NAME }}» \
 --backend-config=»key=${{ secrets.BACKEND_KEY }}» \
 --reconfigure
 working-directory: ./Step-01/terraform
 env:
 ARM_CLIENT_ID: ${{ secrets.ARM_CLIENT_ID }}
 ARM_CLIENT_SECRET: ${{ secrets.ARM_CLIENT_SECRET }}
 ARM_SUBSCRIPTION_ID: ${{ secrets.ARM_SUBSCRIPTION_ID }}
 ARM_TENANT_ID: ${{ secrets.ARM_TENANT_ID }}

3. Execution plan: Terraform then generates an execution plan (terraform plan), which is
reviewed automatically to determine whether there are changes to apply. The plan is saved as
an artifact for review and used in the subsequent terraform-apply job.

GitHub artifacts
An artifact in GitHub Actions is a file or a collection of files produced during a workflow run.
Artifacts can include binary files, logs, test results, or any other type of data that needs to be
stored after a job is completed. These artifacts are typically used for storing build and test outputs
to be used for debugging, deployment, or further processing in subsequent steps or future runs.
GitHub stores these artifacts for a specified period, allowing them to be downloaded or shared
across different jobs within the same workflow. This feature facilitates effective CI/CD practices
by ensuring that outputs from one part of a workflow can easily be accessed and utilized in other
parts, enhancing automation and continuity throughout the software development life cycle.

Following planning, the terraform-apply job applies the approved changes to the infrastructure,
ensuring that the actual state matches the expected state defined in the Terraform configurations. This
part can take a few minutes due to the provisioning of the resources to Azure. Opening the Azure
portal, the final provisioning should be similar to what is illustrated in Figure 11.3.

Implementing CI/CD with GitOps 301

Figure 11.3 – Azure resources automatically provisioned by the GitHub workflow

Docker image build and push

Parallel to infrastructure management, the docker-build-and-push job handles the application side:

1. Docker preparation: The job sets up Docker environments using QEMU and Buildx, tools
that enhance Docker’s capabilities on CI environments.

2. Building and Pushing Docker Images: It then builds the Docker image from a Dockerfile
located in the Step-01 directory and pushes it to Docker Hub, tagging it with the commit
SHA for immutability and traceability, as illustrated in Figure 11.4.

Deploying Real-World Projects with GitOps on Kubernetes302

Figure 11.4 – A Docker repository containing the built images with tags corresponding to the SHA number

Kubernetes deployment

After the Docker image is pushed and the infrastructure is ready, the deploy-to-kubernetes
job proceeds:

1. Cluster configuration: The job configures kubectl with the credentials for the Kubernetes
cluster managed in Azure, ensuring that commands are executed against the correct cluster,
as reported in the following code:

- name: Update Kubeconfig
 run: az aks get-credentials --resource-group gitops-dev-rg
--name gitops-dev-aks --overwrite-existing

2. Secrets and configurations: It then deploys necessary Kubernetes secrets and configurations,
such as API keys needed by the application, using best practices for secret management. The
following code is extracted from the pipeline:

- name: Deploy to Kubernetes
 run: |
 cd ./Step-01/deployment
 kubectl create namespace weather-app-for-real \
 --dry-run=client -o yaml | kubectl apply -f -
 kubectl create secret generic weather-api-key \
 --from-literal=WEATHER_API_KEY=${{ secrets.WEATHER_API_
TOKEN }} \

Implementing CI/CD with GitOps 303

 --namespace weather-app-for-real \
 --dry-run=client -o yaml | kubectl apply -f -

The use of the --dry-run=client -o yaml | kubectl apply -f - command
sequence can play a significant role in ensuring that a Kubernetes deployment is idempotent.

Idempotency
Idempotency, in the context of deploying resources, means that running the same deployment
command multiple times will result in the same state without causing unintended changes or
side effects after the initial application.

3. Application deployment: Applies the Kubernetes deployment manifest (Step-01/
deployment/backend-api-deployment.yaml), which references the newly built
Docker image, ensuring that the latest version of the application is deployed:

$ kubectl apply -f backend-api-deployment.yaml

Beware!
If you want to access the remote AKS cluster from your local development, you need to login
Azure and execute the following command: az aks get-credentials --resource-
group gitops-real-rg --name gitops-real-aks

4. Testing: Unlike local development, for this real-world example, we specified a LoadBalancer
port in the deployment file, so AKS is automatically using a public IP address to expose our
service to the public internet, as illustrated in Figure 11.5.

Figure 11.5 – A public IP address used to expose the backand-api-service to the public internet

5. At this point, we can query our service using a URL like the one shown in Figure 11.6 to obtain
a response:

Deploying Real-World Projects with GitOps on Kubernetes304

Figure 11.6 – An example of querying the service for Zurich city using real weather data

What we have obtained so far is a fully working CI/CD pipeline that exposes a service to the real world.
We want to take it a step further by separating the CI pipeline from the CD pipeline using ArgoCD,
as described in the next section.

Using Argo CD for the continuous deployment

In the world of modern software delivery, it’s crucial to ensure that our deployment practices are as
reliable and scalable as possible. Argo CD, a declarative GitOps continuous delivery tool for Kubernetes,
significantly enhances these aspects by automating deployment processes and syncing the desired
application state defined in a Git repository with the production environment.

Implementing CI/CD with GitOps 305

Transitioning to Argo CD

In this section, we will evolve our GitHub Actions workflow by transitioning the deploy-app-to-
kubernetes stage to an argo-cd-deployment stage. The argo-cd-deployment stage in
our GitHub Actions workflow encapsulates the following key operations:

1. Argo CD setup: First, the workflow initializes Argo CD in the Kubernetes cluster if it’s not
already installed. This includes setting up the necessary namespaces and applying the Argo
CD installation manifests directly from the official sources.

2. Repository configuration: The workflow then adds the Git repository containing the Kubernetes
manifests to Argo CD. This step involves configuring Argo CD to monitor changes in the
repository, which hosts the deployment definitions for the application.

3. Application deployment via Argo CD: It then ensures that the specific namespace for the
application is created and ready for deployment.

4. Application sync: Next, it applies the argocd_deployment.yaml file, which defines the
Argo CD application. This manifest specifies the path to the Kubernetes deployment manifests
within the Git repository, the revision target (e.g., branch), and synchronization policies.

5. Sync trigger: Optionally, this step triggers a manual sync if immediate deployment is required,
though typically Argo CD would automatically detect changes based on its polling strategy.

Managing downtime and ensuring continuity with Argo CD
When Argo CD experiences temporary downtime, the primary impact is on the synchronization
and automated reconciliation of deployments in Kubernetes environments. During this period,
any changes committed to the Git repository will not be synchronized with Kubernetes clusters,
which means that updates, fixes, and new feature deployments are postponed. The automated
reconciliation process, which ensures that the actual state of the Kubernetes environment
matches the desired state specified in the Git repository, is also interrupted. This means that
any discrepancies or configuration drifts that occur during the downtime will not be addressed
until Argo CD is back online. Upon restoring Argo CD, it will automatically begin to process
and apply all changes made during its downtime. The system will fetch the latest configurations
from Git and proceed with the necessary reconciliations to align the Kubernetes clusters with
the desired states from the repository. It’s important to note that the running applications
themselves are not directly affected by Argo CD’s downtime; they will continue to operate as
configured prior to the outage. However, to manage critical updates during such downtimes,
teams might need to perform manual interventions, which should be handled carefully to
avoid further complications once Argo CD resumes normal operation. Robust monitoring and
alert systems are recommended to quickly detect any issues with Argo CD and to minimize
the impact of such downtimes.

Deploying Real-World Projects with GitOps on Kubernetes306

6. To see the new workflow in action, we need to replace the contents of the gitops-for-
real-ci-cd-pipeline.yml file in the Step-02-ArgoCD-Deployment folder with
the contents of the file named in the same manner located in the .github/workflows
subdirectory. We must then commit and push the updated code to trigger a workflow run, as
illustrated in Figure 11.7:

Figure 11.7 – A new workflow run is triggered after the commit and push of the new workflow definition

The external IP and the admin password that were automatically generated during the setup
process can be found in the log of the Setup ArgoCD on AKS task, as illustrated in
Figure 11.8. Be careful: this kind of information should not be exposed in real production
environments. It is just a shortcut for the scope of this example.

Figure 11.8 – The Setup ArgoCD on AKS task log containing sensitive information

At this point, we can log in to the admin UI of the deployed instance of Argo CD by typing
https://4.226.41.44/ into your preferred browser (see Figure 11.9):

https://4.226.41.44/

Implementing CI/CD with GitOps 307

Figure 11.9 – The Argo CD home page after logging in, showing the

deployment of the backend-api-weather-app pod

Voilà! For this example, we didn’t activate auto-sync, so we just need to click on the Sync Apps button
to synchronize our weather app application, as illustrated in figure 11.10.

Figure 11.10 – The Argo CD application is correctly synchronized with the GitHub repository

Deploying Real-World Projects with GitOps on Kubernetes308

To test the Argo CD synchronization process, try changing the number of replicas from 1 to 5 (for
instance) in the backend-api-deployment.yaml file and pushing the change to GitHub. The
workflow will not be triggered because we specified the following value:

paths-ignore:
- 'Step-01/deployment/**'

However, Argo CD will notice the out-of-sync state and a new synchronization will be needed. Now
that we have our CI/CD pipeline in place and working perfectly, it is time to introduce the topics of
scalability and efficiency in the next section.

Designing for scalability and efficiency
In this section, we will delve into designing for scalability and efficiency. These traits are essential in
the architecture of modern applications, exemplified by our weather app. Scalability ensures that the
application can handle growth, whether it’s an increasing number of users, data volume, or transaction
frequency, without compromising performance. Efficiency involves optimizing resource use, which is
crucial for minimizing costs and enhancing response times. We will explore architectural principles
that support scalability, such as microservices and load balancing, and discuss how to manage
compute, storage, and networking resources effectively. Additionally, we will look at tools and strategies
to test scalability to ensure that the architecture can withstand real-world demands. By mastering
these elements, you’ll learn how to design a scalable and efficient architecture that is well-suited for
deployment on Kubernetes, enhancing the overall performance and reliability of applications such
as our weather app.

Architectural principles

Architectural principles for designing scalable and efficient systems are critical in modern application
development, especially as demands for performance and reliability increase. Key strategies include
decoupling components to minimize dependencies, which facilitates easier maintenance and scaling.
Emphasizing statelessness allows for the replication and distribution of components, enhancing the
application’s resilience and responsiveness.

Load balancing is essential to distribute incoming network loads evenly across multiple systems,
preventing any single server from becoming overwhelmed and increasing the application’s availability.
Horizontal scaling, or scaling out by adding more instances rather than adding resources to a single
instance, is more cost-effective and increases fault tolerance.

Database sharding partitions data into smaller, more manageable segments, which is particularly
beneficial for large datasets or high throughput demands. Sharding is great for improving performance.
Caching frequently accessed data reduces latency and backend load by serving common requests
without redundant data processing.

Designing for scalability and efficiency 309

Asynchronous processing of tasks enhances throughput and user experience by handling operations
in a non-blocking manner. Adopting a microservices architecture allows for independent deployment,
scaling, and management of each service. This modular approach not only boosts performance but
also simplifies management as applications evolve, making it ideal for cloud-native environments
managed by platforms such as Kubernetes. Although microservices architecture has been mentioned,
it will not be part of the example discussed in this chapter.

Microservices architecture
Microservices architecture is an architectural style that structures an application as a collection
of loosely coupled services, each of which implements a specific business capability. This
approach enables developers to build and deploy services independently, which enhances
flexibility and accelerates development cycles. By breaking down an application into small,
manageable components, microservices allow for more granular scaling and efficient resource
utilization. Each service can be developed, deployed, and scaled independently, often using
different programming languages and technologies that best suit the task at hand. This
modularity improves fault isolation, making it easier to identify and fix issues without affecting
the entire system. Moreover, microservices facilitate CI/CD practices, promoting a more agile
and resilient development process. Overall, microservice architecture fosters a more robust
and scalable application environment that is capable of adapting to evolving business needs
and technological advancements.

Resource management

Effective resource management is crucial in application design and operation, especially in environments
that aim to maximize efficiency and performance while minimizing costs. Managing compute, storage,
and networking resources involves careful planning and orchestration to ensure that each component
of an application has the necessary resources to perform optimally without wastage:

• Compute management: This involves provisioning the right amount of CPU and memory
resources to meet the application’s requirements. Techniques such as auto-scaling and load
balancing help distribute compute workloads evenly across the available infrastructure.

• Storage management: This ensures that data storage resources are allocated efficiently, keeping
data accessibility and redundancy in mind. This includes choosing appropriate storage types
and implementing data partitioning strategies to enhance performance and scalability.

• Networking management: This focuses on efficiently configuring network resources to ensure
fast and secure data transfer between application components. Proper network configuration
reduces latency and prevents bottlenecks, making it essential for real-time data processing
and delivery.

Deploying Real-World Projects with GitOps on Kubernetes310

Together, these resource management practices ensure that applications can scale effectively and
remain robust under varying operational conditions. Implementing resource management strategies
also involves monitoring and analyzing resource usage to make informed decisions about adjustments
and improvements, ensuring that resources are utilized in the most efficient way possible.

Testing for scalability

Testing for scalability is crucial for ensuring that applications perform well under expected loads and
can handle growth in users, transactions, and data efficiently. Scalability testing involves a variety of
techniques to simulate different environments and stresses on the system to uncover potential issues
before they impact users:

• Load testing: Simulates a specific expected number of concurrent users or transactions to
assess how the application behaves under normal conditions

• Stress testing: Pushes the application beyond its normal operational limits to discover its
maximum capacity and understand its behavior under extreme conditions

• Soak testing: Runs the application under a heavy load for a prolonged period to identify issues
such as memory leaks or slow degradation of performance

• Spike testing: Checks the application’s ability to handle sudden and large spikes in traffic

• Scalability testing: Tests whether the application can scale up or down based on demand by
gradually increasing the load and observing how additional resources affect the application’s capacity

These tests often utilize automated testing tools and are conducted in staged environments that closely
mimic real-world traffic patterns. Tools such as Apache JMeter, LoadRunner, and Gatling, along with
cloud services such as AWS CloudWatch and Google Cloud Monitoring, are commonly employed
to facilitate these tests. Through regular scalability testing across development and deployment
phases, teams can ensure that their applications are robust, scalable, and ready to handle real-world
operational demands.

Resources management and scalability
In this section, we will continue to use the weather app to see how resource management, horizontal
scaling, and scalability testing work in a real-world scenario. We can start with the optimization of
resource usage.

Resources management and scalability 311

Optimizing resource usage

To optimize resource usage in Kubernetes, setting up resource requests and limits is crucial. These
settings ensure that pods receive the right amount of CPU and memory resources to function properly
while also preventing any single application from consuming excessive cluster resources, which could
affect other applications:

• Requests: These are the amount of resources Kubernetes guarantees for a container. If a container
requires more resources than its request and they are available on the node, it can consume more.

• Limits: This is the maximum amount of resources a container can use. If a container tries to
exceed this limit, the system will throttle its CPU usage. If the container exceeds its memory
limit, Kubernetes might terminate it, depending on the situation.

To test the use of requests and limits, we can try to update the Step-01/deployment/backend-
api-deployment.yaml file by adding the following code block immediately after key:
WEATHER_API_KEY row:

… key: WEATHER_API_KEY
resources:
 requests:
 cpu: «100m»
 memory: "100Mi"
 limits:
 cpu: «150m»
 memory: "150Mi"

The previously mentioned code block specifies the resource requests and limits for a container. Here’s
what each line means:

• requests:

 � cpu: "100m": This requests 100 millicores (where 1,000 m equals 1 CPU core) for
the container

 � memory: "100Mi": This requests 100 mebibytes of memory

• limits:

 � cpu: "150m": This sets a limit of 150 millicores for CPU usage by the container

 � memory: "150Mi": This sets a memory limit of 150 mebibytes

Now that we have defined requests and limits, in the next section, we will see how to implement the
Horizontal Pod Autoscaler (HPA) in the next section.

Deploying Real-World Projects with GitOps on Kubernetes312

Implementing the HPA

Implementing an HPA in Kubernetes is an effective way to automatically scale the number of pod
replicas in a deployment, replication controller, or replica set based on observed CPU utilization or
other select metrics such as memory usage or custom metrics. Here’s a step-by-step guide to setting
up an HPA:

1. Ensure that the Metrics Server, which collects resource metrics from Kubelets and exposes
them in Kubernetes through the Metrics API, is installed in the cluster. This is crucial for the
HPA to make scaling decisions. We can install it with the following command:

$ az aks update --enable-azure-monitor-metrics --name gitops-
real-aks --resource-group gitops-for-real-rg

2. Setup will take a few minutes. At completion, verify the correct installation with the
following command:

$ kubectl get deployment metrics-server -n kube-system

This command should return the deployment details confirming that the Metrics Server is up
and running:

NAME READY UP-TO-DATE AVAILABLE AGE
metrics-server 2/2 2 2 3h37m

3. Create an HPA that scales based on CPU utilization:

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: weather-app-backend-api-hpa
 namespace: weather-app-for-real
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: backend-api-weather-app
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 5

This HPA is configured to maintain between 1 and 5 replicas of the pod, scaling up or down
when the CPU utilization reaches 50%.

4. Create a new hpa.yaml file in the Step-01/deployment folder with the content
that we have described. Commit and push the code, then wait for the Argo CD application
synchronization or force it if auto-sync is off.

Resources management and scalability 313

Figure 11.11– The Argo CD application synchronized with the HPA configuration in place

5. Use the following command to monitor the status and effectiveness of your HPA:

$ kubectl get hpa -w --namespace weather-app-for-real

This will show the current number of replicas and whether the HPA is in the process of scaling
up or down based on the current CPU utilization against the target set.

Testing for scalability – an example

Now that we have implemented the HPA and set up monitoring for it, our next step is to observe
how Kubernetes dynamically scales the number of pods in response to changes in CPU utilization.
By simulating varying loads, we can watch the HPA adjust the pod count to maintain optimal
performance. This process ensures that our application scales efficiently, handling increases or decreases
in demand without manual intervention. Understanding this behavior is crucial for optimizing
resource management and cost-effectiveness within our Kubernetes environment. What follows is a
guided step-by-step testing scenario:

1. Create a Bash script for testing HPA. Use the curl command to make requests to the exposed
weather service using various cities and include a random value in the query string to avoid
caching. You can use the hpa-testing.sh script present in the repository accompanying
this chapter as reference. Before executing the script, update $baseUrl to match your weather
service’s URL. This might look as follows:

Base URL of your weather service
baseUrl="http://20.250.198.208/weather"

Deploying Real-World Projects with GitOps on Kubernetes314

2. Run this Bash script:

I. Open a new terminal and make the script executable with the following:

$ chmod +x test_weather_app.sh

II. Execute the script by running the following:

 ./hpa_testing.sh.

After a while, the percentages described by the TARGET column should increase. To speed up
the testing scenario and see the number of pods increase faster, execute another instance of
the same script in another terminal.

3. Check the HPA status (see the sixth point in the Implementing the HPA section of this chapter).
Use the following command to check the HPA status:

$ kubectl get hpa -w --namespace weather-app-for-real

You should see the current number of replicas and their scaling activities based on the
CPU utilization:

NAME TARGETS MINPODS MAXPODS
REPLICAS
weather-app-… cpu: <unk>%/5% 1 5 1
weather-app-… cpu: 5%/5% 1 5 1
weather-app-… cpu: 20%/5% 1 5 4
…
weather-app-… cpu: 3%/5% 1 5 4
weather-app-… cpu: 1%/5% 1 5 4

The HPA monitors the CPU utilization of the deployment and adjusts the number of pods accordingly
to ensure optimal performance.

Initially, the CPU utilization is marked as <unknown>, likely due to metrics not being available
or still being initialized. When the utilization stabilizes at 5%, which matches the target set in the
HPA, there’s no change in the number of replicas and they remain at one. As CPU usage increases to
20%—well above the 5% target—the HPA reacts by scaling up the number of replicas from 1 to 4 to
handle the increased load.

This elevated level of resource use persists briefly, keeping the replicas at 4. However, when the
utilization drops significantly to 3% and further down to 1%, the HPA initially doesn’t scale down
immediately, possibly due to stabilization settings that prevent oscillations in pod count. Ultimately,
as the low utilization continues, the HPA scales the number of pods back down to 1.

Monitoring and securing your application 315

This sequence demonstrates the HPA’s capability to dynamically scale application resources based on
real-time data, thus ensuring that the deployment scales efficiently in response to workload changes.
This dynamic adjustment helps manage resources effectively, maintaining application responsiveness
and optimizing operational costs. The responsiveness of the HPA to changes in CPU utilization
exemplifies how Kubernetes can automate scaling to maintain performance and resource efficiency
without manual intervention.

As we ensure efficient resource management and scalability, it is equally important to turn our attention
to monitoring and securing your application. In the next section, we will explore these crucial aspects
of operational excellence.

Monitoring and securing your application
Operational excellence in software deployment and management is a crucial factor for the success of
any technology-driven organization. The keys to achieving this excellence are monitoring, scaling,
and security, each serving as foundational pillars that ensure the smooth and efficient operation of
applications in production environments.

Monitoring is vital as it provides the visibility needed to understand the behavior of applications and
systems in real time. Effective monitoring strategies help in identifying performance bottlenecks,
predicting system failures, and gathering valuable data to aid in decision-making processes. This
continuous oversight allows teams to respond proactively to issues before they affect the user experience
or lead to more significant disruptions.

Security practices are critical to safeguard sensitive data and protect infrastructures from breaches and
attacks. In an era where cyber threats are evolving rapidly, ensuring that robust security measures are
in place is non-negotiable. Security protocols help in maintaining trust with customers, complying
with regulatory requirements, and avoiding the financial and reputational damage associated with
data breaches.

Together, monitoring, scaling, and security form the backbone of operational excellence, supporting
a stable, efficient, and secure environment for deploying and managing applications. Organizations
that master these aspects are better positioned to leverage technology for business success, ensuring
that they can deliver continuous value to users while adapting to the ever-changing digital landscape.

Deploying Real-World Projects with GitOps on Kubernetes316

Monitoring

Grafana and Prometheus are powerful tools that are widely used in the monitoring and observability
landscape. They are particularly valuable for managing cloud-native applications deployed in dynamic
environments such as Kubernetes:

• Prometheus: Prometheus is an open source monitoring system with a robust query language.
It collects and stores its metrics as time-series data, meaning that each metric is stored with
its exact time of recording. Prometheus is highly effective for recording real-time metrics in
a high-availability environment. It supports a pull model for fetching data from monitored
services, allowing it to actively scrape data from registered targets at specified intervals. This
data can then be queried and analyzed to monitor the health and performance of applications.

• Grafana: Grafana is an open source analytics and visualization platform that integrates
seamlessly with a multitude of data sources, including Prometheus. Grafana is used to create
comprehensive dashboards that provide visualizations of metrics data. These dashboards allow
developers and operations teams to visually interpret complex data to understand application
behavior and resource usage, making it easier to spot trends, patterns, and potential problems.

Together, Prometheus and Grafana offer a powerful combination for data gathering, storage, and
visualization, enhancing the ability to observe system behaviors, troubleshoot issues, and ensure that
system performance aligns with user expectations and business objectives. This duo is particularly
effective in a DevOps context, where continuous monitoring and feedback loops are critical to the
software development and deployment life cycle.

Setting up Prometheus and Grafana

The following are the necessary steps to set up Prometheus and Grafana on the AKS cluster:

1. Add the Prometheus and Grafana Helm chart repository:

$ helm repo add prometheus-community https://prometheus-
community.github.io/helm-charts

2. Update the Helm repository. Ensure that we are using the most up-to-date version:

$ helm repo update

3. Install the Helm Chart in a namespace called gitops-real-monitoring:

$ helm install prometheus \
 prometheus-community/kube-prometheus-stack \
 --namespace gitops-real-monitoring \
 --create-namespace

Monitoring and securing your application 317

4. Check the entire deployment by typing the following command:

$ kubectl get all -n gitops-real-monitoring

5. Since we are not using a LoadBalancer service’s type, to log in to Grafana, we need to
execute a port-forward:

$ kubectl port-forward svc/prometheus-grafana -n gitops-real-
monitoring 9000:80

6. Log in with the admin username the password defined for the prom-operator.

7. Expose Prometheus using the following command:

$ kubectl port-forward svc/prometheus-kube-prometheus-prometheus
-n gitops-real-monitoring 9001:9090

8. After logging in, you should be able to see the Grafana homepage. Click on the Dashboards
menu item as illustrated in Figure 11.12:

Figure 11.12 – The Grafana home page, with the Dashboards menu item highlighted

9. Click on Kubernetes | Compute Resources | Namespace (Pods) and change the namespace
to weather-app-for-real. You will see some interesting metrics on the Pods that are
running there, as illustrated in Figure 11.13.

Deploying Real-World Projects with GitOps on Kubernetes318

Figure 11.13 – CPU, memory, and other metrics for the backend-api-weather pod

At this point, you have correctly and successfully set up Grafana and Prometheus. Now, you can see
interesting statistics about the usage of backend-api-weather-app, which can be used to
fine-tune the resource limits and requests, as discussed in the Optimize resource usage section of this
chapter. In the next section, we will introduce another important aspect of Kubernetes management
in the real world: Kubernetes security.

Understanding Kubernetes security

Kubernetes, while robust and scalable, presents a unique set of security challenges that stem from its
dynamic and distributed nature. Securing a Kubernetes cluster involves safeguarding the infrastructure,
the applications running on it, and the data that it processes. Given the complexity of Kubernetes
environments, security must be integrated into every layer of the cluster. Key aspects of Kubernetes
security include the following:

• Authentication and authorization: This ensures that only verified users can access the cluster
with methods such as certificates and tokens. It also controls user actions using mechanisms
such as RBAC and Attributed-Based Access Control (ABAC).

• API security: Protecting the Kubernetes API server, which acts as the central control unit
for the cluster, is crucial. Securing access to the API involves using SSL/TLS encryption, API
request auditing, and limiting IP access through network policies.

• Network security: Enforcing policies that control the flow of traffic between pods and external
networks helps prevent unauthorized access and limits the potential for lateral movement
within the cluster.

Monitoring and securing your application 319

• Pod security admission: This is a Kubernetes admission controller that enforces security
settings on pods at creation time, using predefined security profiles (privileged, baseline, and
restricted) to ensure compliance with best security practices and prevent privilege escalations.

• Secrets management: Kubernetes manages sensitive data (such as passwords and tokens) using
secrets. Proper handling and security of secrets, including encryption at rest and in transit, is
vital to protect sensitive information.

The importance of a layered security approach
Given the complexities of Kubernetes, a single security measure is often not enough. A layered
security approach that includes network segmentation, threat detection, secure access controls,
and ongoing vulnerability management is crucial for protecting Kubernetes environments
from threats.

In the next section, we will see a practical example of how to manage access to the weather app’s
resources within a specific namespace using RBAC.

Configuring Kubernetes RBAC for user and role management

Here is a step-by-step guide to configuring RBAC for the weather app:

1. Define a role that specifies the permissions for managing specific resources related to the weather
app, such as deployments, services, and pods within a designated namespace. The following
are the definitions for the weather-app-manager role:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: weather-app-for-real
 name: weather-app-manager
rules:
- apiGroups: ["", "apps"]
 resources: ["deployments", "replicasets", "pods", "services"]
 verbs: ["get", "list", "watch", "create", "update", "delete"]

Here are the definitions for the weather-app-user role:
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: weather-app-for-real
 name: weather-app-user

Deploying Real-World Projects with GitOps on Kubernetes320

rules:
- apiGroups: ["", "apps"]
 resources: ["pods", "services"]
 verbs: ["get", "list", "watch"]

In a production environment, user management might be handled outside Kubernetes through
OIDC, LDAP, or other authentication services. For demonstration purposes, this example
assumes that user credentials and certificates are managed by your Kubernetes administrator
or through a cloud provider’s IAM system.

2. Create a RoleBinding resource to grant the specified role to a user. This binding will apply
the weather-app-manager role to a user named weather-app-user:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: weather-app-manager-binding
 namespace: weather-app-for-real
subjects:
- kind: User
 name: weather-app-user
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: weather-app-manager
 apiGroup: rbac.authorization.k8s.io

3. Create another RoleBinding resource to grant the weather-app-user role to a user
named weather-app-operator:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: weather-app-operator-binding
 namespace: weather-app-for-real
subjects:
- kind: User
 name: weather-app-operator
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: weather-app-operator
 apiGroup: rbac.authorization.k8s.io

Monitoring and securing your application 321

4. Move the YAML files to the Step-01/deployment folder, push the changes to GitHub,
and synchronize the Argo CD app.

5. Verify that the weather-app-user and weather-app-operator users have the
necessary permissions using the kubectl auth can-i command:

$ kubectl auth can-i delete pods --as weather-app-operator -n
weather-app-for-real
$ kubectl auth can-i delete pods --as weather-app-manager -n
weather-app-for-real

The expected output should be as follows:
no
yes

6. We can list all roles and role bindings in the namespace, or cluster roles affecting the user, with
commands such as the following:

$ kubectl get
rolebindings,roles,clusterrolebindings,clusterroles
--all-namespaces -o yaml

For reference, the Step-03-Security directory in the repository accompanying this chapter
contains the YAML files with the role and role-binding definitions described so far.

Beware!
To avoid incurring unexpected expenses due to Azure resources, please remember to destroy
any undesired Azure provisioned resources.

This section concludes our journey through a real-world GitOps pipeline and deployment. While an
entire book might not be enough to delve deeply into every aspect of GitOps with Kubernetes, security,
and deployments, we believe that the sections covered so far provide a comprehensive overview. They
offer valuable insights into setting up an effective GitOps pipeline for your future Kubernetes projects.

Deploying Real-World Projects with GitOps on Kubernetes322

Summary
This chapter provided a comprehensive guide to deploying real-world projects on Kubernetes with
GitOps. By following the detailed instructions and examples, you learned how to set up a GitOps
and Kubernetes development environment, implement CI/CD processes, design for scalability and
efficiency, manage resources, and secure your application. This practical knowledge equipped you with
the skills needed to effectively implement these cutting-edge technologies in your projects, enhancing
your organizational capabilities and personal technical expertise.

As you now have a solid foundation in deploying and managing applications with GitOps on Kubernetes,
the next chapter will delve into observability with GitOps, providing essential strategies to monitor
and gain insights into your applications’ performance and health.

Part 4:
Operational Excellence

Through GitOps Best Practices

In this part, you will focus on achieving operational excellence through best practices in GitOps. You will
learn about integrating observability, enhancing security, managing financial operations, and preparing
for future trends in GitOps. This section aims to provide a comprehensive guide to maintaining high
standards of operational efficiency and security, while also addressing sustainability and financial
considerations, thus ensuring that your GitOps practices are both cutting edge and sustainable.

This part includes the following chapters:

• Chapter 12, Observability with GitOps

• Chapter 13, Security with GitOps

• Chapter 13, FinOps, Sustainability, AI, and Future Trends for GitOps

12
Observability with GitOps

Welcome to a focused exploration of integrating observability into Kubernetes environments through
the lens of GitOps practices. As cloud-native applications grow in complexity and scale, the ability to
observe, understand, and react to their behavior becomes increasingly critical. This chapter is designed
to bridge the gap between traditional operational methods and the dynamic, automated world of
GitOps, offering a pathway to more resilient, responsive, and efficient systems.

At the heart of this journey is the fusion of Site Reliability Engineering (SRE) principles with the
GitOps framework. GitOps, a term that has rapidly gained traction in the DevOps community,
leverages the power of Git as a single source of truth for declarative infrastructure and applications.
By applying GitOps, we not only automate and streamline deployment processes but also enhance
the observability and manageability of Kubernetes environments.

This chapter delves into the essential concepts of observability within the GitOps paradigm, distinguishing
between internal and external observability to provide a comprehensive understanding of system
states. Internal observability sheds light on the workings within the system—through metrics, logs,
and traces—while external observability focuses on the experience outside the system, such as user
interactions and external dependencies.

A significant emphasis is placed on SLO-driven performance management. Service-Level Objectives
(SLOs) serve as a quantifiable measure of performance and reliability, guiding our efforts in system
optimization and improvement. Coupled with the DevOps Research and Assessment (DORA)
metrics—deployment frequency, lead time for changes, change failure rate, and time to restore
service—this approach offers a robust framework for assessing and enhancing the effectiveness of
GitOps practices.

Furthermore, the chapter introduces the concept of distributed tracing, a critical component in
understanding the flow of requests through microservices architectures. Implementing distributed
tracing, with tools such as Linkerd within a GitOps workflow, provides deep insights into the interactions
and dependencies of system components, facilitating rapid diagnosis and resolution of issues.

Observability with GitOps326

Lastly, we address the setup of monitoring and alerting systems using cutting-edge tools such as
OpenTelemetry. This setup is crucial for proactive system management, allowing teams to detect
and respond to anomalies before they escalate into more significant issues.

This chapter mainly talks about theories and ideas. It’s a good idea to read everything from start to
finish. After you’re done, you’ll get to put some of these ideas together in a special way and try them
out yourself with a real example.

Embarking on this intermediate guide to observability with GitOps, you are taking a step toward
mastering the art and science of maintaining highly observable, performant, and reliable cloud-native
applications. Let’s dive in and unlock the full potential of your Kubernetes deployments.

As such, the following main topics are covered in the chapter:

• Exploring the fundamentals of SRE for GitOps and Kubernetes

• Understanding internal versus external observability

• Exploring SLO-driven multi-stage performance with DORA

• Implementing distributed tracing in GitOps with Linkerd

• Implementing monitoring in GitOps with tools such as Uptime Kuma and OpenTelemetry

• Looking at alerting strategies in a GitOps framework

• Scaling observability with GitOps

Exploring the fundamentals of SRE for GitOps and
Kubernetes
In the evolving landscape of cloud-native applications, the integration of SRE principles with GitOps
and Kubernetes represents a significant leap toward operational excellence. This section aims to provide
a concise overview of these foundational concepts, equipping you with the knowledge to apply SRE
practices effectively within your GitOps workflows and Kubernetes environments.

The intersection of SRE with GitOps

SRE is a discipline that incorporates aspects of software engineering into the realm of IT operations.
The core philosophy of SRE is to treat operations as if they were a software problem, focusing on
automating and optimizing system reliability and performance. Google introduced SRE to maintain
large-scale services with high availability and performance goals. The key principles include defining
clear SLOs, reducing organizational silos, embracing risk, and automating manual tasks.

Exploring the fundamentals of SRE for GitOps and Kubernetes 327

GitOps is a paradigm that applies Git’s version-control systems to manage infrastructure and application
configurations. It emphasizes automation, immutability, and declarative specifications, making it an
ideal framework for implementing SRE practices. GitOps enables teams to apply software development
principles such as code review, version control, and continuous integration/continuous deployment
(CI/CD) to infrastructure management, ensuring consistency, reliability, and speed.

SRE principles in a Kubernetes context

Kubernetes, an open source platform for automating deployment, scaling, and operations of application
containers, complements the GitOps approach by providing a dynamic and scalable environment for
managing containerized applications.

Integrating SRE principles into Kubernetes through GitOps involves several key practices:

• Automating Deployment and Scaling: Use GitOps to automate the deployment of Kubernetes
resources and applications, ensuring they meet predefined SLOs. Automating scaling decisions
based on traffic patterns or system load helps maintain performance and reliability.

• Error Budgets and Risk Management: Define error budgets as part of your SLOs to balance
the rate of change with system stability. GitOps can help enforce these budgets by automating
rollback or deployment procedures based on error budget consumption.

• Monitoring and Observability: Implement comprehensive monitoring and observability
frameworks to track the health of your services. Kubernetes offers built-in tools such as
Prometheus for monitoring and Grafana for visualization, which can be integrated into your
GitOps pipeline for real-time insights and alerting.

• Incident Management: Automate incident response within your GitOps workflow. Use
Kubernetes’ self-healing features, such as auto-restarting failed containers and rolling updates,
to minimize downtime and maintain service availability.

The integration of SRE principles with GitOps and Kubernetes offers a powerful approach to managing
cloud-native applications. By focusing on automation, monitoring, and reliability, teams can achieve
higher levels of efficiency and performance. This foundational knowledge serves as a stepping stone
toward mastering the complexities of modern IT operations, enabling you to build and maintain
resilient and scalable systems in an ever-changing technological landscape.

In the next section, we look at the difference between internal and external observability and how to
achieve optimal system performance by balancing the two observabilities.

Observability with GitOps328

Understanding internal (white box) versus external (black
box) observability
Understanding the nuances of internal versus external observability is crucial for effectively managing
and optimizing cloud-native applications. This distinction guides how we monitor and interpret the
behavior of systems deployed using GitOps practices in Kubernetes environments. Here, we delve
into what constitutes internal and external observability, their respective roles, and how to leverage
both to achieve a comprehensive view of your system’s health and performance.

Internal or white box observability explained

Internal observability focuses on the metrics, logs, and traces that are generated from within the
system itself. It’s akin to looking under the hood of a car while it’s running to gauge the health and
performance of its engine and other components. In the context of Kubernetes and GitOps, internal
observability involves the following:

• Metrics: Numerical data that represents the state of your system at any given moment. This
could include CPU usage, memory consumption, network I/O, and more.

• Logs: Text records of events that have occurred within your system. Logs are invaluable for
debugging issues and understanding the sequence of events leading up to an incident.

• Traces: Detailed information about requests as they flow through your system, highlighting
how different components interact and where bottlenecks or failures occur.

To make it clear what is meant by internal in this context, Figure 12.1 has been created. However,
before explaining the diagram in detail, the framework should be explained. This chapter is not
about explaining tools such as OpenTelemetry (see [1] in the Further reading section at the end of the
chapter), Grafana Loki [2], Prometheus [3], or Jaeger [4]. Nor is it about the detailed workings of
how OpenTelemetry functions and how best to configure it – that would require a chapter or even a
book of its own. Later in the chapter, the basic functionality of OpenTelemetry will be outlined, along
with the necessary context for GitOps. Therefore, we will view Figure 12.1 as a black box, focusing on
what happens in a Kubernetes cluster and how internal observability relates to it.

Understanding internal (white box) versus external (black box) observability 329

Figure 12.1: Internal observability with OpenTelemetry

Important note – logs format
To ensure that collected system and application logs (Figure 12.1) can be effectively utilized, they
must be in a standardized and structured format. This format should enable the easy extraction
and analysis of relevant information. The analyzed data can then be translated into concrete
SLOs that help monitor and ensure the performance and reliability of services.

Here’s a brief classification of the tools that will serve as endpoints in Figure 12.1:

• OpenTelemetry is a unified observability framework for collecting, processing, and exporting
telemetry data (logs, metrics, and traces) to help understand software performance and behavior

• Grafana Loki is a log aggregation system optimized for storing and querying massive amounts
of log data efficiently, integrating seamlessly with Grafana for visualization

• Prometheus is an open source monitoring system with a powerful query language designed
to record real-time metrics in a time-series database

• Jaeger is a distributed tracing system that enables you to monitor and troubleshoot transactions
in complex distributed systems

In our example, everything runs within a Kubernetes cluster. For instance, we have a web app, such
as an online store, which generates application logs such as which user has logged in, system logs
such as unexpected shutdowns, metrics such as the CPU and RAM usage of individual containers,
and traces that map the journey of requests through the application’s components (1 in Figure 12.1).

Observability with GitOps330

Then, the OpenTelemetry Collector (2 in Figure 12.1) gathers metrics, logs, and traces and enriches
them with relevant data such as timestamps, service names, and environment details. Subsequently,
the exporter, which is part of the Collector, makes logs, metrics, and traces available to the appropriate
endpoints (3 in Figure 12.1).

For example, the logs are pushed to Grafana Loki, which can then be used by Grafana as a database.
The metrics are pushed to Prometheus, which can also serve as a database for Grafana. The traces are
pushed to Jaeger, which can likewise act as a database for Grafana. This enables the construction of
observability dashboards and alerts in Grafana, providing comprehensive insights into the system’s
performance and health.

Of course, one could argue that the nodes can be globally distributed, and the collection of logs can
also occur across distributed clusters, and so on.

However, the key understanding here is that internal refers to the production of logs, metrics, and
traces by the running pods on the nodes.

I hope it has become clear at this point what is meant by internal and that everything here pertains
to the system level on the nodes, the application logs that are written on the nodes, or the network
overlay level between the nodes through which packets are sent (service mesh).

External or black box observability defined

External observability, on the other hand, is concerned with understanding the system from an
outsider’s perspective, primarily focusing on the experience of the end users. It measures the output of
your system and how changes within the system affect those outputs. Key aspects include the following:

• User Experience Metrics: These metrics gauge the responsiveness and reliability of your
application from the user’s viewpoint, such as page load times, transaction completion rates,
and error rates.

• Synthetic Monitoring: Simulated user interactions with your application to test and measure
its performance and availability from various locations around the world.

• Dependency Checks: Monitoring the health and performance of external services your
application relies on. This helps in identifying whether an issue within your system is due to
an external dependency.

This section focuses on examining external monitoring. To simplify it for better visualization, we
use a service called Uptime Kuma [5] in Figure 12.2. For instance, it runs on a Kubernetes cluster
and monitors a web app, such as an online store, through a URL accessible on the internet. For our
example, to better illustrate the external aspect, we use the packthub website.

Understanding internal (white box) versus external (black box) observability 331

Getting external observability means using system-wide metrics that are not part of the core functionality
of our application. This includes monitoring external services and third-party components such as
networking and CPU usage. For example, within a Kubernetes cluster, an internal service in the same
namespace can be directly monitored. Alternatively, in a different namespace, monitoring can be done
via internal DNS names. This approach does not operate at the system level of the nodes but through
permitted accesses in the overlay network using a service mesh with kube-proxy

Important note
Uptime Kuma is a self-hosted monitoring tool that can run on a Kubernetes cluster to keep
tabs on services such as web applications. By monitoring accessible URLs over the internet,
such as an online store, it provides insights into the uptime and performance of these services
from an external perspective. This external monitoring extends beyond merely watching over
system metrics at the node level, enabling the observation of services across namespaces through
internal DNS names, facilitated by the Kubernetes networking model and service meshes.

In Figure 12.2, a simple HTTP(s) check is set up, expecting a 200–299 code. This allows for external
monitoring of a site and setting up alerts for when the site goes down, the certificate expires, or the
response time increases.

Figure 12.2: External observability with Uptime Kuma

In Figure 12.3, you can see the uptime, which is at 100%. Additionally, you can see when the certificate
expires and what the response or average response time is.

Observability with GitOps332

Figure 12.3: External observability with Uptime Kuma – dashboard part 1

The second part of the dashboard (Figure 12.4) displays the response time for a specific interval, as
well as the current Up status, which is queried every 60 seconds and returns a 200 code.

Figure 12.4: External observability with Uptime Kuma – dashboard part 2

Exploring SLO-driven multi-stage performance with DORA 333

At this point, it should hopefully have been clarified what is meant by external and how this can
be implemented with the help of tools such as Uptime Kuma. This allows for the determination of
Service Level Agreements (SLAs), which, depending on the criticality or contract, can be extremely
important. Understanding this with alerting is also crucial.

Balancing internal and external observability

To achieve optimal system performance and reliability, it’s essential to balance internal and external
observability. Internal observability allows you to diagnose and resolve issues within your infrastructure
and applications, while external observability ensures that those fixes translate into a better user
experience. The integration of GitOps practices into Kubernetes enhances this balance by automating
the deployment and management of observability tools and practices:

• Implementing Observability in GitOps: Use Git repositories to define your observability
stack, ensuring that monitoring, logging, and tracing tools are automatically deployed and
configured across all environments consistently.

• Automated Feedback Loops: Establish automated feedback loops that integrate observability
data into your GitOps workflows. This can help in automatically rolling back changes that
negatively impact system performance or user experience.

In conclusion, mastering the interplay between internal and external observability is key to maintaining
and optimizing cloud-native applications. By leveraging both perspectives, teams can ensure that their
systems are not only running smoothly internally but are also delivering the desired outcomes and
experiences for their users. Integrating these observability practices into your GitOps and Kubernetes
strategies enables a more proactive, data-driven approach to system management and improvement.

The next section is about useful metrics that can be collected to gain insights into the deployment
across multiple stages or clusters.

Exploring SLO-driven multi-stage performance with DORA
In the realm of cloud-native applications, particularly those managed through GitOps in Kubernetes
environments, the adoption of SLOs and the integration of DORA metrics offer a strategic framework
for achieving and sustaining high performance. This approach combines the precision of SLOs with
the insights provided by DORA metrics to guide continuous improvement across multiple stages or
clusters of application development and deployment.

At this point (Figure 12.5), it is about observing the metrics, which are defined by the company as
indicators such as latency, error rate, and so on, and how GitOps helps to measure performance and
reliability throughout the CI/CD procedure.

Observability with GitOps334

Figure 12.5: How GitOps with DORA and SLOs contribute to observability

The performance and efficiency of an application or its entire stack can be evaluated over several
Kubernetes clusters. GitOps plays a crucial role not just in facilitating the distributed deployment of
applications throughout these clusters but also in enabling a more profound comprehension of system
behaviors, thereby fostering ongoing enhancements in the processes of software delivery.

Let’s first understand what an SLO is and the role of DORA:

• Understanding SLOs: SLOs are specific, measurable goals that reflect the desired level of service
performance and reliability. SLOs are derived from Service-Level Indicators (SLIs), which are
the quantitative measures of service levels, such as latency, error rates, or uptime. Setting SLOs
involves determining the acceptable thresholds for these indicators, and balancing the need
for reliability with the desire for innovation and rapid development.

• The Role of DORA Metrics: The DORA metrics (deployment frequency, lead time for
changes, change failure rate, and time to restore service) serve as key indicators of DevOps
performance. These metrics provide insights into the efficiency and effectiveness of software
delivery processes, helping teams to identify areas for improvement. In a GitOps context, these
metrics can be closely monitored to ensure that the automation and orchestration provided by
GitOps workflows are optimizing the software delivery pipeline.

Integrating SLOs with DORA metrics

The integration of SLOs with DORA metrics creates a powerful framework for managing performance
in Kubernetes environments:

• Deployment Frequency and SLOs: By aligning deployment frequency with SLOs, teams can
ensure that they are releasing new features and updates at a pace that does not compromise
service reliability.

Implementing distributed tracing in GitOps with Linkerd 335

• Lead Time for Changes and SLOs: Monitoring the lead time for changes in relation to SLO
performance can help teams streamline their development and deployment processes, ensuring
that changes are made swiftly without affecting service quality.

• Change Failure Rate and SLOs: Keeping the change failure rate within the thresholds defined
by SLOs ensures that most changes enhance rather than detract from service performance.

• Time to Restore Service and SLOs: In instances where service levels drop below SLO thresholds,
the time to restore service metric becomes crucial. Quick restoration not only meets SLO
requirements but also minimizes disruption to end users.

Applying a multi-stage approach

A multi-stage approach to SLO-driven performance leverages DORA metrics at each stage of the
GitOps workflow:

• Planning: Use SLOs to define performance and reliability goals at the outset of a project or
feature development

• Development: Integrate DORA metrics into the development process to track progress and
ensure that coding practices align with SLOs

• Deployment: Automate deployment processes through GitOps to maintain a high deployment
frequency while adhering to SLO-defined performance criteria

• Observation: Continuously monitor SLIs and DORA metrics post-deployment to assess whether
SLOs are being met and identify areas for improvement

Incorporating SLO-driven performance strategies and DORA metrics into GitOps and Kubernetes
practices offers a structured path to enhancing the reliability, efficiency, and quality of cloud-native
applications. This approach not only optimizes operational processes but also fosters a culture of
continuous improvement, ensuring that organizations can adapt and thrive in the fast-paced world of
cloud computing. To incorporate this feedback loop, the SRE team should collaborate with application
developers to obtain end-to-end improvement.

The following section provides an overview of integrating traces with GitOps, which improves the
observability and reliability of cloud-native applications by automating the deployment and configuration
of Linkerd via GitOps practices.

Implementing distributed tracing in GitOps with Linkerd
In the complex ecosystem of cloud-native applications, understanding the intricate web of service
interactions is crucial for diagnosing issues, optimizing performance, and ensuring reliability.
Distributed tracing emerges as a vital tool in this context, offering visibility into the flow of requests
across microservices.

Observability with GitOps336

Important note – tracing OpenTelemetry versus Linkerd
While OpenTelemetry was mentioned previously for distributed tracing, it is important to
explain the difference between OpenTelemetry and Linkerd and their preferred use cases.
OpenTelemetry is a collection of tools, APIs, and SDKs used to instrument, generate, collect,
and export telemetry data (metrics, logs, and traces) to help understand software performance
and behavior.

Linkerd is preferred when you need a robust service mesh to manage and observe service-to-
service communication within a Kubernetes environment, particularly when you want seamless
integration without modifying your application code.

When integrated into a GitOps workflow with Kubernetes, tools such as Linkerd can streamline the
deployment and management of distributed tracing, enhancing observability and operational efficiency:

• Distributed Tracing: Distributed tracing provides a detailed view of how requests traverse
through the various services in a microservices architecture. Each request is tagged with a unique
identifier, enabling the tracking of its journey and interactions across services. This visibility is
invaluable for pinpointing failures, understanding latencies, and optimizing service interactions.

• Why Linkerd for Distributed Tracing?: Linkerd is a lightweight, open source service mesh designed
for Kubernetes. It provides critical features such as secure service-to-service communication,
observability, and reliability without requiring modifications to your code. Linkerd’s support
for distributed tracing allows developers and operators to gain insights into the request path,
latency contributions by various services, and the overall health of the service mesh.

Integrating Linkerd into your GitOps workflows involves defining the service mesh configuration
and the distributed tracing settings within your Git repository. This GitOps approach ensures that
the deployment and configuration of Linkerd are fully automated, consistent, and traceable across all
environments. Let’s break down the integration process:

• Installation and Configuration:

• Define Linkerd Installation: Use Git to manage the declarative specifications for Linkerd’s
installation and configuration, ensuring that it aligns with your organization’s security and
observability requirements.

• Automate Deployment: Utilize GitOps with Argo CD to automate the deployment of Linkerd
into your Kubernetes clusters. This automation includes the installation of the Linkerd control
plane and the injection of Linkerd sidecars into your service pods.

• Configure Distributed Tracing:

• Trace Collector Integration: Specify configurations for integrating Linkerd with a distributed
tracing system (such as Jaeger or Zipkin) within your Git repository. This includes setting up
Linkerd to send trace data to the collector.

Implementing distributed tracing in GitOps with Linkerd 337

• Service Annotation: Annotate your Kubernetes service manifests to enable tracing with
Linkerd. These annotations instruct Linkerd sidecars to participate in distributed tracing by
forwarding trace data.

• Visualization and Analysis:

• Leverage Tracing Dashboards: Utilize the integrated tracing dashboards provided by Jaeger
(Figure 12.6) or Zipkin to visualize and analyze trace data. These tools offer powerful capabilities
to filter, search, and drill down into the details of individual traces.

Figure 12.6: Jaeger UI for distributed tracing of service calls in a Kubernetes cluster

Implementing distributed tracing with Linkerd in a GitOps framework significantly enhances
the observability and reliability of cloud-native applications. By automating the deployment and
configuration of Linkerd through GitOps, teams can ensure a consistent and scalable approach to
monitoring microservices interactions. This capability is essential for maintaining high-performance,
resilient applications in the dynamic landscape of Kubernetes environments.

In the next part of the chapter, we will look at how tools such as Uptime Kuma and OpenTelemetry
can help to enable both external and internal observability with the help of GitOps.

Observability with GitOps338

Implementing monitoring in GitOps with tools such as
Uptime Kuma and OpenTelemetry
In the dynamic and distributed world of cloud-native applications, effective monitoring and alerting are
essential for ensuring system reliability, performance, and security. Integrating these practices within
a GitOps framework not only streamlines the deployment and management of monitoring tools but
also aligns operational practices with the principles of Infrastructure as Code (IaC). This approach,
particularly when leveraging powerful tools such as OpenTelemetry, provides a cohesive and automated
methodology for observing system behaviors and responding to incidents from the internal point of
view. But you also have tools, such as Uptime Kuma, that enable the external observability of services.

Monitoring in a GitOps framework involves collecting, analyzing, and displaying metrics and logs from
across your infrastructure and applications. This data-driven approach allows teams to understand
system performance, identify trends, and detect anomalies. By defining monitoring configurations
and dashboards as code within a Git repository, teams can apply version control, review processes,
and automated deployments to monitoring infrastructure, ensuring consistency and reliability. The
distribution of these dashboards, for example, can be deployed across an N number of clusters using
GitOps.

Uptime Kuma – the external watchdog for your online services

Uptime Kuma is an open source monitoring tool designed to track the uptime, downtime, and
performance of various services and websites. It’s a self-hosted solution, meaning it runs on your own
hardware or cloud infrastructure, providing full control over your monitoring environment. Uptime
Kuma offers a user-friendly interface and is becoming a popular choice among developers and system
administrators for its simplicity, flexibility, and cost-effectiveness. Uptime Kuma operates by sending
requests to your services or websites at regular intervals and monitoring their responses to determine
their availability and response time.

In comparison, Datadog and Prometheus with Grafana offer different approaches to monitoring.
Datadog is a comprehensive, cloud-based monitoring and analytics platform that provides end-to-end
visibility into the performance of your applications, infrastructure, and logs. It is particularly known for
its integration capabilities with a wide range of third-party services and its advanced analytics features.

Prometheus, on the other hand, is an open source monitoring and alerting toolkit designed primarily
for reliability and scalability. It excels at collecting and storing time-series data, which can then be
visualized using Grafana, a powerful open source platform for monitoring and observability. Grafana
allows users to create customizable dashboards to visualize metrics collected by Prometheus. While
Prometheus supports monitoring various protocols such as HTTP, HTTPS, DNS, TCP, and ICMP ping
through the use of exporters such as Blackbox Exporter, it requires additional setup and configuration
to achieve this.

Implementing monitoring in GitOps with tools such as Uptime Kuma and OpenTelemetry 339

In the following subsections, we take a look at various key features and strengths of Uptime Kuma in
order to gain a better understanding of the tool.

Key Features

The key features of Uptime Kuma are as follows:

• Multi-Protocol Support: Uptime Kuma supports monitoring via HTTP(S), TCP, DNS, and more

• Customizable Alerts: Users can configure alerts based on various criteria and choose their
preferred notification methods

• Performance Metrics: Tracks response times, allowing users to monitor the performance of
their services in addition to their availability

• SSL Certificate Monitoring: It can monitor the expiration of SSL certificates, alerting users
before their certificates expire

• Ping Monitoring: Offers the ability to monitor the availability and latency of servers using
ICMP ping

Core functionalities

Here’s a breakdown of its core functionalities and how it works:

• Monitoring Services: Uptime Kuma can monitor various types of services including HTTP(S)
websites, TCP ports, HTTP(s) endpoints with specific expected statuses, DNS records, and
more. It allows users to configure the monitoring intervals, timeouts, and specific conditions
that define the availability of each service.

• Alerts and Notifications: When a service goes down or meets specific conditions set by the user
(e.g., high response time), Uptime Kuma can send alerts through various channels. It supports
numerous notification methods including email, SMS (through third-party services), Telegram,
Discord, Slack, and more, ensuring that users are promptly informed about status changes.

• Status Page: Uptime Kuma provides a public or private status page that displays the uptime
status of all monitored services. This page can be used to communicate with team members
or customers about the current status of various services, enhancing transparency and trust.

• Detailed Reporting: It offers detailed reports and analytics on the uptime, downtime, and
response times of monitored services. These insights can help identify patterns, potential issues,
and areas for improvement in your infrastructure or application performance.

• Easy Setup and Configuration: Setting up Uptime Kuma is straightforward. It can be
deployed on various platforms including Docker, which makes it easy to install and run on
most environments. The web-based interface provides a simple and intuitive way to add and
configure the services you want to monitor.

Observability with GitOps340

Uptime Kuma is a versatile and user-friendly tool for monitoring the uptime and performance of
websites and services. Its self-hosted nature gives users full control over their monitoring setup, making
it a secure and customizable option for businesses and individual users alike. With its broad protocol
support, flexible alerting system, and detailed analytics, Uptime Kuma provides a comprehensive
solution for ensuring the reliability and performance of online services.

OpenTelemetry – a unified observability framework

OpenTelemetry is an open source observability framework designed to provide comprehensive
insights into the behavior of software applications. It achieves this by collecting, processing, and
exporting telemetry data – specifically logs, metrics, and traces. OpenTelemetry aims to make it easy
for developers and operators to gain visibility into their systems, helping to debug, optimize, and
ensure the reliability of applications across various environments.

Key features

At the core of OpenTelemetry is instrumentation, a process that involves integrating OpenTelemetry
libraries or agents into your application code or runtime environment. This integration allows
OpenTelemetry to capture detailed telemetry data from the application:

• Manual Instrumentation: Developers can manually instrument their code using the OpenTelemetry
API. This involves adding specific code snippets that generate telemetry data such as custom
metrics, logs, or traces for specific operations within the application.

• Automatic Instrumentation: OpenTelemetry provides auto-instrumentation agents that can be
attached to an application. These agents automatically capture telemetry data without requiring
modifications to the application code, ideal for legacy systems or for common libraries and
frameworks.

OpenTelemetry collects three main types of telemetry data:

• Logs: Records of discrete events that have occurred within the application, providing detailed
context about operations, errors, and other significant activities

• Metrics: Numerical data that represents the measurements of different aspects of the application
and system performance over time, such as request rates, error counts, and resource utilization

• Traces: Detailed information about the execution paths of transactions or requests as they travel
through the application and its services, showing how different parts of the system interact

Implementing monitoring in GitOps with tools such as Uptime Kuma and OpenTelemetry 341

Core functionalities

Here’s a breakdown of its core functionalities and how it works:

1. Processing and Enrichment: Once telemetry data is collected, OpenTelemetry can process
and enrich this data. Processing may include aggregating metrics, filtering logs, or adding
additional context to traces to make the data more useful and meaningful. This step is crucial
for reducing noise and enhancing the relevance of the data collected.

2. Exporting Data: OpenTelemetry supports exporting telemetry data to a wide range of backend
observability platforms where the data can be analyzed, visualized, and monitored. It provides
exporters for popular monitoring solutions, cloud-native observability tools, and custom
backends. The OpenTelemetry Collector, a component that can be deployed as part of your
infrastructure, plays a key role in this process. It can receive, process, and export telemetry
data from multiple sources, acting as a central hub for observability data.

3. Analysis and Action: The final step in the OpenTelemetry workflow involves analyzing the
exported telemetry data using observability platforms. These platforms allow teams to visualize
data through dashboards, set up alerts based on specific conditions, and derive insights that
can inform troubleshooting, performance optimization, and decision-making processes.

Implementing monitoring with OpenTelemetry

Here’s how you can implement monitoring with OpenTelemetry in GitOps:

• Define Monitoring Configuration as Code: Store OpenTelemetry Collector configurations
in your Git repository, specifying how data is collected, processed, and exported. This setup
ensures that monitoring configurations are subject to the same review and deployment practices
as application code.

• Automated Deployment of Monitoring Infrastructure: Use GitOps pipelines to automatically
deploy and update OpenTelemetry Collectors and other monitoring components across your
Kubernetes clusters. This automation guarantees that monitoring infrastructure is consistently
deployed across all environments.

• Instrumentation of Applications: Incorporate OpenTelemetry SDKs into your application code
to capture detailed performance metrics and traces. Managing SDK configurations through
Git allows for controlled updates and consistency across services.

OpenTelemetry provides a unified and vendor-neutral framework to capture, process, and export
telemetry data, enabling developers and operators to achieve deep observability in their applications.
By streamlining the collection of logs, metrics, and traces, and making this data easily exportable to
analysis tools, OpenTelemetry facilitates a better understanding of software performance and behavior,
ultimately improving the reliability and efficiency of applications.

Observability with GitOps342

OpenTelemetry offers a single, vendor-agnostic framework for collecting traces, metrics, and logs
from applications and infrastructure. It simplifies the instrumentation of code and the deployment
of agents, providing a standardized way to gather telemetry data that can be analyzed by various
observability platforms.

The next part deals with the possible alerting strategies that can be integrated into a GitOps framework.

Looking at alerting strategies in a GitOps framework
Effective alerting is about notifying the right people with the right information at the right time.
Within a GitOps framework, alerting rules and notification configurations are defined as code and
managed alongside application and infrastructure configurations:

• Define Alerting Rules as Code: Store definitions for alerting rules within your Git repository,
specifying the conditions under which alerts should be triggered. This approach enables version
control and automated deployment of alerting rules, ensuring that they are consistently applied.

• Integration with Notification Channels: Configure integrations with notification channels
(such as email, Slack, or PagerDuty) as part of your GitOps workflows. This ensures that alert
notifications are reliably sent to the appropriate teams or individuals.

• Feedback Loops for Continuous Improvement: Implement feedback loops that use monitoring
and alerting data to inform development and operations practices. Incorporating this feedback
into your GitOps processes facilitates continuous improvement of both application performance
and operational efficiency.

Figure 12.7 visualizes how GitOps can be used with Argo CD to deploy rules and notification channels
as code across different clusters:

Figure 12.7: Continuous improvement with GitOps and observability

Looking at alerting strategies in a GitOps framework 343

The developers or platform engineers can use the information from the observation in the form of a
feedback lock to optimize their applications. This can then be used, for example, to define new rules
if something has been overlooked and, thanks to the GitOps approach, it can be rolled out across an
N number of clusters.

Some relevant alerting rules

Here are a few insights from different projects on how platform engineers’ teams define rulesets and
deploy Kubernetes clusters everywhere to help developers better understand their applications and
live the SRE approach:

• Dynamically Adjust Thresholds: Implement rules that adjust thresholds based on historical
data or current load to minimize false alarms and increase the relevance of notifications.

• Monitor Dependencies: Set up rules to monitor dependencies between services and components
to proactively identify potential issues before they impact user experience.

• Ensure Log Completeness: Establish rules that check for the completeness and structuring of
logs. This helps improve the effectiveness of troubleshooting and analysis.

• Resource Utilization Alerts: Create rules to monitor the utilization of resources such as CPU,
memory, and disk space. Set alerts for when usage approaches critical thresholds, indicating
potential overcommitment or resource exhaustion.

• Latency Monitoring: Implement rules to monitor the latency of critical operations or API
calls. High latency can be an early indicator of system strain or overcommitment in processing
resources.

• Node Overcommitment in Kubernetes: It’s one of my absolute favorite alerting rules, which
has already helped an enormous number of teams, especially those with many small, tailored
clusters. It helps prevent performance degradation and ensure the reliability of applications
running on Kubernetes by monitoring and alerting on node overcommitment. By setting up
alerting rules for node overcommitment, teams can detect when the demand on a node exceeds
its capacity, allowing them to take preemptive actions to prevent performance degradation and
ensure that applications remain reliable. This approach not only improves system stability but
also supports optimal resource utilization, making it a highly valuable practice for maintaining
the health and efficiency of Kubernetes clusters.

Observability with GitOps344

Diving deeper into node overcommitment in Kubernetes

I’ll break down the node overcommitment in Kubernetes rule a little further here so that it becomes
clear why such a simple rule and the associated alerting are attached to it:

• Sustainability in Resource Utilization: Monitoring node overcommitment can lead to more
efficient use of computational resources, reducing energy consumption and contributing to the
sustainability goals of an organization. Efficient resource utilization minimizes unnecessary
workloads and idle resources, aligning with eco-friendly practices.

Important note
FinOps, or Financial Operations, is a practice that combines systems, best practices, and
culture to help organizations manage and optimize cloud costs more effectively. It focuses on
creating a collaborative cross-functional team approach that brings financial accountability
to the variable spend model of the cloud, enabling faster, more informed business decisions.

• FinOps and Cost Optimization: By preventing overcommitment and optimizing resource
allocation, organizations can adhere to FinOps principles, ensuring that cloud spending is
aligned with business value. Alerting on node overcommitment helps avoid over-provisioning
and underutilization, leading to significant cost savings and more predictable cloud expenses.

• Enhanced Application Performance: Proactively managing node resources ensures that
applications have access to the necessary computational power when needed, enhancing user
experience and application performance.

• Reliability and Availability: Avoiding the overcommitment of nodes contributes to the overall
reliability and availability of services, as resources are balanced, and potential points of failure
are minimized.

• Scalability: Effective monitoring and management of node overcommitment prepare the
infrastructure for scalability, allowing for smooth scaling operations that accommodate growing
workloads without compromising performance or incurring unnecessary costs.

Integrating these considerations into Kubernetes resource management practices not only addresses
immediate operational concerns but also positions organizations to better align their technical strategies
with environmental sustainability, financial accountability, and long-term scalability.

Adopting monitoring and alerting strategies within a GitOps framework provides a systematic and
automated approach to observability. Leveraging tools such as OpenTelemetry within this framework
enhances the granularity and utility of telemetry data, driving more informed decision-making and
operational resilience. This methodology not only ensures high levels of system performance and
reliability but also fosters a culture of continuous improvement and operational excellence in cloud-
native environments.

Scaling observability with GitOps 345

The last section of the chapter is about how scaling observability can be achieved with the help of GitOps.

Scaling observability with GitOps
As organizations grow and their technology stacks become more complex, ensuring effective
observability at scale becomes a formidable challenge. Cloud-native architectures, microservices, and
dynamic environments, all managed through practices such as GitOps, introduce a level of complexity
that traditional observability strategies struggle to accommodate. This section explores the advanced
practices, tooling, and organizational strategies necessary to achieve comprehensive observability at
scale, ensuring that systems are not only observable but also manageable, regardless of their size and
complexity.

Scaling observability components

The foundation of observability at scale lies in efficiently managing the three pillars: logging, monitoring,
and tracing. Each of these components must be scaled thoughtfully to handle the vast amounts of data
generated by large, distributed systems without compromising the speed or accuracy of insights derived
from the data. Efficient data management is not only essential for technical performance but also for
cost management, as the volume of data stored and analyzed can significantly impact project expenses.

In the following, we look at how logging, monitoring, and tracing at scale behave:

• Logging at Scale: Implement structured logging to standardize log formats across services,
making them easier to aggregate and analyze. Utilize centralized logging solutions that can
handle high volumes of data, providing powerful search and analysis tools to quickly derive
insights from logs.

• Monitoring at Scale: Leverage scalable monitoring solutions that support high-frequency data
collection and can dynamically adjust to the changing topology of cloud-native environments.
Adopt service meshes such as Linkerd or Istio, which provide built-in observability features
for Kubernetes clusters, reducing the overhead on individual services.

• Tracing at Scale: Distributed tracing becomes critical in microservices architectures to track
the flow of requests across services. Solutions such as Jaeger, Zipkin, or those provided by
service meshes, integrated with OpenTelemetry, offer scalable tracing capabilities. Implement
trace sampling strategies to balance the granularity of trace data with the overhead of collecting
and storing that data.

Observability with GitOps346

Advanced tooling for observability at scale
Adopting the right tools is crucial for managing observability at scale. Tools such as Prometheus
for monitoring, Elasticsearch for logging, and OpenTelemetry for instrumentation are chosen
because they are open source, follow OpenTelemetry guidelines, and provide robust, community-
supported solutions. When integrated into a GitOps workflow, these tools ensure that observability
infrastructure can be deployed, scaled, and managed as efficiently as the applications and
services they monitor.

We can use GitOps practices to dynamically configure observability tools based on the current
needs and scale of the system. This includes the automatic scaling of data storage, processing
capabilities, and the deployment of additional monitoring or tracing agents as the system grows.

Another good idea is to incorporate AI and ML techniques for anomaly detection and predictive
analytics, helping to sift through the noise in large datasets and identify emerging issues before
they impact users.

In the next subsection, we will examine how to cultivate a culture of observability through cross-
functional collaboration, continuous education, and strategic feedback loops.

Organizational strategies for effective observability

Observability at scale is not just a technical challenge but also an organizational one. Cultivating
a culture of observability requires involvement from across the organization, from developers to
operations to business stakeholders:

• Cross-Functional Teams: Encourage collaboration between development, operations, and
business teams to ensure that observability goals align with business objectives and operational
requirements. This collaboration fosters a shared understanding of what needs to be observed
and why.

• Education and Advocacy: Invest in training and resources to ensure that teams understand
the importance of observability and how to effectively leverage tools and practices at scale.
Advocacy for observability as a fundamental aspect of system design and operation ensures
its integration throughout the development life cycle.

• Continuous Feedback Loops: Establish feedback loops that bring observability data back into
the development process, informing decision-making and driving continuous improvement.
This includes using observability data to refine performance baselines, adjust alerting thresholds,
and prioritize development efforts.

Scaling observability with GitOps 347

Achieving observability at scale requires a comprehensive approach that extends beyond just tooling to
encompass organizational practices and culture. By integrating scalable observability tools with GitOps
workflows, leveraging advanced data processing techniques, and fostering a culture of collaboration and
continuous improvement, organizations can ensure that their systems remain observable, manageable,
and performant, regardless of scale. This holistic approach not only addresses the technical challenges
of observability at scale but also aligns observability practices with broader business objectives, driving
value and competitive advantage in today’s dynamic and complex technology landscape.

In the next part, I’ll share insights to help you decide which tools might be useful for your setup.

Selecting the right observability tools for specific use cases

Choosing the right observability tools depends on your specific monitoring needs and desired outcomes.
It’s often not easy, as many use cases sound similar but have different requirements. Here are some
insights to help you combine different tools for the optimal observability stack. The goal is not to find
the perfect tool but to focus on the different layers of observability. To clarify the understanding and
different requirements for observability, I’ve added possible stakeholders. This list is not exhaustive
but includes key stakeholders and their interests based on various real projects. I hope these insights
will help you get the most out of your observability setup.

Important note
This section focuses less on GitOps itself and more on when to use which tools, providing a
comprehensive view of observability. Many questions may arise, such as, “I understand GitOps
with observability, but which tools should I use and when?” By exploring various use cases, we
hope to give you a sense of which tool is the right one for each specific scenario.

Let’s explore some common scenarios and the tools that best fit each use case.

Monitoring the availability of applications and the expiry of certificates:

• Use Case: You want to ensure your application is available, assign SLAs, monitor SSL certificate
expiry, and receive alerts.

• Recommended Tool: Uptime Kuma

• Explanation: Uptime Kuma is ideal for this scenario as it supports multi-protocol monitoring
(HTTP(S), TCP, DNS), and provides customizable alerts for downtime and SSL certificate
expiration. It is user-friendly and cost-effective, making it a good choice for straightforward
uptime monitoring.

Observability with GitOps348

• Stakeholders:

 � Service Owner: Monitors overall service health to ensure that all services are running

 � Developer: Understands how changes impact the user experience and diagnoses issues in
production

 � Customer: Ensures that the service meets the provided SLAs

Monitoring Resource Utilization and Application Logs:

• Use Case: You need to track metrics such as CPU, RAM, and storage usage, and analyze
application logs. You also want to be notified when these metrics exceed certain thresholds.

• Recommended Tools: Prometheus + Grafana-Stack + Alertmanager

• Explanation: Prometheus excels at collecting and storing time-series data, which includes
resource utilization metrics. Grafana-Stack not only provides robust visualization capabilities,
allowing you to create detailed dashboards, but also offers the ability to collect and enrich logs.
Alertmanager integrates with Prometheus to handle alerting based on the defined thresholds.

• Stakeholders:

 � Site Reliability Engineer: Monitors system health and resource usage to ensure reliability
and performance

 � Developer: Uses logs and metrics to debug and optimize application performance

 � DevOps Engineer: Automates monitoring and alerting to streamline operations

Detecting Unusual Application Behavior on Host System:

• Use Case: You want to be notified if an application performs unauthorized actions on the host
system, such as opening a shell.

• Recommended Tools: Falco + Prometheus + Alertmanager

• Explanation: Falco is a runtime security tool that detects anomalous behavior in your applications
and host systems. It integrates with Prometheus for monitoring and Alertmanager for handling
alerts, providing a comprehensive solution for detecting and responding to security threats.

• Stakeholders:

 � Security Team: Monitors and responds to potential security threats

 � System Administrator: Ensures system integrity and compliance

Scaling observability with GitOps 349

Tracing Packet Loss and Identifying Bottlenecks:

• Use Case: You need to understand why packets are being lost and where requests are experiencing
delays, without modifying the application code.

• Recommended Tools: Linkerd + Jaeger

• Explanation: Linkerd is a lightweight service mesh that provides observability into service-to-
service communication without requiring code changes. Jaeger is a distributed tracing system
that integrates with Linkerd to trace requests through your microservices, helping you identify
and optimize performance bottlenecks.

• Stakeholders:

 � Network Engineer: Diagnoses and resolves network-related issues

 � Developer: Identifies and fixes performance bottlenecks in the application

 � Site Reliability Engineer: Identifies and fixes performance bottlenecks to ensure system
reliability

Customizing and Enriching Logs via an SDK:

• Use Case: You want to adjust and enrich application logs using an SDK.

• Recommended Tool: OpenTelemetry

• Explanation: OpenTelemetry provides comprehensive support for collecting, processing, and
exporting telemetry data (logs, metrics, and traces). It allows for both manual and automatic
instrumentation of your code, enabling detailed customization and enrichment of logs.

• Stakeholders:

 � Developer: Customizes and enriches logs for better debugging and performance monitoring

 � Site Reliability Engineer: Customizes and enriches logs to ensure system reliability and
performance

All the tools mentioned are open source. This is important because using open source tools ensures
that we avoid vendor lock-in, rely on a strong community, and have the flexibility to contribute and
receive help as needed.

In the next section, let’s understand how observability with GitOps affects our daily work in the company.

Observability with GitOps350

Enterprise-level best practices with observability and GitOps

I don’t know whether these are really the best practices for enterprise. I can only say that what is shared
in this section is good practice that works in many different projects for us and share these insights
with you. In this section, I will provide detailed insights into how GitOps maximizes the efficiency
and effectiveness of our observability stack.

In the following, we look at how different stakeholders use the GitOps approach to generate added
value for themselves.

• Service Owner: GitOps allows service owners, responsible for multiple services across different
clusters, to define their Grafana dashboards once and roll them out as ConfigMaps across all
relevant clusters independently. This approach also applies to the alerts for their respective
services.

• Platform Teams: GitOps enables us, as a platform team, to deploy our monitoring stack
irrespective of the number of clusters. This capability allows us to efficiently monitor our
infrastructure and the services provided, expand the stack as needed, and maintain it effortlessly.

• Trainees: For instance, our trainees can define their own Grafana dashboards to integrate
sensors that measure the clearance height under bridges in Hamburg. These dashboards are
defined once and can then be rolled out across all necessary clusters.

• Service Providers: These are responsible for services such as RabbitMQ (message broker) on
multiple clusters and use the GitOps approach to deploy alert configurations across all clusters
and integrate them into their external alerting systems.

• Developers: These use a similar approach as the service providers to deliver their software with
the corresponding dashboards and alerts.

• Security Teams: An emerging but promising practice is involving security teams in observability
processes. However, this does not work because, for example, security teams in our projects
are used to regulating rules independently in the company’s interests. To achieve this, they use
their own tools, which cause additional overheads.

• FinOps Departments: This currently does not work because the observability topic and the
Kubernetes platform are both technically too complex. For example, creating budget alerts
over YAML manifests based on the calculated costs of a Namespace corresponding to a project
is challenging.

Currently, in most projects, platform teams handle security aspects by rolling out Falco rules and
Prometheus alert configurations, for instance, to detect unwanted syscalls such as shell openings on
a node, and trigger alerts accordingly. However, this often increases the responsibility burden and
can result in alerts not being thoroughly investigated.

Summary 351

The GitOps approach significantly enhances our observability practices by saving time and costs,
providing our stakeholders with the necessary autonomy, and boosting overall motivation. By creating
an environment where teams can manage their observability configurations without the constant
back-and-forth of tickets, we foster independence and a healthy error culture. Teams understand that
if something goes wrong, a simple commit revert will restore the previous state, making the process
more resilient and reliable. This approach transforms collaboration across different departments,
ensuring that observability is seamlessly integrated into our development and operational workflows.

Intrinsic motivation drives a fundamental technical understanding of observability within the company,
which is a significant advantage. This leads to better engagement and innovation. Empowering all
employees to contribute to and improve the observability stack makes the organization more resilient,
adaptable, and better prepared to tackle new challenges. This collaborative approach not only enhances
team efficiency but also promotes a culture of continuous improvement and shared responsibility.

And to be honest, I really like the way the culture changes! This is a point that we could not achieve
with traditional DevOps with CI/CD, although DevOps ironically describes exactly that of the culture.

Summary
This comprehensive chapter traversed the intricate landscape of observability within cloud-native
applications, emphasizing its critical role across various dimensions of GitOps and Kubernetes
environments. Starting with the foundational principles of SRE, we explored how these practices are
seamlessly integrated into GitOps workflows, enhancing the reliability and performance of Kubernetes
deployments. The distinction between internal and external observability was clarified, underscoring
the importance of a balanced approach for comprehensive system insight. We further delved into the
strategic implementation of SLO-driven performance metrics aligned with DORA indicators, offering
a structured framework for continuous improvement. Through the lens of Linkerd, we examined the
deployment of distributed tracing within GitOps, highlighting the enhanced visibility and diagnostic
capabilities it brings to microservices architectures. Monitoring and alerting strategies, empowered by
tools such as OpenTelemetry, were discussed to establish proactive incident management and system
health monitoring. Finally, scaling observability to meet the demands of growing and complex systems
was addressed, showcasing the necessity of advanced tooling, organizational strategies, and a culture
that prioritizes observability. This chapter encapsulated a holistic view of implementing and scaling
observability in modern cloud-native ecosystems, ensuring that systems are not only observable but
also resilient and efficient.

But the most important thing to learn should hopefully be that observability is versatile and not just
logs, metrics, and traces!

In the next chapter, we will look at the security part with GitOps and take a look at the attack possibilities
with Argo CD and how these can be minimized.

Observability with GitOps352

References
• [1] https://opentelemetry.io

• [2] https://github.com/grafana/loki

• [3] https://github.com/prometheus/prometheus

• [4] https://github.com/jaegertracing/jaeger

• [5] https://github.com/louislam/uptime-kuma

https://opentelemetry.io
https://github.com/grafana/loki
https://github.com/prometheus/prometheus
https://github.com/jaegertracing/jaeger
https://github.com/louislam/uptime-kuma

13
Security with GitOps

Implementing GitOps offers several benefits for the security of software development processes. By
using Git as a central source for configuration and code, the integrity and traceability of environments
can be ensured. In this chapter, we will explore the various aspects of security in the context of GitOps.

We will begin by examining the well-known Cockpit and Fleet approaches and use them to highlight
various security considerations when using Argo CD. Next, we will focus on Kyverno as a policy
engine that acts as a gatekeeper, defining what is allowed on the cluster and which deployments are
even permitted.

The topic of permissions plays a central role in the context of GitOps. Therefore, we will discuss the
secure handling of secrets and introduce two tools that have already been successfully adopted in
the industry.

From the perspective of the platform team, we will consider the provisioning of context information
such as cert-manager, Ingress Controllers, and so on for developers. Here, we will use the proven
Kubernetes Service Catalog principle and explore its secure application and updating.

Finally, we will take a look at the KubeClarity tool, which provides clarity about vulnerabilities in
running applications on various levels, such as the following:

• Configuration: Misconfigurations of Kubernetes resources

• Images: Vulnerabilities in the container images used

• Code: Security vulnerabilities in the application code

In addition, we will briefly dive into the OS level or kernel level and look at the Falco tool. This tool
can be used to detect suspicious activity on the host, such as when operations are executed that should
not be executed.

The goal of this chapter is to illuminate the different perspectives on different layers and thus gain a
better understanding of how GitOps can help teams improve security.

Security with GitOps354

We will cover the following main topics in the chapter:

• Hardening declarative GitOps CD on Kubernetes

• Committing everything to Git? What about Secrets?

• Leveraging a policy engine for policy-as-code practices

• Automating security scanning and compliance

• Keeping your platform catalog up-to-date

Hardening declarative GitOps CD on Kubernetes
In this section, we’ll delve into the practices essential for hardening declarative GitOps continuous
delivery (CD) on Kubernetes, focusing on enhancing security and reducing the risk of misconfigurations
– a leading cause of cloud breaches. The shift toward cloud-native technologies has simplified
the complexity of systems, operational theories, and skillsets, offering a clearer and more secure
framework for building and managing applications. However, the security of these systems extends
beyond just the software development and supply chain aspects; it crucially involves addressing the
configuration vulnerabilities.

Addressing configuration vulnerabilities

Cloud-native technologies streamline skillsets, operational theories, and system complexities, enhancing
the understandability and security of system architectures. However, the primary cloud security risk
remains misconfiguration, often overlooked amid the focus on developmental and supply chain security.
The adoption of the GitOps pattern, particularly for progressive application delivery, has become
widespread, offering a more secure alternative to traditional direct-to-production build servers. This
method employs a Git repository for changes, enabling pre-deployment security assessments and
minimizing privilege escalation and configuration drift.

The Cloud Native Computing Foundation commissioned ControlPlane [1] to conduct a detailed threat
modeling analysis on Argo CD, a tool emblematic of the GitOps approach, focusing on its deployment
in a multi-tenant Kubernetes environment. This analysis revealed 19 identified threats, with 6 classified
as high priority, emphasizing the need for rigorous security measures. Recommendations for hardening
include enhancing password management, integrating single sign-on, and applying strict Role Based
Access Contro (RBAC) principles to limit access to sensitive information.

The report from ControlPlane [1] also provides visual attack trees for the most critical threats, aiding
stakeholders in understanding and mitigating risks, alongside a comprehensive overview of the Argo
CD deployment architecture. It includes Terraform code for replicating the setup, ensuring that
security controls can be effectively validated. These measures, grounded in the report’s findings, aim
to fortify the security of Argo CD deployments, aligning them with organizational security standards
and maximizing the benefits of using GitOps within cloud-native ecosystems.

Hardening declarative GitOps CD on Kubernetes 355

We will integrate parts from the report and combine them with the well-known Cockpit and Fleet
approach. The report in question is from 2023, featuring Argo CD version 2.67, and some issues may
have already been resolved with newer Argo CD releases. At the time of writing, Argo CD version 2.10*
is considered stable. We will compare specific points from the report against Argo CD Version 2.10*.

In this section, we will not go through the entire report but will select a few items to discuss. Each
potential threat will be abbreviated as ATM-ID, with priorities defined from low to high. These will
be divided into three categories. Table 13.1 depicts the Change Impact Assessment (CIA) as follows:

Confidentiality High Cluster takeover (Operations, Tenant) due to leak of
admin credentials

Medium Sensitive information related to application or cluster state
is exfiltrated

Low Non-sensitive information leakage

Integrity High Compromise of source code repositories and
application deployments

Medium Application sync fails due to
misconfiguration/invalid configuration

Low Non-critical operation is blocked due to
misconfiguration/invalid configuration

Availability High Cluster (Operations, Tenant) subject to Denial of
Service (DoS)

Medium Managed applications are blocked for a significant period

Low Managed app synchronization is blocked for a short period

Table 13.1 – Change Impact Assessment [1]

Enhancing password management and RBAC

Let’s now examine where we can identify parts of the threats within our Cockpit and Fleet approach.
This will be indicated in Figure 13.1 with an exclamation mark and an ID:

Security with GitOps356

Figure 13.1 – Cockpit and Fleet approach combined with a threat model

Now, the first ID, ATM-004, is located in Table 13.2 under the category Argo CDs RBAC:

ID UID Category Priority

ATM-004 KR-AR-002 Argo CD RBAC High

Table 13.2 – ATM-004: UI local users’ credentials never expire, and don’t have strong authentication

The risk here is that the Argo CD UI local users’ credentials never expire and are solely based on
a username and password without secondary authentication. The priority is already set too high.
Considering the Cockpit, which has access to the remaining clusters, in my opinion, it becomes even
more critical.

Hardening declarative GitOps CD on Kubernetes 357

The danger is that unauthorized changes could occur if the credentials were to be compromised.

Important note
OAuth2 and OpenID Connect (OIDC) are protocols for secure authorization and authentication.
OAuth2 allows secure resource access, while OIDC, built on OAuth2, adds user identity
verification. They ensure secure data sharing without exposing credentials, enhancing application
security through token-based authentication.

Dex is an open source identity service that uses OIDC to authenticate users and provide access
to various applications and services.

Microsoft Entra ID, formerly Azure Active Directory (AAD), is a cloud-based identity and
access management service provided by Microsoft.

It is therefore recommended to use the local admin account only for initial configuration and then
switch to single sign-on through the provided Dex server and an OIDC provider that supports OAuth2,
such as Microsoft Entra ID, allowing the mapping of roles to corresponding groups. Subsequently,
the admin access should be disabled, as admin access does not provide more extensive permissions
than the highest mapping of the admin group to an Azure group.

This can then be adjusted in the argocd-rbac-cm configmap as follows:

apiVersion: v1
data:
 policy.csv: |
 p, role:org-admin, applications, *, */*, allow
 p, role:org-admin, clusters, get, *, allow
 p, role:org-admin, repositories, get, *, allow
 p, role:org-admin, repositories, create, *, allow
 p, role:org-admin, repositories, update, *, allow
 p, role:org-admin, repositories, delete, *, allow
 g, "GROUP_ID", role:org-admin
 policy.default: role:readonly
kind: ConfigMap
metadata:
 labels:
 app.kubernetes.io/name: argocd-rbac-cm
 app.kubernetes.io/part-of: argocd
 name: argocd-rbac-cm
 namespace: argocd

Security with GitOps358

Subsequently, the local admin can be disabled in argocd-cm:

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-cm
 namespace: argocd
 labels:
 app.kubernetes.io/name: argocd-cm
 app.kubernetes.io/part-of: argocd
data:
 admin.enabled: "false"

If we also consider that the admin password (ATM-003) exists as a Kubernetes Secret, then hopefully,
it’s clear how dangerous it can be if an attacker gains access either to a Fleet cluster or, even worse, to
the Cockpit, which enables access to the ServiceAccounts and thus to the remaining clusters.

ID UID Category Priority

ATM-003 KR-AR-001 Argo CD RBAC High

Table 13.3 – ATM-003: Initial admin password is stored as a Kubernetes Secret

If attackers gain access to a Fleet cluster or, even worse, to the Cockpit, which controls the ServiceAccounts
and thus allows access to the remaining clusters, there is a significant risk involved. This situation
could lead to unauthorized changes in the Argo CD configuration due to unauthorized reading of the
Argo CD initial admin password from Kubernetes Secrets.

Therefore, it is recommended to rotate the Argo CD admin password and delete the secret, as Argo
CD only creates the secret for access purposes but does not need the secret itself. According to Argo
CD’s documentation, the secret serves no other purpose than to store the initially generated password
in clear text, and can safely be deleted at any time.

To modify the admin password, follow the subsequent steps. It’s recommended to pass this guidance
on to every user or team managing a fleet cluster. The optimal approach is to transition to OIDC
and then deactivate the admin account as previously outlined. However, if you need to change the
password, you should adhere to the following procedures:

Important note
These commands are run on a Unix-like operating system such as Ubuntu, Debian, or other
Linux distributions, as well as on macOS.

Hardening declarative GitOps CD on Kubernetes 359

1. First, forward to argocd server:

kubectl port-forward --namespace argocd service/argocd-server
8080:443

2. The password can be easily accessed using the Argo CD command-line interface (CLI):

argocd admin initial-password -n argocd

3. Using the previous admin as username and password, log in to Argo CD’s IP or hostname:

argocd login <ARGOCD_SERVER>

4. Change the password using the following command:

argocd account update-password

5. As an alternative to the previous steps, you can use a shorter method by combining the commands
into one line, as in the following:

kubectl port-forward svc/argocd-server -n argocd 8080:443
& argocd login localhost:8080 --username admin --password
$(kubectl -n argocd get secret argocd-initial-admin-secret -o
jsonpath="{.data.password}" | base64 -d) --insecure --grpc-web

6. Then, update the password as follows:

argocd account update-password

7. Now, kill the forwarding process running in the background as follows:

kill $(ps aux | grep 'kubectl port-forward svc/argocd-server -n
argocd 8080:443' | grep -v grep | awk '{print $2}')

Now that we’ve updated the password, let’s examine the final part, ATM-006 (Table 13.4), which
becomes particularly significant in the context of the Cockpit and Fleet approach:

ID UID Category Priority

ATM-006 KR-ASM-001 Argo CD Secrets Management High

Table 13.4 – ATM-006: Never-expiring tenant cluster credentials are stored as Kubernetes Secrets

The risk here is that Argo CD tenant cluster credentials are stored as Kubernetes Secrets, and the Argo
CD argocd-manager service account token on the tenant cluster is configured never to expire.

Consequently, an attacker could perform unauthorized actions on the tenant cluster due to unauthorized
access to the never-expiring tenant bearer token from the Kubernetes Secret.

Security with GitOps360

Depending on the provider and Kubernetes distribution, different mitigation strategies can be applied.
It is advised to use workload identities or managed identities, especially in services such as Azure
Kubernetes Service, allowing clusters to access Azure resources without secrets. Alternatively, consider
leveraging an external key management service (e.g., AWS Key Management Service) to securely
manage and expose Argo CD tenant cluster credentials. It’s crucial to ensure that Argo CD’s tenant
cluster bearer tokens are rotated regularly, aligning with organizational security policies. For manual
rotation, deleting the corresponding Kubernetes Secret in the tenant cluster will trigger the creation
of a new token.

However, the aim of this section is not to address all security vulnerabilities, as I consider it unnecessary
to cover them all due to their vast diversity. This section is intended to raise awareness of the potential
security gaps that can arise when using GitOps and how to attempt to counteract them.

Figure 13.2 should now make it clear that we have only mitigated three out of many possible
high-level attacks:

Figure 13.2 – Cockpit and Fleet approach combined with the

threat model – the reduced attack vector view

Committing everything to Git? What about Secrets? 361

Mechanisms commonly supported by most systems, such as firewall rules, should be implemented to
restrict access to Cockpit clusters exclusively tospecified IP address ranges. Similarly, access to Fleet
clusters can be limited using firewalls, potentially originating from the Cockpit cluster itself and confined
to certain IP spaces. It’s crucial to secure cluster access, particularly to the Cockpit, with multi-factor
authentication (MFA) to significantly reduce the initial attack vector. Whenever feasible, perpetual
tokens should be replaced with identity solutions to facilitate access without the need for secrets.

I strongly advise delving into the Threat Model document provided by ControlPlane. It includes
detailed attack trees that illustrate how exploiting multiple vulnerabilities can have profound impacts.
This comprehensive understanding is essential for effectively safeguarding your infrastructure.

The next section is about the fact that GitOps takes the approach that everything is in Git, but what
about secrets? This section looks at how to store secrets securely in Git.

Committing everything to Git? What about Secrets?
In a GitOps workflow, the idea of committing every piece of configuration to Git repositories is central.
It ensures that the entire state of your infrastructure is declaratively represented and can be versioned,
audited, and reviewed. However, this approach presents a challenge when it comes to handling
secrets, such as passwords, tokens, and private keys. Storing such sensitive information plainly in Git
repositories is not secure. This is where tools such as Sealed Secrets and External Secrets come into
play, providing secure mechanisms to manage secrets in a GitOps workflow.

Sealed Secrets

Sealed Secrets [2] is a Kubernetes controller and toolset, designed to encrypt secrets that can safely
be stored in Git repositories. When you apply the sealed secret to your cluster, the Sealed Secrets
controller decrypts it and creates a regular Kubernetes secret. This process allows you to manage your
secrets’ life cycle through Git without exposing the sensitive content.

Use it as follows:

1. Deployment: Deploy the Sealed Secrets controller in your Kubernetes cluster via GitOps and
install the kubeseal CLI tool on your local machine, as follows:

helm repo add sealed-secrets https://bitnami- labs.github.io/
sealed-secrets
helm install sealed-secrets sealed-secrets/sealed-secrets
#Install e.g. CLI on MacOS
brew install kubeseal

2. Key-pair: Generate a key-pair or use the certificate from the deployed Sealed Secrets Operator:

kubectl -n sealed-secrets get secret sealed-secrets-… -o json
-o=jsonpath="{.data.tls\.crt}" | base64 -d > sealed-secret.crt

Security with GitOps362

3. Sealing Secrets: Use the kubeseal CLI to encrypt your secret. The CLI generates a SealedSecret
resource, which you can commit to your Git repository:

kubectl create secret generic my-secret --from-
literal=password='myStrongPassword' --dry-run=client -o json |
kubeseal --cert sealed-secret.crt > mysealedsecret.yaml

4. Applying Sealed Secrets: Commit mysealedsecret.yaml to your Git repository. When
you apply this file to your cluster, the Sealed Secrets controller decrypts it and creates a standard
Kubernetes secret.

5. Automation with GitOps: Integrate this process into your GitOps workflows. Whenever
you update your sealed secrets in Git, your CI/CD pipeline can automatically apply them to
your cluster.

External Secrets

External Secrets [3] is an open source project that integrates external secret management systems
such as AWS Secrets Manager, Azure Key Vault, and Google Secret Manager with Kubernetes. It
allows you to securely inject secrets into your applications without having to expose them in your
Git repositories.

Use it as follows:

1. Deployment: Deploy the External Secrets Operator in your Kubernetes cluster:

helm repo add external-secrets https://charts.external-
secrets.io
helm install external-secrets external-secrets/external-secrets

2. Configuration: Define an ExternalSecret resource that specifies the external secret store and
the secret key. The operator fetches the secret from the external store and creates a Kubernetes
secret in the cluster:

 apiVersion: external-secrets.io/v1beta1
 kind: ExternalSecret
 metadata:
 name: my-external-secret
 spec:
 secretStoreRef:
 name: my-secret-store
 kind: SecretStore
 target:
 name: my-kubernetes-secret

Committing everything to Git? What about Secrets? 363

 data:
 - secretKey: external-secret-key
 remoteRef:
 key: name-of-the-secret-in-external-store

3. Applying External Secrets: Commit the ExternalSecret resource to your Git repository. The
External Secrets Operator will automatically create or update the Kubernetes secret in your
cluster based on the external source.

4. Integration with GitOps: Incorporate External Secrets into your GitOps pipelines. Changes to
the ExternalSecret definitions in your Git repo trigger the operator to sync the secrets, ensuring
your cluster’s secrets are always up-to-date.

The choice of tools depends on various factors. For instance, if you don’t have a vault for storing
secrets, keys, or certificates, then External Secrets might not be suitable. Initially, a connection from
the External Secrets Operator to the Secret Store or ClusterSecretStore must be established. In our
projects, we utilize managed identities to ensure this. Otherwise, you typically need an ID and a
secret, which can be challenging to manage securely with GitOps at scale, as the ID and secret must
be securely transferred to the cluster, possibly through a CI/CD pipeline. A significant advantage of
External Secrets is its ability to fetch secrets at runtime without dependency on the cluster.

However, access to a secrets manager through a vault is not always available. Therefore, the Sealed Secrets
Operator, particularly in on-premises environments, is currently considered the industry standard.

Teams need to decide which option is the better choice. In my opinion, both options are solid and
integrate very well into the GitOps ecosystem. This not only allows for the secure storage of secrets,
keys, and certificates while embracing the GitOps approach but also opens up entirely new possibilities
with GitOps at scale, such as deploying a pull secret across a specific registry. The platform team, by
combining External Secrets and Kyverno, can deploy a secret across all clusters, and Kyverno distributes
it across the namespaces. As a result, every team has the pull secret necessary to pull images from a
central image registry. This enhances security since every image can be subjected to scanning, and it
provides an overview of the images in operation.

By leveraging Sealed Secrets and External Secrets, you can maintain the GitOps principle of storing
all configurations in Git while securely managing your secrets. These tools help you automate the
management of secrets, keeping your infrastructure secure and your deployments consistent.

Every tool that is added to the Kubernetes Service Catalog increases the likelihood that more security
vulnerabilities will be introduced into the system. We will look at how to maintain your catalog in
the next section.

In the following section, we will delve into enhancing security through GitOps and a policy engine.
This approach enables proactive measures during deployment, determining what is permissible to
deploy and identifying associated risks. This preemptive strategy ensures that only secure, compliant
configurations make their way into production, thereby reinforcing your security posture.

Security with GitOps364

Leveraging a policy engine for policy-as-code practices
In the contemporary landscape of software development, the way we ensure security and compliance
within our systems has significantly evolved. A pivotal aspect of this evolution is the adoption of policy-
as-code practices, which enable the integration of governance and security policies directly into the
development and operational processes. Within this context, policy engines such as Kyverno [4] and
Open Policy Agent (OPA) [5] play a crucial role. These tools empower organizations to define and
enforce their security, compliance, and governance requirements as code, thereby ensuring consistent
application and transparency across their infrastructures and applications.

Kyverno and OPA are both powerful, flexible tools designed specifically to implement policy as code
in Kubernetes environments and beyond. Kyverno focuses on simplifying Kubernetes security by
using a user-friendly, Kubernetes-native syntax that allows developers to define and enforce security
policies directly within their CI/CD pipelines. On the other hand, OPA is a more general-purpose
policy engine that employs a highly flexible, domain-agnostic language called Rego, enabling the
creation and implementation of fine-grained, context-aware policies across a variety of software systems.

Integrating these policy engines into a GitOps-based workflow architecture significantly enhances
security, as it ensures the continuous enforcement and validation of compliance. By adopting GitOps,
teams can manage their infrastructure and application setups as code, creating a versioned, repeatable,
and automatable environment. Incorporating Kyverno or OPA into this process means that changes
to infrastructure or applications are automatically validated against predefined policies before being
implemented. This ensures that all deployments comply with organizational security standards and
that potential security vulnerabilities or configuration errors are proactively identified and remediated
before they impact the production environment.

Integrating Kyverno and OPA

In this part, we explore how integrating tools such as Kyverno and OPA into the development and
operational workflow not only enhances security and compliance but also promotes efficiency and speed
in development cycles. Automating policy enforcement within the GitOps framework allows teams
to deliver faster and more securely, leading to more robust, secure applications and infrastructures.

We will focus on Kyverno to facilitate a better understanding, as I believe it’s a tool that users can
comprehend more easily without the need to learn Rego. However, before delving into that, let’s
examine the layer at which Kyverno operates and its integration with GitOps. Figure 13.3 will elaborate
on these subjects:

Leveraging a policy engine for policy-as-code practices 365

Figure 13.3 – Kyverno operation layer and GitOps

As illustrated, Kyverno operates across both layers, effectively acting as a gatekeeper. When you
attempt to deploy something that violates its rules, Kyverno intervenes, causing the deployment to
fail. However, Kyverno’s capabilities extend beyond this; it can also validate already-running services
within the Kubernetes cluster or mutate resources. This versatility justifies positioning Kyverno between
these layers, making it an advantageous choice.

Leveraging GitOps, you can deploy the Kyverno instance across every cluster in the fleet, ensuring
consistent policy enforcement. Additionally, the define once, deploy everywhere approach facilitates
multi-cluster deployment, streamlining the management of policies across various environments.
By collaborating with the security team, you can implement different rulesets tailored to specific
environments, enhancing the security and compliance of your deployments. This synergy between
Kyverno and GitOps not only simplifies governance but also fortifies the infrastructure’s overall
security posture.

Now, let’s look at how it works in the praxis.

Security with GitOps366

Hands on – let’s put theory into practice [6]

First, we establish a streamlined folder structure for the Kubernetes Service Catalog, as in the following:

.
├── applicationsets
│ └── security
│ └── kyverno-applicationset.yaml
├── kustomize
│ └── security
│ └── kyverno
│ └── policies
│ └── base
│ ├── disallow-latest-tag.yaml
│ ├── kustomization.yaml
│ └── restrict-nodeport.yaml
└── security
 └── kyverno
 ├── Chart.yaml
 └── values.yaml

By initiating the deployment of kyverno-applicationset.yaml, you will target every fleet
cluster identified by the env=prod or env=development labels. This deployment not only sets up
the Kyverno tool across these clusters but also applies a specific set of policies from the kustomize
folder to each one. In our illustration, we utilize a basic base folder; however, you have the flexibility
to configure distinct folders – for instance, for different stages. These can be aligned with the cluster
labels, enabling you to deploy the appropriate ruleset to the corresponding cluster. Such an arrangement
proves beneficial for implementing more lenient policies in development clusters and stricter ones
in production environments.

Now, let’s examine an example policy that will be deployed across every fleet cluster matching the
specified labels. We’ll focus on the disallow-latest-tag.yaml policy.

In the first part, we see the annotations, the Best Practices category, and then the version, the
severity classification, which subject is affected, and the description of which negative consequences
can result from it. I find it nice and compact, clear, and easy to configure:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
 name: disallow-latest-tag-example
 annotations:
 policies.kyverno.io/title: Disallow Latest Tag Example
 policies.kyverno.io/category: Best Practices
 policies.kyverno.io/minversion: 1.6.0

Leveraging a policy engine for policy-as-code practices 367

 policies.kyverno.io/severity: medium
 policies.kyverno.io/subject: Pod
 policies.kyverno.io/description: >-
 The ':latest' tag is mutable and can lead to unexpected errors
if the
 image changes.. This policy validates that the image
 specifies a tag and that it is not called `latest`.

In the subsequent section under specifications, we observe that the action is designated as Audit
rather than Enforce, implying that it is not compulsory. Following this, two rules are established.
The initial rule conducts a validation of the container’s tag using the *:* pattern, ensuring it adheres
to specific criteria. Subsequently, the second rule escalates to the resource level, applying a broader
scope by targeting the pods directly. It stipulates a constraint that the pattern with the latest tag
must not be used, reinforcing the governance over the deployment practices:

spec:
 validationFailureAction: Audit
 background: true
 rules:
 - name: require-image-tag
 match:
 any:
 - resources:
 kinds:
 - Pod
 validate:
 message: "An image tag is required."
 pattern:
 spec:
 containers:
 - image: "*:*"
 - name: validate-image-tag
 match:
 any:
 - resources:
 kinds:
 - Pod
 validate:
 message: "Using a mutable image tag e.g. 'latest' is not
allowed."

Security with GitOps368

 pattern:
 spec:
 containers:
 - image: "!*:latest"

In practice, it looks like this: when the rule is applied and an attempt is made to deploy a pod and
its contained container with the latest tag, the deployment is blocked. Let’s try to deploy a Nginx
pod with the latest image tag:

kubectl run nginx --image nginx:latest

Now you can get a Kyverno policyreport like the following:

kubectl get policyreport fbe08ffd-bee6-497f-aee8-f96e9cd022f8 -n
default -o yaml | grep image -A 8

The output should be like the following:

- category: Best Practices
 message: 'validation error: Using a mutable image tag e.g.
''latest'' is not allowed.
 rule validate-image-tag failed at path /spec/containers/0/image/'
 policy: disallow-latest-tag
 result: fail
 rule: validate-image-tag
 scored: true
 severity: medium
 source: kyverno

As you can see, we violated the best practices policy, specifically the disallow-latest-tag policy.

I refer to this setup as a gatekeeper because it allows you to dictate, through simple rules, what can
and cannot be deployed into the cluster. However, the capabilities of this setup extend further. For
instance, you can configure Kyverno policies to enforce image signing or to ensure that only images
from certain registries are allowed to be pulled, among other things. A policy engine is a powerful
tool. In contrast to the gatekeeper, Kyverno or OPA also operates on already-deployed resources or
resources that passed the gate and are therefore placed between the two layers, as shown in Figure 13.3.

When combined with the GitOps approach, it opens up new possibilities that transcend team boundaries,
enhancing the security of projects. This integration not only streamlines the deployment processes
but also ensures that the operational standards are consistently met, thereby bolstering the overall
security posture of the infrastructure.

In the next section, we will look at how to increase security on two different layers using two different tools.

Automating security scanning and compliance 369

Automating security scanning and compliance
In today’s fast-paced and security-conscious IT environment, maintaining continuous security and
compliance is crucial. Automated security scanning and compliance are integral components of a
robust cybersecurity strategy, especially in Kubernetes clusters where applications and services are
dynamically scaled and updated. Here, we’ll discuss how the KubeClarity [7] or Falco [8] tool can be
utilized to enhance your security posture in Kubernetes environments. The following image illustrates
the level at which KubeClarity operates:

Figure 13.4 – KubeClarity operation layer

KubeClarity is an open source tool designed for security scanning and compliance analysis in Kubernetes
environments. It provides a comprehensive overview of the potential vulnerabilities in your container
images and Kubernetes configurations.

KubeClarity

Let’s first understand how KubeClarity enhances security:

• Vulnerability scanning: KubeClarity scans container images for known vulnerabilities, utilizing
various databases and vulnerability tracking sources. It provides detailed insights into the
security flaws within your images, along with their severity levels, enabling you to prioritize fixes.

• Compliance assurance: The tool checks your Kubernetes configurations against best practices
and compliance standards, ensuring that your deployments adhere to industry and organizational
security policies.

• Continuous monitoring: KubeClarity continuously monitors your containerized applications
for new vulnerabilities, providing real-time alerts and updates. This ongoing vigilance helps
maintain a secure Kubernetes environment.

Security with GitOps370

By integrating KubeClarity within a GitOps framework, an organization can significantly enhance its
security and compliance posture, ensuring that its Kubernetes clusters are fortified against evolving
threats. This adoption of GitOps principles allows for the automation of security scans and compliance
checks, making these processes more consistent, efficient, and scalable. The proactive approach to
security facilitated by KubeClarity not only protects your infrastructure but also fosters trust with
customers by demonstrating a commitment to maintaining a secure and compliant environment.
The continuous monitoring and automatic alignment with security policies enabled by GitOps
ensure that any deviations are quickly detected and rectified, maintaining a robust defense against
potential vulnerabilities.

Falco

Falco is an open source tool for real-time security monitoring and analysis, specifically designed
for Kubernetes environments. It functions as an intrusion detection system (IDS), enabling teams
to detect anomalous activities in their applications and infrastructures that could indicate security
breaches or other threats. The following picture illustrates the level at which Falco operates.

Figure 13.5 – Falco operation layer

Falco operates at the system level (Figure 13.5), monitoring the underlying Linux kernel functionality,
or more precisely, the system-level activities of container orchestration platforms. It utilizes Linux
kernel capabilities, particularly extended BPF (Berkeley Packet Filter) or traditional system calls
(syscalls) monitoring through a kernel module, to observe and analyze system-wide events in real time.
Falco can capture and evaluate system calls from applications running inside containers, identifying
unusual or undesirable behavior.

Keeping your platform catalog up-to-date 371

The advantages of integrating Falco with GitOps are as follows:

• Automated security monitoring: By integrating Falco into a GitOps pipeline, security policies
can be defined as code and automatically applied to every change in the infrastructure or
applications, enabling continuous and automated monitoring of security standards.

• Real-time alerts: Falco can be configured to send real-time alerts when a defined rule is violated.
In a GitOps environment, these alerts can facilitate swift responses to potential security incidents.

• Consistency and compliance: With GitOps, Falco configurations can be versioned, reviewed,
and automatically deployed, ensuring consistent enforcement of security policies across
different environments.

• Transparency and traceability: All changes to Falco policies are recorded in Git, providing
a clear audit trail. This promotes transparency regarding security monitoring and facilitates
compliance with regulatory requirements.

Integrating Falco into the GitOps strategy allows teams not only to enhance their security posture
but also to adopt a proactive approach to identifying and responding to security threats in their
Kubernetes environment.

However, every tool also brings potential risks with it, even if it is intended to increase security, which
is why maintenance should not be neglected and attention should be paid to this when designing or
selecting the tools. This is exactly what we will discuss briefly in the next section.

Keeping your platform catalog up-to-date
The content of this section has been extensively covered already in Chapter 5 under the Bonus –
maintenance with GitOps at scale and KSC section. It serves as a reminder that with every tool added,
the catalog grows, and a keen focus on security should be maintained.

When a Common Vulnerabilities and Exposures (CVE) threat is revealed and you opt for the Cockpit
and Fleet approach, adopting GitOps at scale also facilitates a vulnerability-management-at-scale
strategy. Therefore, this aspect should be considered particularly early in the development of a concept.

Implementing such a strategy ensures that as your infrastructure expands, your approach to handling
vulnerabilities scales accordingly. This proactive stance helps in quickly addressing security issues
across the entire fleet, maintaining the integrity and security of your systems. Early integration of
these practices into your conceptual framework is crucial to establishing a robust, scalable, and
secure infrastructure.

To conclude the chapter, Figure 13.6 illustrates the stages or gates that the packet (application or
service) must pass through, highlighting where various security mechanisms can intervene to scan
the packet as thoroughly as possible:

Security with GitOps372

Figure 13.6 – Security on multiple layers

Nevertheless, a packet might pass through certain stages, hence the necessity for tools such as Falco
and Kyverno to enable continuous scanning. These tools thrive on defined rules, which, fortunately,
can be easily deployed with GitOps.

Summary
In this chapter, it should have become clear that security doesn’t operate on just a single layer and
shouldn’t be enforced by just one team. Security is a cultural issue that can be expanded with approaches
such as GitOps and tools such as Argo CD at scale, which can include defining rulesets or policies.
Security doesn’t stop with tools; it also encompasses how one handles sensitive data such as secrets
and keeps third-party tools in the ecosystem up-to-date and secure. Effective security practices require
collaboration across teams, continuous monitoring, and proactive management to ensure a robust
and resilient infrastructure.

In the next chapter, we’ll explore the integration of FinOps with GitOps to achieve sustainable,
cost-effective operations. We’ll cover core FinOps principles, cost forecasting, optimization, and
understanding the carbon footprint. Additionally, we’ll look at future trends in GitOps, including
AI-driven automation.

References 373

References
• [1] https://github.com/argoproj/

• [2] https://github.com/bitnami-labs/sealed-secrets

• [3] https://external-secrets.io/latest/

• [4] https://kyverno.io

• [5] https://www.openpolicyagent.org

• [6] https://github.com/PacktPublishing/Implementing-GitOps-with-
Kubernetes/tree/main/chapter13

• [7] https://github.com/openclarity/kubeclarity

• [8] https://falco.org

https://github.com/argoproj/
https://github.com/bitnami-labs/sealed-secrets
https://external-secrets.io/latest/
https://kyverno.io
https://www.openpolicyagent.org
https://github.com/PacktPublishing/GitOps-for-Kubernetes-Deployment/tree/main/chapter13
https://github.com/PacktPublishing/GitOps-for-Kubernetes-Deployment/tree/main/chapter13
https://github.com/openclarity/kubeclarity
https://falco.org

14
FinOps, Sustainability, AI, and

Future Trends for GitOps

In this chapter, we venture beyond the conventional boundaries of GitOps to explore its extensive
scope and multifaceted impact across various domains not covered in the main sections of the book.
Our journey is structured into distinct yet interconnected blocks, each shedding light on different
dimensions where GitOps extends its influence, providing a comprehensive insight into the potential
and versatility of this practice.

We commence with the fundamentals of FinOps and cost management, where the fusion of financial
acumen and operational expertise comes to the forefront. This segment elucidates how the FinOps
framework, integrated with GitOps methodologies, empowers organizations to wield granular control
over their cloud expenditures. By leveraging tools such as OpenCost and Kubecost in a GitOps-driven
environment, businesses can achieve unprecedented transparency and efficiency in managing costs
for clusters, projects, and beyond, ensuring that every dollar spent is an investment toward innovation
and growth.

Transitioning to the realm of sustainability and green operations, we delve into how GitOps can be a
catalyst for eco-friendly IT practices. This block emphasizes the significance of sustainable operations,
not only from an economic standpoint but also in contributing to environmental stewardship. We
discuss practical strategies, such as the automated shutdown of development clusters, illustrating
how GitOps can align technological advancements with ecological responsibility, thereby fostering a
culture of sustainability within the tech industry.

The exploration expands to include GitOps and artificial intelligence (AI)-driven automation, a
segment that bridges the advanced realms of AI and GitOps. This fusion is revolutionizing the way
organizations deploy, monitor, and manage their IT landscapes, transcending the hype to deliver
tangible, impactful automation solutions. Through real-world examples and case studies, we examine
the dual benefits of AI in enhancing DevOps practices and streamlining the deployment of inter-
company services, all within the GitOps framework.

FinOps, Sustainability, AI, and Future Trends for GitOps376

Finally, we reflect on the evolving landscape of GitOps, contemplating the continuous evolution of
GitOps principles and their transformative influence across various sectors. This concluding block
forecasts the future trajectory of GitOps, speculating on its role amid emerging technologies and
its potential to redefine industry standards. We delve into how GitOps is pivotal in forecasting and
monitoring cloud costs, thereby enabling organizations to navigate the complexities of modern cloud
environments with confidence and strategic foresight.

Each of these blocks, while distinct in focus, collectively underscores the expansive reach of GitOps,
illustrating its role as a cornerstone in modern IT strategy. This chapter aims to broaden readers’
perspective, encouraging them to envision GitOps not merely as a tool for operational efficiency but
as a holistic approach that harmonizes technological innovation with financial wisdom, environmental
consciousness, and forward-thinking adaptability.

We will cover the following main topics in this chapter:

• Covering the fundamentals of FinOps

• Forecasting and monitoring costs with GitOps

• Optimization techniques for cloud spend

• Assessing carbon footprint and promoting green operations

• Looking at GitOps and AI-driven automation

• Future challenges and opportunities in GitOps

• The role of GitOps in emerging technologies

Covering the fundamentals of FinOps
FinOps, an operational framework blending finance and DevOps principles, is fundamentally a
cultural practice aimed at maximizing the business value of cloud investments. It fosters a collaborative
environment where engineering, finance, and business teams work together to facilitate data-driven
decisions, enhancing financial accountability and optimizing cloud costs.

The essence of FinOps lies in its ability to bridge the gap between traditionally siloed departments,
promoting a shared responsibility model where all stakeholders are vested in the cloud’s cost-effectiveness
and operational efficiency. This cross-functional synergy is crucial for enabling faster product delivery
while ensuring financial transparency and control.

Key aspects of FinOps include real-time monitoring of cloud expenses, enabling organizations to
make informed decisions that balance cost, speed, and quality. The approach goes beyond mere cost-
cutting; it’s about leveraging the cloud’s variable spending model to drive innovation, revenue growth,
and strategic investments in the tech infrastructure.

Forecasting and monitoring costs with GitOps 377

Organizations looking to adopt FinOps can start by exploring resources offered by the FinOps
Foundation, which provides education, best practices, and community engagement to support
different maturity levels in the FinOps journey. The Crawl, Walk, Run maturity model advocated by
FinOps allows organizations to evolve their financial operations progressively, enhancing their cloud
architecture and investment strategies continuously.

The Crawl, Walk, Run model
The Crawl, Walk, Run model is a framework that describes the progressive stages of learning
and implementation. In the Crawl stage, individuals or organizations focus on understanding
basic principles with limited scope and high reliance on guidance. The Walk stage involves
greater familiarity and confidence, with more complex tasks and increased efficiency. Finally,
in the Run stage, there is full mastery and independent, innovative use of the new concept,
process, or technology. This model helps manage expectations and provides a structured growth
path to ensure a solid foundation before advancing to more complex levels.

Central to the FinOps framework are principles guiding collaborative efforts, personal ownership of
cloud usage, and the strategic alignment of cloud investments with business value. These principles
ensure that every team member, from executives to engineers, understands and contributes to the
efficient and innovative use of cloud resources.

Incorporating FinOps into an organization’s operational model not only promises enhanced cost
management and optimization but also aligns cloud expenditure with business outcomes, ensuring that
investments translate into tangible value. This strategic alignment is crucial in today’s dynamic cloud
environments, where adaptive planning and cost-effective resource utilization are key to sustaining
competitive advantage and fostering long-term growth.

In the next section, we will use OpenCost [1] and Kubecost [2] to determine the costs for a cluster or
for a namespace, which could, for example, represent a project.

Forecasting and monitoring costs with GitOps
GitOps can be seamlessly integrated with FinOps to enhance the financial governance of cloud
resources while maintaining agility and operational efficiency. The combination of GitOps and
FinOps practices enables organizations to manage their cloud infrastructure and costs more effectively
through automation, version control, and continuous monitoring.

FinOps, Sustainability, AI, and Future Trends for GitOps378

How GitOps complements FinOps

First, let’s understand how GitOps complements FinOps:

• Automated cost optimization: GitOps allows for the automation of deployment and scaling
of cloud resources, which can be integrated with FinOps strategies to ensure that resource
utilization is optimized for cost without sacrificing performance. This means infrastructure can
scale up or down automatically, aligning with financial objectives and operational demands.

• Version-controlled spending: With GitOps, every change to the infrastructure is version-
controlled in Git repositories, providing an audit trail of what changes were made, who made
them, and why. This aligns with FinOps principles by adding transparency to the financial
impact of operational changes, enabling better budget tracking and cost allocation.

• Collaboration and visibility: GitOps fosters collaboration among development, operations, and
finance teams by using Git as a single source of truth (SSOT). This collaborative environment
ensures that financial considerations are integrated into the earliest stages of infrastructure
planning and application development, promoting a cost-aware culture.

• Policy enforcement: Integrating policy-as-code (PaC) tools within a GitOps workflow can
enforce financial governance, ensuring that resources are utilized efficiently and within budget.
Policies can be set to prevent overspending, enforce the use of cost-optimized resources, or
ensure adherence to budgetary constraints.

• Continuous cost monitoring and feedback: GitOps enables continuous monitoring and
feedback loops, allowing teams to quickly identify and address inefficiencies in cloud resource
utilization. This constant vigilance helps in maintaining a balance between operational efficiency,
cost, and speed, in line with FinOps goals.

• Proactive financial management: By using GitOps, organizations can proactively manage
their cloud expenses. Infrastructure-as-code (IaC) templates stored in Git repositories can
be analyzed to forecast costs and understand the financial implications of planned changes
before they are executed.

Utilizing GitOps with FinOps

The following points describe how integrating cost monitoring, budget enforcement, resource
optimization, and financial operations automation into a GitOps pipeline can enhance cost efficiency
and ensure financial governance:

• Implementing cost monitoring tools: Integrate cloud cost monitoring tools into the
GitOps pipeline to provide real-time feedback on the financial impact of code changes and
infrastructure updates

• Enforcing budget policies: Use GitOps to enforce budget policies through IaC, ensuring that
deployments conform to predefined financial constraints and operational budgets

Forecasting and monitoring costs with GitOps 379

• Optimizing resource allocation: Leverage GitOps to automate the deployment of cost-optimized
resources, such as spot instances, and to shut down underutilized resources, ensuring efficient
cloud spend

• Streamlining financial operations: Automate financial operations tasks such as cost reporting,
budget alerts, and resource tagging through GitOps, ensuring that financial governance is
consistently applied across all cloud resources

By integrating GitOps with FinOps practices, organizations can ensure that their cloud infrastructure
is not only operationally efficient but also aligned with their financial objectives, delivering maximum
value from their cloud investments. This holistic approach enables a more agile, transparent, and
cost-effective cloud management strategy.

Now, let’s take a look at how it works in practice. For this, we will examine two tools: OpenCost as
an open source option and Kubecost, which is built on OpenCost but offers many additional features
on top in the next part.

OpenCost versus Kubecost with GitOps

OpenCost and Kubecost are tools used in the realm of Kubernetes cost monitoring and analysis,
providing insights into resource utilization and assisting in managing costs associated with Kubernetes
environments in the cloud. Let’s cover a brief description of both tools and the differences between them.

OpenCost

OpenCost is an open source tool that brings transparency to the costs and usage associated with
Kubernetes clusters. It enables teams to monitor, analyze, and optimize their Kubernetes costs by
providing detailed insights into resource utilization and associated expenses. OpenCost offers features
such as the following:

• Cost breakdown at the pod, deployment, namespace, or cluster level

• Support for multi-cluster environments

• Integrations with cloud providers for more accurate cost estimation

• Forever free and open source, supported and maintained by experts

How does this all fit with GitOps, or, more specifically, what value does GitOps add in the FinOps context?
OpenCost sets up on-premises pricing configurations based on the Google Cloud Platform (GCP)
us-central-1 region—for instance, "CPU": "0.031611"$, and "RAM": "0.004237"$
on an hourly basis. Nevertheless, OpenCost also allows for the customization of pricing. This is where
GitOps comes into play, enabling not just the deployment of the OpenCost tool across various clusters
(Figure 14.1) but also the capability to configure prices accordingly. For example, if you have three
data centers in Europe, located in three different countries, the CPU and RAM prices will vary due
to factors such as electricity prices, procurement, depreciation, and so on.

FinOps, Sustainability, AI, and Future Trends for GitOps380

There are globally defined values under optimization/opencost, and then there’s a custom
pricing model for each specific country. Visually, it looks as follows:

Figure 14.1 – OpenCost with GitOps and on-premise pricing configuration

For the scenario in Figure 14.1, we establish the following folder structure [3]:

.
├── applicationsets
│ └── optimization
│ └── opencost-applicationset.yaml
├── cluster
│ ├── in-cluster-austria
│ │ └── optimization
│ │ └── opencost
│ │ └── values.yaml
│ ├── in-cluster-germany
│ │ └── optimization
│ │ └── opencost
│ │ └── values.yaml
│ └── in-cluster-ireland
│ └── optimization
│ └── opencost

Forecasting and monitoring costs with GitOps 381

│ └── values.yaml
└── optimization
 └── opencost
 ├── Chart.yaml
 └── values.yaml

It can also be combined with hybrid cloud and multi-cloud; then, it might look like this:

Figure 14.2 – OpenCost with GitOps and hybrid-setup pricing configuration

GitOps, combined with OpenCost, opens up new possibilities in FinOps, enabling more user- and
infrastructure-defined cost visibility across distributed infrastructures, thus allowing for enhanced
financial oversight, precise cost allocation, and strategic budget optimization in cloud environments.

However, if you require functionalities such as team collaboration, budget planning, alerting, estimated
monthly savings, and more, then you should consider exploring Kubecost.

Kubecost

Kubecost is a product that builds on OpenCost. It’s a commercial solution that offers additional features
and support for businesses that go beyond the core functionalities of the OpenCost project. Kubecost
includes all the features of OpenCost, along with the following:

• Advanced budgeting and cost forecasting

• Personalized optimization recommendations

FinOps, Sustainability, AI, and Future Trends for GitOps382

• Additional security and compliance features

• Professional support and consultation

Additionally, you have the flexibility to utilize GitOps not just for deploying Kubecost across various
clusters but also to empower teams to set budgets based on namespaces, clusters, or labels, along
with specifying actions (Figure 14.3) to take when budget thresholds are exceeded:

Figure 14.3 – Kubecost with GitOps: defining budget and cost alerts

By integrating GitOps with Kubecost, organizations empower their teams with enhanced control over
their projects or clusters, streamlining the deployment of this powerful tool. This synergy allows teams
not only to deploy Kubecost efficiently at scale but also to define essential parameters that align with
their budgetary needs. Such integration is pivotal in fostering a collaborative environment for cost
management, enabling various teams within the organization to share best practices, insights, and
strategies to collectively optimize resources.

This collaborative atmosphere is further enriched by the capabilities of Kubecost combined with
GitOps, which facilitate proactive cost management. With the ability to set predefined thresholds and
configure automated alerts, teams are equipped to actively monitor and manage their cloud spending.
This proactive stance ensures that any potential budget overruns are swiftly identified and addressed,
and overall cloud expenditure is optimized effectively.

Optimization techniques for cloud spend 383

The confluence of GitOps and Kubecost transforms the approach to cloud cost management, moving
from a reactive to a proactive model. Teams are no longer in the dark about their spending trends
and are instead provided with a clear, actionable framework that enables them to maintain financial
efficiency while capitalizing on the scalability and flexibility of cloud resources. This integration ensures
that cost optimization is not just an afterthought such as the end of the month but a fundamental aspect
of daily operations, empowering teams to leverage cloud resources judiciously and economically.

Differences between OpenCost and Kubecost

Here are the most important differences between the two tools:

• Open source versus commercial: OpenCost is an open source project inviting the community
to freely use and adapt it, whereas Kubecost is a commercial version offering enhanced features
and support for business customers.

• Feature set: Kubecost builds upon OpenCost, extending it with additional, commercial features
specifically designed for enterprise customers. For example, while OpenCost provides basic
cost monitoring for Kubernetes clusters, Kubecost offers advanced features such as automated
cost optimization recommendations and detailed cost allocation reports for different teams
and projects.

• Support: Kubecost provides professional support and consulting services that go beyond what
is typically expected from an open source project.

Both tools aim to improve transparency and control over costs associated with Kubernetes usage, but they
cater to different user groups and needs, ranging from the open source community to large enterprises.

This combination of GitOps and OpenCost or Kubecost not only streamlines operational efficiency
but also significantly enhances the strategic financial management of Kubernetes environments.

In the next part, we look at how to optimize cloud costs and how GitOps with Kubecost contributes
to this.

Optimization techniques for cloud spend
Optimization techniques for cloud spending are crucial for organizations looking to maximize their
cloud investment while minimizing unnecessary costs. Integrating GitOps with tools such as Kubecost
can significantly streamline this process, providing a systematic approach to managing and reducing
cloud expenses. Here’s how this combination can be leveraged to enhance cloud spend optimization.

Combining GitOps and Kubecost for cloud spend optimization

GitOps, by design, brings automation, predictability, and transparency to cloud operations. It
establishes a Git repository as the SSOT for the entire infrastructure, which means every change
is version-controlled, traceable, and reversible. This methodical approach is instrumental in cloud
spend optimization.

FinOps, Sustainability, AI, and Future Trends for GitOps384

Important note
An example on GitHub under Chapter 14, ...optimization/kubecost, demonstrates
how to configure alerts in the Kubecost UI and via Helm Chart deployment using the values.
yaml file.

When GitOps and Kubecost are used together, they provide a powerful framework for ongoing cloud
spend optimization:

• Automated resource optimization: GitOps can automate the deployment of Kubecost’s
recommendations, ensuring that cost-saving measures are promptly and consistently applied
across the infrastructure

• Continuous monitoring and adjustment: The combination allows for continuous monitoring
of cloud spend and automatic adjustments based on predefined policies, ensuring that the cloud
environment is always running in the most cost-effective manner

• Enhanced collaboration: By integrating these tools, financial and operational teams can
collaborate more effectively, with GitOps providing the operational framework and Kubecost
offering financial insights, leading to more informed decision-making

Let’s imagine a new project comes in. The platform team provides the Kubernetes platform, but the
FinOps team, which has a fixed budget of 500 USD per project, is responsible for managing the costs.
The FinOps Team can create a budget with alerts in the UI or let the GitOps team deploy the alert via
GitOps budgets for the project namespaces and clusters and set up alerts.

If the FinOps team, for example, wonders why the cumulative budget across the namespaces is between
70-100 USD, but the total spent budget is around 600 USD, they can use the alerts and UI to investigate
the root cause. The Kubecost UI (Figure 14.4) reveals that the cluster efficiency, for example, is below
12%, and savings of about 50 USD are already possible with a 7-day retrospective:

Figure 14.4 – Kubecost cluster efficiency ~12% for 7 days

Assessing carbon footprint and promoting green operations 385

The FinOps team then examines the potential savings in Figure 14.5 to understand the origins of the
costs. It quickly becomes apparent that the cluster for the project is oversized. Together with the platform
team and by utilizing Kubecost, the teams involved in the project can implement sizing adjustments and
mechanisms to modify actions accordingly. At this juncture, it’s crucial that collaboration between the
teams is effective and that all teams act in the interest of the company, sustainability, and the project.
This is how cloud costs can be sensibly optimized:

Figure 14.5 – Kubecost savings recommendation

In conclusion, leveraging GitOps alongside Kubecost can transform cloud spend optimization from
a reactive to a proactive endeavor. This integration not only provides granular insights into cloud
usage and expenses but also automates the application of cost-saving strategies, ensuring that cloud
resources are utilized efficiently and economically, and aligning cloud expenditure with organizational
budgetary goals and operational requirements.

In the following section, we will explore the utilization of GitOps along with diverse tools to progress
toward sustainability.

Assessing carbon footprint and promoting green
operations
Assessing the carbon footprint and promoting green operations in cloud environments are critical steps
toward achieving sustainability in IT operations. Tools such as kube-green [4] and Armada [5]
offer innovative approaches to managing and reducing the environmental impact of cloud computing.

FinOps, Sustainability, AI, and Future Trends for GitOps386

Assessing carbon footprint with kube-green

The kube-green tool focuses on optimizing resource usage in a way that correlates directly with
energy consumption, thereby minimizing the environmental impact. Here’s how it contributes to
green operations:

• Workload scheduling: The kube-green tool can intelligently schedule workloads to run
during times when the energy grid is supplied by renewable sources, thus promoting the use
of green energy

• Resource optimization: It helps in fine-tuning the allocation of resources, ensuring that
applications use only what they need and reducing the overall energy consumption of the
data center

• Idle resource management: The tool can automatically scale down or turn off idle resources,
significantly cutting down energy waste and associated carbon emissions

Implementing kube-green allows organizations to move toward carbon-neutral computing, aligning
IT operations with broader environmental sustainability goals.

Promoting green operations with Armada

While not a direct tool like kube-green, Armada represents the concept of a fleet management
approach in Kubernetes, which can be adapted to promote green operations. By managing clusters
efficiently, Armada can help in the following ways:

• Cluster consolidation: Optimizing the number of active clusters and nodes based on demand,
reducing energy consumption by avoiding the over-provisioning of resources

• Energy-efficient deployments: Facilitating the deployment of applications in an energy-efficient
manner, potentially integrating with tools that forecast the availability of green energy

• Monitoring and reporting: Providing insights into the energy usage and efficiency of clusters,
enabling informed decisions about how to reduce the carbon footprint

Adopting a strategy such as Armada allows organizations to oversee their Kubernetes clusters with an
eye toward sustainability, ensuring that the infrastructure is as energy-efficient as possible.

Assessing carbon footprint by integrating with GitOps

Integrating tools such as kube-green and concepts such as Armada into a GitOps workflow can
further enhance their effectiveness:

• Automated implementation: GitOps can automate the deployment of kube-green policies
and Armada strategies across all clusters, ensuring uniform adherence to sustainability practices

Looking at GitOps and AI-driven automation 387

• Continuous optimization: With GitOps, the continual adjustment and optimization of green
policies can be maintained across the life cycle of applications, keeping sustainability a priority
in every deployment

• Transparency and accountability: The declarative nature of GitOps provides a clear, version-
controlled history of all changes made to promote green operations, fostering transparency
and accountability in sustainability efforts

By assessing the carbon footprint and promoting green operations, organizations not only contribute
to the environmental sustainability of their cloud infrastructure but also align with global efforts to
reduce carbon emissions. The integration of these practices with GitOps ensures a systematic, scalable,
and effective approach to sustainable cloud computing.

As AI is becoming increasingly important and there are already tools that can provide teams with
useful support, we will take a look at these in the next section.

Looking at GitOps and AI-driven automation
As the IT landscape becomes increasingly complex, especially when dissecting all aspects of Kubernetes
in detail without the aid of GitOps or other tools, many layers accumulate, spanning from the operating
system level through the network and up to public key infrastructures (PKIs). I notice more frequently
that new employees in this field are finding it increasingly difficult to get started and to know where
exactly to begin, especially when they are thrust into a project. Hence, there are practical AI tools
available that can provide support in this area.

In this chapter, we will explore two tools. The first tool, Robusta.dev, serves as a troubleshooting
co-pilot for developers, providing them with real-time insights and solutions. The second tool is a
retrieval-augmented generation (RAG) model, a self-implemented middleware solution from iits,
which can be used as an enhancement to support developers with a knowledge base. By combining
these two tools and deploying them via GitOps in the relevant projects, I believe they can be extremely
beneficial not only for developers new to the field but also for those who are already experienced. This
integration is likely to result in a productive boost.

Robusta.dev

Robusta [6] is an open source platform designed to enhance the observability and debugging
capabilities of Kubernetes. It’s a tool that helps DevOps teams, site reliability engineers (SREs), and
developers to get more insights into their Kubernetes clusters, facilitating better monitoring, alerting,
and troubleshooting.

FinOps, Sustainability, AI, and Future Trends for GitOps388

Key features of Robusta include the following:

• Enhanced observability: Robusta provides detailed insights into the Kubernetes environment,
offering rich, actionable alerts and notifications. It transforms plain log files into more interactive,
enriched data that helps in quicker understanding and resolution of issues.

• Automated troubleshooting: The platform can automate the troubleshooting process for common
Kubernetes problems, reducing the manual effort required to diagnose and resolve issues.

• Customizable playbooks: Users can create custom playbooks to automate responses to specific
incidents or alerts. This allows for a tailored response mechanism that can evolve with the
needs of the infrastructure.

• Integration with existing tools: It integrates well with the existing ecosystem of DevOps tools,
providing seamless connectivity with monitoring solutions, alerting tools, and messaging
platforms such as Slack.

• Open source community: Being open source, it allows developers and users to contribute
to the tool, fostering a community-driven approach to enhancing Kubernetes observability
and management.

We will use the enhancement ChatGPT bot [7] with a customizable playbook to make the Robusta
tool even more effective. But let’s follow the next steps in the guide. We will use Prometheus and
ChatGPT in our following example.

Important note
Prometheus is an open source monitoring and alerting toolkit widely used for its powerful
querying language and ability to handle multi-dimensional data such as metrics from cloud and
containerized environments, while ChatGPT is an advanced AI language model developed by
OpenAI, capable of generating human-like text, engaging in conversation, answering questions,
and providing information across a vast range of topics.

Let’s get started:

1. Install the Robusta Python CLI:

python3 -m pip install -U robusta-cli --no-cache

2. Generate a values file for Helm:

robusta gen-config

You will be guided through all necessary steps:
Configure Slack integration? This is HIGHLY recommended. [Y/n]:
Y
If your browser does not automatically launch, open the below

Looking at GitOps and AI-driven automation 389

url:
https://api.robusta.dev/integrations/slack?id=05b9c718-7f2e-
4749-82fe-c3f545266692
You've just connected Robusta to the Slack of: poc-chatgpt-
kubernetes
Which slack channel should I send notifications to? # pocs
Configure MsTeams integration? [y/N]: N
Configure Robusta UI sink? This is HIGHLY recommended. [Y/n]: Y
Enter your Google/Gmail/Azure/Outlook address. This will be used
to……

3. In the newest version, they validate the Helm over Helm lint, so you have to add clusterName:

clusterName: "aks-excelsior-development-2"
globalConfig:
 signing_key: ea657a0b******
 account_id: 7935371f******
sinksConfig:
- slack_sink:
 name: main_slack_sink
 slack_channel: pocs
 api_key: xoxb******
enablePrometheusStack: true
enablePlatformPlaybooks: true
runner:
 sendAdditionalTelemetry: true
rsa:
 private: ******
 public: ******

Then, you can modify the generated_values.yaml file to create multiple triggers. For
the showcase, I will keep it simple and apply it over helm in the next step.

4. Install Robusta with Helm:

kubectl create ns robusta
helm repo add robusta https://robusta-charts.storage.googleapis.
com && helm repo update
helm install robusta robusta/robusta -f .generated_values.yaml

5. Run a demo to see if the trigger (Prometheus), action (Logs-Enricher), and sink (Slack) work:

k apply -n robusta -f https://raw.githubusercontent.com/robusta-
dev/kubernetes-demos/main/pending_pods/pending_pod_resources.
yaml

FinOps, Sustainability, AI, and Future Trends for GitOps390

Now, trigger the Prometheus alert or wait 5-10 minutes:
robusta playbooks trigger prometheus_alert alert_
name=KubePodCrashLooping namespace=robusta pod_name=pending-pod-
resources-579664598d-j6s9n

You should receive a notification in Slack, as illustrated in Figure 14.6, containing metainformation
along with the pod’s logs:

Figure 14.6 – Robusta with Slack as sink without ChatGPT

6. We now need to include the playbook repository and integrate our custom playbook tailored
for the ChatGPT action, as follows:

clusterName: "aks-excelsior-development-2"
globalConfig:
 chat_gpt_token: sk-dw******
 signing_key: ea657a******
 account_id: 7935371f******
sinksConfig:
- slack_sink:
 name: main_slack_sink
 slack_channel: pocs
 api_key: xoxb******

Looking at GitOps and AI-driven automation 391

- robusta_sink:
 name: robusta_ui_sink
 token: eyJhY2NvdW******
enablePrometheusStack: true
This part is added to the default generated_values.yaml
enablePlatformPlaybooks: true
runner:
 sendAdditionalTelemetry: true
rsa:
 private: ******
 public: ******

This part is added to the default generated_values.yaml
playbookRepos:
 chatgpt_robusta_actions:
 url: "https://github.com/robusta-dev/kubernetes-chatgpt-bot.
git"

This part is added to the default generated_values.yaml
customPlaybooks:
Add the 'Ask ChatGPT' button to all Prometheus alerts
- triggers:
 - on_prometheus_alert: {}
 actions:
 - chat_gpt_enricher: {}

The highlighted section is the additional part.

7. Now, you should activate the Prometheus alert again using the following code:

robusta playbooks trigger prometheus_alert alert_
name=KubePodCrashLooping namespace=robusta pod_name=pending-pod-
resources-579664598d-j6s9n

FinOps, Sustainability, AI, and Future Trends for GitOps392

You should now be able to view the Ask ChatGPT button, as depicted in Figure 14.7:

Figure 14.7 – Robusta with Slack as sink with ChatGPT

Upon clicking the button, you should receive a detailed explanation regarding the occurrence, common
causes, potential troubleshooting steps, and viable solutions, as illustrated in Figure 14.8. This feature
significantly aids developers by saving them considerable time and reducing the hassle involved in
troubleshooting issues. Utilizing GitOps with Argo CD, you can deploy not only Robusta but also
the extension across multiple clusters, as we have repeatedly demonstrated throughout this book:

Looking at GitOps and AI-driven automation 393

Figure 14.8 – Robusta with Slack as sink with ChatGPT: support

Robusta aims to simplify the operational complexity of managing Kubernetes clusters, making it easier
for teams to maintain high availability (HA), performance, and reliability of their containerized
applications. By integrating with GitOps, Robusta enhances automation, ensures consistent environments
through declarative configuration, and facilitates swift recovery and scalability, thereby streamlining
the deployment process and reinforcing infrastructure resilience.

FinOps, Sustainability, AI, and Future Trends for GitOps394

Private LLM solution with iitsAI

With tools such as Robusta.dev, we already have good support for observability and incident
management (IM) in Kubernetes environments, but how can we further enhance productivity,
onboard new developers, and improve existing ones? We are introducing an additional tool called
iitsAI, from the iits-consulting company, operating under iitsAI. This tool allows developers to
supplement their own data sources on top of a pre-trained module such as Mistral 7B and leverage
multiple large language models (LLMs; mixed models).

Important note
Ollama is a cross-platform framework that lets you use LLMs such as Mistral 7B locally on
your computer.

An LLM is a type of AI program that can recognize and generate text, translate languages, write
different kinds of creative content, and answer your questions in an informative way.

RAG is a technique that improves the accuracy and reliability of generative AI (GenAI) models
by incorporating factual information from external sources.

Mistral 7B is a 7.3 billion-parameter neural network (NN) model trained on a massive dataset
of text and code that can perform various tasks, including generating text, translating languages,
writing different kinds of creative content, and answering your questions in an informative way.

iitsAI offers a private LLM solution that runs on Kubernetes within your own infrastructure,
enriched with your own data, providing you with complete end-to-end control. Alternatively,
you can choose the hosted version by iits, available through a sovereign cloud provider in
Germany. Both solutions include single sign-on (SSO) and fine-grained access control to the
data through role mapping defined by you.

The functionality of LLMs is simplified as follows:

• The helpers of LLMs are large NNs trained on massive amounts of data

• Each LLM processes its part of the prompt and generates a response based on its knowledge
and abilities

• The responses from the LLMs are then merged to create a comprehensive and informative
response for the user

Looking at GitOps and AI-driven automation 395

This way, complex tasks can be broken down into smaller parts and processed in parallel by multiple
LLMs. The result is faster and more efficient processing of the prompt. Imagine a prompt that gets
split into pieces and sent to different AI helpers. Each helper works on its piece, then all the answers
are combined for a final response.

The tool built by iits provides the following architecture:

Figure 14.9 – Ollama with RAG: service architecture [8]

Important note
Weaviate is an open source vector database that enables you to store data objects and vectors.

Airbyte is an open source data integration platform that helps you move data between different
sources and destinations.

The user inputs a prompt into a web UI, as they are accustomed to with ChatGPT, which references
a model via Ollama, such as Mistral 7B, and provides the base LLM model in the background. Then,
iitsAI developed a middleware to conserve resources and extract the best possible outcome from the
prompt. The prompt is divided into slices, undergoes several iterations, and is processed through
multiple LLMs. Here, the LLMs act as a vector database (Weaviate), which connects to Airbyte
through a custom-developed connector or uses Airbyte to load documents from various sources and
provide them to the LLM agents. In the end, the user receives a response to their inquiry based on
the provided documents, which looks like this:

FinOps, Sustainability, AI, and Future Trends for GitOps396

Figure 14.10 – iitsAI and logistics industry develop an internal knowledge base

The intriguing aspect of the solution is that it operates on Kubernetes and is deployed using GitOps.
Consequently, the entire solution, from the UI to loading the base model and provisioning the files,
is managed by the companies themselves on their own infrastructure. This autonomy is crucial for
European businesses when employing technologies such as AI, Kubernetes, and GitOps.

Let’s now explore how it can be integrated with GitOps and the opportunities this combination presents.

Looking at GitOps and AI-driven automation 397

In use case A (Figure 14.11), a product provided to various customers can be delivered by the
development team. Simultaneously, the team can supply a knowledge base to the customers on how
to use the product. Users can then resolve all necessary queries using simple language requests without
the need to sift through external documentation:

Figure 14.11 – iitsAI and custom app knowledge base

For use case B (Figure 14.12), as the platform team deploys the platform, they can also create an
internal knowledge base about all the delivered tools, potential issues, releases, response times, FAQs,
and so on, which can be accessed through a chat assistant in natural language (NL). This not only
boosts efficiency but also eliminates several iterative steps, such as contacting the service desk, which
typically involves searching the documentation provided and assisting at the first level of support:

FinOps, Sustainability, AI, and Future Trends for GitOps398

Figure 14.12 – iitsAI and platform knowledge base

Thanks to GitOps, the deployment is straightforward and can be scaled across clusters. Moreover,
the GitOps approach aids in conserving resources since LLMs are GPU-intensive. It supports setups
such as those shown in Figure 14.13, where only the UI is deployed on the workload cluster, while the
middleware, the vector database, and the base model can operate on a service cluster that provides
GPU node pools:

Looking at GitOps and AI-driven automation 399

Figure 14.13 – iitsAI split UI and LLMs backend to save resources

As we can see, GitOps offers us tremendous flexibility at this juncture, reminding us of our Kubernetes
Service Catalog (KSC) from previous chapters and how one can control their stack using labels.
This allows for even more finely-grained control of the deployments. By now integrating AI, as just
demonstrated, we can proactively assist with troubleshooting and provide an interactive knowledge
base, hopefully making the added value clear.

In the next section, we will explore potential challenges and opportunities associated with the future
use of GitOps.

FinOps, Sustainability, AI, and Future Trends for GitOps400

Future challenges and opportunities in GitOps
In this section, it’s crucial to address the collaborative dynamics and the overarching strategy required
when multiple teams converge within the same operational framework, especially when they are
required to share resources such as a repository. The key is to establish clear protocols from the outset,
defining what is permissible and what needs coordination, much like setting contribution guidelines
that dictate the sequence and considerations for changes.

This approach is reflective of the open source software (OSS) model, where contributors worldwide
collaborate effectively on a project without it being owned by a single entity. Such a model underscores
the potential of GitOps to harmonize efforts across diverse teams, transcending the traditional
boundaries of DevOps. GitOps aims to unify development, operations, finance, sustainability, privacy,
security, and other disciplines, enabling them to deliver a cohesive and robust product collectively.

Sustainability is poised to play a significant role in the realm of GitOps. Unlike traditional continuous
integration/continuous deployment (CI/CD) pipelines that may run based on code changes, GitOps
frequently reconciles the actual state of the system with the desired state defined in Git. While this
ensures consistency and reliability, it also means that as the number of applications grows, resource
consumption might increase correspondingly. This necessitates a thoughtful approach to how GitOps
practices can be optimized to mitigate environmental impact without compromising the efficiency
and reliability of the system. The future of GitOps will likely see innovations that allow it to scale
sustainably, managing resource consumption wisely while maintaining high standards of automated,
consistent, and declarative infrastructure management.

The role of GitOps in emerging technologies
In the rapidly evolving landscape of technology, GitOps stands out as a pivotal methodology, particularly
in the realm of emerging technologies. It represents a paradigm shift, emphasizing the use of Git as an
SSOT and automating the deployment process, thereby intertwining development and operations more
closely than ever before. This methodology is becoming increasingly vital as organizations navigate
the complexities of modern software deployment, especially in cloud-native environments and when
dealing with innovative technologies. This list summarizes the role of GitOps in emerging technologies:

• Enhancing cloud-native ecosystems: As organizations increasingly adopt cloud-native
technologies, the complexity of managing these environments grows. GitOps provides a
structured, predictable method of managing this complexity, using version control to manage
the entire state of the cloud-native infrastructure. This is particularly beneficial for Kubernetes,
serverless architectures, and service mesh technologies, where configuration and state are critical.
GitOps not only simplifies the management of these technologies but also enhances security,
auditability, and transparency, which are paramount in cloud-native ecosystems.

Summary 401

• Facilitating edge computing: With the rise of edge computing, managing numerous remote
environments consistently and securely has become a challenge. GitOps offers a way to deploy
and manage applications across various edge locations reliably. By keeping configurations in
Git, organizations can ensure that changes are traceable, verifiable, and automatically deployed,
reducing the potential for human error and increasing operational efficiency.

• Accelerating AI and machine learning (ML) operations: The integration of GitOps in AI and
ML operations streamlines the deployment of complex AI models and the continuous delivery
of ML infrastructure. It ensures that data scientists and ML engineers can focus on model
development and experimentation without worrying about the underlying infrastructure.
GitOps automates the deployment process, ensuring consistent, repeatable, and reliable delivery
of AI applications.

• Supporting Internet of Things (IoT) deployments: IoT involves managing a vast number of
devices, each potentially running different software versions. GitOps can play a crucial role
in automating the deployment and management of software across these devices, ensuring
consistency, reliability, and security at scale. The declarative approach of GitOps means that
the desired state of the IoT infrastructure can be version-controlled and automatically applied,
reducing the complexity and increasing the scalability of IoT operations.

• Enhancing security in DevSecOps: In the DevSecOps world, integrating security into the
development and operations life cycle is crucial. GitOps supports this by ensuring that all
changes are reviewed, approved, and traceable through Git. This facilitates rigorous audit
trails, quick rollbacks in case of issues, and a more secure infrastructure deployment pipeline,
thereby enhancing the overall security posture of the organization.

GitOps is not just a trend but a fundamental shift in how we manage emerging technologies. It bridges
the gap between development and operations, ensuring faster, more secure, and more reliable software
delivery. As we continue to embrace new technologies and face new challenges, the principles of GitOps
provide a solid foundation for managing the complexity of modern IT environments, making it an
indispensable tool in the arsenal of today’s technology leaders.

Summary
In this chapter, we hopefully gained clarity on how GitOps, through the use of various tools, enables
both economic and ecological action. The importance of cultural change in the adoption of GitOps
should also have become evident, as it allows numerous teams to collaborate and autonomously deploy
tools, policies, and so on that align with the company’s interests. While interpreting future trends isn’t
straightforward, the potential unlocked by combining the discussed AI tools should now be apparent.
Ultimately, GitOps serves to deploy, expand, and maintain various tools or policies from different
teams across a distributed cluster landscape or logically grouped clusters at scale.

FinOps, Sustainability, AI, and Future Trends for GitOps402

In Implementing GitOps with Kubernetes, we have taken a hands-on approach to explore scalable and
straightforward solutions grounded in real-world scenarios. From foundational concepts to advanced
implementations, this book has aimed to equip you with the knowledge and tools necessary to harness
the full potential of GitOps within Kubernetes environments. Through practical examples, insights
from industry experts, and detailed explanations of best practices, we hope you now feel prepared to
implement GitOps strategies effectively.

As you conclude this book, the next step is to apply what you’ve learned to real-world projects.
Experiment with different tools, refine your workflows, and continually seek ways to optimize and
secure your deployments. Stay engaged with the community, keep up with the latest trends, and never
stop learning.

We wish you the best of luck on your GitOps journey ahead. May you achieve new heights in operational
excellence, scalability, and innovation. Thank you for joining us on this journey, and we wish you
success in all your GitOps endeavors. Wishing you all the best, Pietro and Artem.

References
• [1] https://github.com/opencost/opencost

• [2] https://github.com/kubecost

• [3] https://github.com/PacktPublishing/Implementing-GitOps-with-
Kubernetes

• [4] https://github.com/kube-green/kube-green

• [5] https://github.com/armadaproject/armada

• [6] https://home.robusta.dev

• [7] https://github.com/robusta-dev/kubernetes-chatgpt-bot

• [8] https://github.com/iits-consulting/otc-terraform-template

https://github.com/opencost/opencost
https://github.com/kubecost
https://github.com/PacktPublishing/GitOps-for-Kubernetes-Deployment
https://github.com/kube-green/kube-green
https://github.com/armadaproject/armada
https://home.robusta.dev
https://github.com/robusta-dev/kubernetes-chatgpt-bot
https://github.com/iits-consulting/otc-terraform-template

Index

A
AI helpers 395
Airbyte 395
Akuity 173-175
alerting 342

alerting rules 343
alerting strategies 342
node overcommitment in

Kubernetes rule 344
Amazon Elastic Container

Registry (ECR) 254
Amazon Elastic Kubernetes

Service (EKS) 274, 296
Apache JMeter 310
API server (kube-apiserver) 22
ApplicationSets approach 106, 110-113

usage criteria 114
App of Apps approach 106-109

usage criteria 114
use cases 109, 110

architectural choices, on GitOps
impact, examining 154

architectural designs
efficiency, with proactive optimization 156

resilience, through redundancy
and isolation 156

scalability, in cloud-native
architectures 155, 156

tailoring, in cloud-native deployments 155
tailoring, with GitOps 156, 157

architectural frameworks, for
Kubernetes 152, 153

architectural principles 308
Argo CD 15, 74, 195, 304

application controller 87
application, deploying to Kubernetes via 88
Argo CD API server 86
Argo CD UI and CLI 87
command-line interface (CLI) 359
Dex server 87
instance 161
integrating, with Kubernetes 15, 86
multitenancy, setting up with 136-141
repository server 87
setting up 87
synchronization process 87
transitioning to 305-308
versus Flux 98, 99

Index404

Argo CD GitOps framework
infrastructure as application 194

Armada 385
green operations, promoting 386

artifacts 300
ATM-ID 355
attack trees 361
Attributed-Based Access

Control (ABAC) 318
at-your-own-pace approach 275
auto-scaling 309
AWS CLI user guide

reference link 254
AWS CloudWatch 310
AWS CodeBuild 253
AWS CodeDeploy 253
AWS CodePipeline 253

Kubernetes GitOps deployment,
implementing with 253-267

AWS Elastic Beanstalk 253
AWS Key Management Service 360
AWS Lambda functions 253
AWS Secrets Manager 362
Azure account 275
Azure Active Directory (AAD) 357
Azure Calico CNI 185
Azure Container Registry (ACR) 244, 290
Azure DevOps 243

Azure Pipelines 243
Azure Repos 243
Kubernetes GitOps deployment,

implementing with 244-252
Azure Key Vault 195, 362
Azure Kubernetes Service (AKS) 195, 274
Azure service principal 245

creating 278

B
blue-green deployment 210
branching 56
Business Source License (BSL) 275

C
canary deployment 210
carbon footprint

assessing, by integrating kube-green
and Armada with GitOps 386

assessing, with kube-green 386
centralized control 157, 158

advantages 159, 160
approach 158, 159
avoiding 161
disadvantages 159, 160
using 161

Centralized Kubernetes cluster creation
Cluster API, leveraging 176

centralized VCSs (CVCSs) 52
Cert-Manager 196, 198
Change Impact Assessment (CIA) 355
ChatGPT 388, 395
cherry-picking operation 127
CI/CD pipeline, with GitHub

Actions and Terraform 299
apply job 300
Docker image build and push 301
Kubernetes deployment 302, 303
plan job 299, 300
workflow trigger conditions 299

CLASTIX 176
CLASTIX (Kamaji) 178
cloning 56

Index 405

cloud-based OpenShift cluster 221
cloud controller manager 22
Cloud Development Kit for

Terraform (CDKTF) 194
Cloud Formation templates 194
Cloud GitOps essentials

AWS GitOps essentials 243, 253
Azure GitOps essentials 243

cloud investment 383
Cloud Native Computing

Foundation (CNCF) 21
cloud-native deployments 242
cloud-native developments 243
Cluster API 176

automated cluster life cycle management 177
CI/CD pipelines 177
disaster recovery 177
Edge computing 178
hybrid cloud and multi-cloud

deployments 177
IaC 177
leveraging 178-180
multi-cluster management 177
self-service clusters 177

Cluster API
advantages 179

Cluster API Provider Azure (CAPZ) 178
cluster bootstrapping 109
ClusterSecretStore 363
Cockpit 353
cockpit and fleet approach 170, 171

advantages 171
avoiding 172, 173
disadvantages 171
operational dynamics 171

selecting, for GitOps 173-175
usage conditions 172

Codefresh 120
code version comparisons 56
Colima 25
commit SHA 301
Common Vulnerabilities and

Exposures (CVE) 371
compliance and auditing processes 14
compute management 309
Concurrent Versions System (CVS) 53
ConfigMaps 76
configuration vulnerabilities

addressing 354, 355
containerd 41
container images 39
Container Network Interface (CNI) 239
Container Registries 195
container runtime 23
containers 39

Docker alternatives 41
Dockerfile 42-45
Docker setup 39

continual improvement
need for, in GitOps 210, 211

continuous deployment (CD) 110
continuous innovation 210
continuous integration 208
Continuous Integration and Continuous

Deployment (CI/CD) 62
controller manager (kube-

controller-manager) 22
ControlPlane 354, 361
Crawl, Walk, Run model 377
CRI-O 41

Index406

cross-cloud strategies
for GitOps applications 267, 268

Crossplane 196
cultural barriers, GitOps

overcoming 211
project story 211-213

curl 37, 298
custom resource definitions (CRDs) 196, 199
custom resources (CRs) 199

D
Datadog 338
declarative approach 9
declarative configurations 13
declarative GitOps CD

hardening, on Kubernetes 354
dedicated Argo CD instance 161

avoiding 163
example 162, 163
usage conditions 163

Developer Sandbox 221
URL 221

DevOps 7
DevOps principles 193
DevOps Research and Assessment

(DORA) metrics 8, 208, 334
Change Failure Rate 208
Deployment Frequency 208
Lead Time for Changes 208
MTTR 209
SLOs, integrating 334

Dex 357
disaster recovery (DR) 14, 286
distributed tracing 336

implementing, with Linkerd 335-337
distributed VCSs (DVCSs) 53

diverse GitOps architectural frameworks
exploring, for Kubernetes

environments 152, 153
Docker 39
Dockerfile 42, 301

example 42-45
Docker image 298

for TF-Controller 280
Drift Detection Model 276

E
Elastic Kubernetes Service (EKS) 177
environment-per-folder approach 121

example 122-127
environment per Git approach 121
etcd 22
extended BPF (Berkeley Packet Filter) 370
external (black box) observability 330-333

and internal observability, balancing 333
dependency checks 330
synthetic monitoring 330
user experience metrics 330

external-DNS 195
External Secrets 362, 363

usage 362, 363
External-Secrets Operator 196

F
Falco 353, 369, 370

integrating, with GitOps 371
FinOps 129, 160, 211, 344

fundamentals 376, 377
GitOps, utilizing with 378, 379

Flask web app application 43
Fleet 353

Index 407

Flux 16, 74, 94
dedicated minikube cluster, creating 276
integration with Kubernetes 94, 95
reference link, for installation 275
setting up 96
URL 96
versus Argo CD 98, 99
weather app, deploying to

Kubernetes with Flux 96-98
Flux bootstrap

for GitHub 277, 278
Flux CD 273, 281

benefits 17
dedicated instances 164-166
enabling 281-283
features 16, 281
integrating, with Kubernetes 16, 17

Flux CLI
installing 277

Flux daemon (Fluxd) 95
functional Kubernetes cluster 274

G
Gatling 310
generative AI (GenAI) models 394
generators 111
Giant Swarm 176
Giant Swarm (Kubernetes platform) 178
Git 4, 54

basics 58
commit-status-push loop example 58-60
git add command 58
git branch command 58
git clone command 56
git commit command 58
git fetch command 58

git init command 56, 58
git merge command 58
git pull command 58
git push command 58
setup 55
workflows 60, 61

Git-centric 10
GitHub 61

account 275
ecosystem 62, 63
flow 63-67
integrating, with GitOps 68-71

GitHub Actions 208
GitHub PAT 96
GitHub repository

creating 277
GitLab CI 208
GitOps 4, 272

advantages 8-10, 203
benefits 10, 11
continual improvement 210, 211
cultural barriers, overcoming 211
development environment, setting up 296
drawbacks 204
fundamentals 8
future challenges 400
GitHub, integrating with 68-71
integrating, with cloud-native technology 20
integrating, with IaC 12
integrating, with Kubernetes 13-15
opportunities 400
platform engineering 8-10
role, in emerging technologies 400, 401
setting up, in Red Hat OpenShift 225-230
utilizing, with FinOps 378, 379
versus traditional CI/CD with DevOps 4-8

Index408

GitOps, and FinOps
automated cost optimization 378
collaboration and visibility 378
continuous cost monitoring

and feedback 378
policy enforcement 378
proactive financial management 378
version-controlled spending 378

GitOps, and Kubecost
for cloud spend optimization 383-385

GitOps applications
cross-cloud strategies 267, 268
in cloud environments 267

GitOps Automation Model 276
GitOps strategies

AWS GitOps strategies 269
Azure GitOps strategies 269

GitOps tools 74
GitOps workflow

Terraform, setting up 275-281
Git repository 5

cloning 56, 57
creating 56, 57

Git repository strategies 119
environment branches 120, 121
environment-per-folder approach 121-127
environment per Git approach 121
scaling with ApplicationSet

generators 127-129
Git Source Version Controls (SVCs) 209
Go 21
Google Cloud Monitoring 310
Google Cloud Platform (GCP) 379
Google GKE 253, 296
Google Secret Manager 362
GPU-intensive 398
GPU node pools 398

Grafana 316, 338
setting up 316, 317

Grafana Loki 328, 329
green operations

promoting, with Armada 386

H
HashiCorp Configuration

Language (HCL) 74, 275
heads 55
Helm 74-76, 106, 127, 157, 274

project, creating 77
setting up 76
versus Kustomize 86

Helm chart
creating 77-79
integrating, with GitOps 80

Helmfile 127
high availability (HA) 393
highly available applications, on OpenShift

deployment key practices 237, 238
Horizontal Pod Autoscaler (HPA) 237

implementing 312
Hybrid GitOps Automation Model 276

I
IaC use cases

deployment over Terraform 196-198
Terraform and Argo CD integration,

for deployment 198, 199
unified management, on

Kubernetes 199, 200
IAM policy 255
IAM role 258, 259
idempotency 303

Index 409

iits 387
iitsAI 394

for private LLM solution 395-399
immutable infrastructure 202

advantages 203
challenges 203
integrating, with GitOps 203
principles 202

immutable infrastructure and
GitOps integration

application configuration 206, 207
challenges 204
production environment, achieving 204-206
synergy 204

incident management (IM) 394
informed architectural decisions

making 155
infra-as-apps 192

benefits 201
GitOps and infrastructure

management, bridging 194, 195
in Argo CD GitOps framework 194

Infrastructure as Code (IaC)
192, 272, 298, 338

declarative approach 193
imperative approach 193
importance 193
integrating, with GitOps 12
templates 378
use cases 196-200
used, for deploying infrastructure 195, 196
working 193

inline policy 260
internal developer platforms (IDPs) 106
internal developer portals (IDPOs) 106
internal (white box) observability 328, 329

and external observability, balancing 333
logs 328
metrics 328
traces 328

intrusion detection system (IDS) 370
isolated risk management 163

J
Jaeger 328, 329
Jenkins 208
Jsonnet 106, 157

K
K3s 20, 24, 296

deployment with 33-36
downloading 28
installation, verifying 30, 31
installing 28-30
Kubernetes cluster, checking 31, 32
local cluster setup 25
sample workflow 45
setting up 27
URL 24

key management service 360
key-value store 22
KubeClarity 159, 353, 369

security, enhancing 369
Kubecost 381

features 381
versus OpenCost 383

Kubecost, with GitOps
budget and cost alerts, defining 382, 383

kubectl 32, 274
Kubegreen 211

Index410

kube-green tool 385
carbon footprint, assessing 386

Kubelet 22
kube-proxy 23
Kubermatic 176
Kubermatic Kubernetes Platform (KKP) 179
Kubernetes 21

architecture 21-23
components 22, 23
control plane 22
declarative GitOps CD, hardening 354
development environment, setting up 296
integrating, with Argo CD 15
integrating, with Flux CD 16, 17
integrating, with GitOps 13-15
Kubelet 22
kube-proxy 22
namespace 34
URL 23
versus Red Hat OpenShift 239, 240
worker nodes 22
workloads 21

Kubernetes-as-a-Service (KaaS) 142
Kubernetes clusters 195
Kubernetes environment

for GitOps workflow 296, 297
Kubernetes GitOps deployment

with AWS CodePipeline 253-267
with Azure DevOps 244-252

Kubernetes manifest 33
Kubernetes RBAC

configuring, for weather app 319-321
Kubernetes Secret 279, 280
Kubernetes security 318

API security 318
authentication 318
authorization 318
network security 318

pod security admission 319
secrets management 319

Kubernetes Service Catalog
(KSC) 187, 353, 399

Kubernetes Special Interest Group
(SIG) Cluster Lifecycle 176

Kustomizations 165
Kustomize 74, 75, 80, 81, 106,

122, 124, 157, 206
example, for Kubernetes deployment 82-85
integrating, with GitOps 85
setting up 81
versus Helm 86

Kyverno 210, 353
integrating, into development and

operational workflow 364, 365

L
labels 133
large language models (LLMs) 394
limits 311
Linkerd

used, for implementing distributed
tracing 335-337

liveness probes 237
LoadBalancer port 303
LoadRunner 310
load testing 310
local cluster setup, K3s 25

local Kubernetes environment, selecting 25
VirtualBox, setting up 26
WSL, setting up 25

local VCSs (LVCSs) 52
loft.sh 147
LXD 41

M

Index 411

managed identities 360
management cluster

initializing 181, 182
mandatory access control

(MAC) policies 220
Matrix generator 111
microservices 308, 309
Microsoft Entra ID 357
middle-way approach 166-168

avoiding 169
usage conditions 169

Minikube 25
Mistral 7B 394, 395
monitoring 315, 338

implementing, with OpenTelemetry 338
implementing, with Uptime Kuma 338

Mozilla Public License (MPL) 275
multi-cluster management 115

considerations 115
one cockpit - multiple fleet and

commander concept 117-119
one cockpit to rule them all

approach 116, 117
multi-factor authentication (MFA) 361
multitenancy

exploring, with Argo CD 136-141
exploring, with vCluster and

Argo CD 141-145
insights 147, 148
limitations, addressing 146, 147

My City Weather app 88

N
natural language (NL) 397
networking management 309
neural network (NN) 394
node overcommitment in

Kubernetes rule 344
NodePort service 36
no-drift-allowed approach 195

O
OAuth2 357
observability 14
observability at scale 345, 346

advanced tooling 346
components 345
enterprise-level best practices 350
observability tools selection, for

specific use cases 347-349
organizational strategies 346, 347

Ollama 394, 395
OpenAI 388
Open Container Initiative (OCI) 39
OpenCost 211, 379

features 379
versus Kubecost 383

OpenCost, with GitOps
hybrid-setup pricing configuration 381
on-premise pricing configuration 380

OpenGitOps standards 194
OpenID Connect (OIDC) 357
Open Policy Agent (OPA) 364

integrating, into development and
operational workflow 364, 365

OpenShift command-line
interface (CLI) 224

OpenShift CRC setup issues
troubleshooting 224, 225

OpenShift Operator 226
OpenShift Service Mesh 238
open source software (OSS) model 400
OpenTelemetry 329, 340

core functionalities 341

Index412

features 340
telemetry data types 340
used, for implementing monitoring 338-341

OpenTelemetry Collector 330
OpenTofu 275
OpenVZ 41
OpenWeatherMap

URL 297
OperatorHub 225

P
password management

improving 355-361
personal access token (PAT) 275

reference link 275
platform catalog

maintaining, up-to-date 371, 372
platform engineering 106
platform engineers 111
Pod 22
PodDisruptionBudgets (PDBs) 237
Podman 41
policy-as-code (PaC) tools 378
policy engine 353

implementing 366-368
leveraging, for policy-as-code practices 364

port forwarding 37-39
PostgreSQL Server on Azure 195
Private Azure DevOps project 246
Prometheus 316, 328, 329, 338, 388

setting up 316, 317
Prometheus with Grafana 338
public container registries 44

DockerHub 43
Quay 43
Red Hat Registry 43

public key infrastructures (PKIs) 387
pull request 10
Pulumi 194
Python Flask application 298

Q
quality assurance (QA) team 4

R
Rancherdesktop 41
RBAC ConfigMap 141
readiness probes 237
real-world CI/CD GitOps scenario 297

implementing 298
reconciliation loop 14
Red Hat OpenShift 220, 221

automation and configuration,
best practices 237, 238

CI/CD capabilities, using for
GitOps 231-237

developer productivity 220
GitOps, setting up 225-230
integrated development

environment (IDE) 220
operational efficiency 220
security 220
URL 220
versus Kubernetes 239, 240

Red Hat OpenShift, environment
setup options

bare metal setup 221
cloud-based OpenShift cluster 221
Developer Sandbox 221
Red Hat OpenShift Local 221, 222

Rego 364
repositories 55

Index 413

requests 311
resource management 309, 310
resource usage

optimizing 311
retrieval-augmented generation

(RAG) model 387, 394
rkt 41
Robusta.dev 387, 394

example 388-393
features 388

role-based access control (RBAC)
16, 116, 157, 297

improving 355-361

S
sample workflow, K3s 45

application, dockerizing 46
application, running 47
deployment 48, 49
image, publishing to container registry 47
local development 46

scalability and efficiency 308
architectural principles 308
resource management 309, 310

scalability testing 310
scheduler (kube-scheduler) 22
Sealed Secrets 361

usage 361, 362
seamless integration 14
security context constraints (SCCs) 238
Security-Enhanced Linux (SELinux) 220
security practices 315
security scanning and compliance

automating 369

semi-isolated environment 39
service catalog, for Kubernetes

building 129-134
maintenance, with GitOps at

scale and KSC 134, 135
Service Level Agreements (SLAs) 238, 333
Service-Level Indicators (SLIs) 334
Service-Level Objectives (SLOs) 334

multi-stage performance, exploring
with DORA 333-335

service-mesh 129
SIGTERM signal 237
single sign-on (SSO) 15, 157, 394
single source of truth (SSOT) 283, 378
Site Reliability Engineering (SRE)

fundamentals, for GitOps and
Kubernetes 326

intersection, with GitOps 326
principles in Kubernetes context 327

site reliability engineering (SRE) team 14
SLOs with DORA metrics integration 334
soak testing 310
Software-as-a-Service (SaaS) 74
Source-to-Image (S2I) 239
spike testing 310
SquaredUp 209
SRE teams 159
standalone Argo CD instances 163
startup probes 237
State Enforcement Model 276
storage management 309
stress testing 310
Subversion (SVN) 52
system calls (syscalls) 370

Index414

T
telemetry data types

logs 340
metrics 340
traces 340

tenant 142
Terraform 74, 194, 245, 272, 273

reference link, for installation 274
setting up, in GitOps workflow 275-281
URL 74

Terraform, and Flux CD
combining, for multi-environment

management 289-293
Terraform and Flux CD, combining

for enhanced automation 284
enhanced disaster recovery capabilities 286
multi-stage environments, managing 286
new infrastructure, providing by

updating Terraform files 285
Terraform and Flux CD, combining for

version control and automation 287
best practices, for configuration

and maintenance 287
best practices, for managing multi-

environment configurations 288
Git workflow strategies 288
security and best practices 287

Terraform Controller 197
Terraform modules 196
Terraform script

creating 281
testing, for scalability

example 313-315
TF-Controller

installing 278

Tofu Controller 275
Drift Detection Model 276
GitOps Automation Model 276
Hybrid GitOps Automation Model 276
State Enforcement Model 276
URL 275

traditional CI/CD
versus GitOps CD 105

traditional CI/CD with DevOps
versus GitOps 4-8

Transport Layer Security (TLS) 238
trivy operator 159

U
Ubuntu-22.04 LTS installation 27
umbrella chart 127
Uptime Kuma 338

core functionalities 339
features 339
used, for implementing monitoring 338

V
Value Stream Analytics Dashboard 209
vCluster 115

multitenancy, setting up with 144
simplified connection, to

multiple vClusters 146
version control 4
version control systems (VCSs) 52

centralized VCSs (CVCSs) 52
distributed VCSs (DVCSs) 53
local VCSs (LVCSs) 52

VerticalPodAutoscaler (VPA) 237
VirtualBox 25, 26

Index 415

virtual KSC (vKSC) 145
Virtual-Kubernetes-as-a-

Service (VKaaS) 142
virtual machine (VM) 25
virtual private cloud (VPC) 255

W
weather app

deploying, on Kubernetes via
Argo CD 88-94

Weave TF-Controller 275
Weaveworks 4, 152

project story 211
Weaviate 395
WebHook 141
Windows Subsystem for Linux (WSL) 55
workload cluster

creating 183-187
workload identities 360

Y
YAML 106

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Automating DevOps with GitLab CI/CD Pipelines

Christopher Cowell, Nicholas Lotz, Chris Timberlake

ISBN: 978-1-80323-300-0

• Gain insights into the essentials of Git, GitLab, and DevOps

• Understand how to create, view, and run GitLab CI/CD pipelines

• Explore how to verify, secure, and deploy code with GitLab CI/CD pipelines

• Configure and use GitLab Runners to execute CI/CD pipelines

• Explore advanced GitLab CI/CD pipeline features like DAGs and conditional logic

• Follow best practices and troubleshooting methods of GitLab CI/CD pipelines

• Implement end-to-end software development lifecycle workflows using examples

https://packt.link/1803233001

419Other Books You May Enjoy

Modern DevOps Practices

Gaurav Agarwal

ISBN: 978-1-80512-182-4

• •Explore modern DevOps practices with Git and GitOps

• Master container fundamentals with Docker and Kubernetes

• Become well versed in AWS ECS, Google Cloud Run, and Knative

• Discover how to efficiently build and manage secure Docker images

• Understand continuous integration with Jenkins on Kubernetes and GitHub Actions

• Get to grips with using Argo CD for continuous deployment and delivery

• Manage immutable infrastructure on the cloud with Packer, Terraform, and Ansible

• Operate container applications in production using Istio and learn about AI in DevOps

https://packt.link/1805121820

420

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Implementing GitOps with Kubernetes, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://packtpub.com
https://packt.link/r/1835884237

421

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781835884225

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781835884225

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Understanding GitOps
via Uncomplicated Orchestrations/ Kubernetes
	Chapter 1: An Introduction to GitOps
	Technical requirements
	GitOps unveiled – reshaping development culture and practices
	Traditional CI/CD with DevOps against GitOps

	The fundamentals of GitOps and the advantages of adopting it for platform engineering
	Why GitOps?
	The integration between GitOps, IaC, and Kubernetes
	GitOps and IaC
	GitOps and Kubernetes
	Kubernetes and Argo CD
	Kubernetes and Flux CD

	Summary
	Further reading

	Chapter 2: Navigating Cloud-native Operations with GitOps
	Technical requirements
	An overview of the integration of GitOps and
cloud-native technology
	An introduction to Kubernetes
	What is Kubernetes?
	Kubernetes architecture

	Exploring K3s as a lightweight Kubernetes distribution
	Local cluster setup
	K3s setup and installation verification
	Kubernetes manifest
	Our first deployment with K3s
	Port forwarding

	Getting started with containers
	Docker setup
	Docker alternatives
	Dockerfile

	Sample workflow – effortless CD with Docker and K3s
	Local development
	Dockerizing the application and running it locally
	Publishing the image to a container registry
	Deploying to K3s

	Summary
	Further reading

	Chapter 3: Version Control and
Integration with Git and GitHub
	Technical requirements
	Exploring version control systems – local, centralized, and distributed
	Why Git?
	Git setup
	Creating and cloning a Git repository
	The basics of Git

	Exploring GitHub
	GitHub’s ecosystem
	GitHub flow

	Integrating GitOps and GitHub
	Summary
	Further reading

	Chapter 4: Kubernetes with GitOps Tools
	Technical requirements
	Overview of popular GitOps tools
	A deep dive into Helm and Kustomize
	Helm
	Kustomize

	Argo CD integration with Kubernetes
	Argo CD setup

	Flux integration with Kubernetes
	Flux setup
	Deploying to Kubernetes with Flux

	Comparing Argo CD and Flux
	Summary

	Part 2:
Harnessing Advanced Orchestrations, Culture, and Control in GitOps Practices
	Chapter 5: GitOps at Scale
and Multitenancy
	Technical requirements
	Traditional CI/CD versus GitOps CD
	Platform engineering versus IDPs
	Understanding the App of Apps approach
	Use cases of App of Apps combined with examples
	The ApplicationSets approach
	Which approach should be used?

	Understanding multi-cluster management
	One cockpit to rule them all
	One cockpit – multiple fleet and commander concept

	Understanding effective Git repository strategies
	Environment branches
	Environment per Git
	Folders for environments
	Scaling with ApplicationSet generators

	Building a service catalog for Kubernetes
	Building the service catalog

	Exploring native multitenancy with Argo CD
	Exploring multitenancy with vCluster and Argo CD
	Bonus – simplified connection to multiple vClusters – a handy bash script
	Limitations solved in multitenancy with GitOps – a review

	Wrapping up – insights and lessons from multitenancy experiences
	Summary
	References

	Chapter 6: GitOps Architectural Designs and Operational Control
	Exploring diverse GitOps architectural frameworks for Kubernetes environments
	Examining the impact of architectural choices on GitOps’ effectiveness
	Architectural choices impacting GitOps
	Making informed architectural decisions

	Tailoring designs for scalability, resilience, and efficiency in cloud-native deployments
	Scalability in cloud-native architectures
	Resilience through redundancy and isolation
	Efficiency with proactive optimization
	Tailoring designs with GitOps

	Centralized control – managing clusters with a solo Argo instance
	The approach – centralized control
	When to use the centralized control approach
	When to avoid the centralized control approach

	Dedicated instances – instance per cluster with Argo CD
	When to use dedicated Argo CD instances
	When to avoid dedicated Argo CD instances

	Dedicated instances – instance per cluster with Flux CD
	The middle way – instance per logical group with Argo CD
	When to use the middle-way approach
	When not to use the middle-way approach

	The cockpit and fleet approach with Argo CD
	Delving deeper into the approach
	Operational dynamics
	When to use the cockpit and fleet approach
	When not to use the cockpit and fleet approach
	Choosing the right approach for your GitOps needs

	Centralized Kubernetes cluster creation – leveraging Cluster API and Argo CD for streamlined cluster deployment
	Introduction to Cluster API
	How Cluster API is leveraged by different companies

	A deep dive into Cluster API and GitOps – hands-on
	Initializing the management cluster
	Creating your first workload cluster

	Summary
	References

	Chapter 7: Cultural Transformation in IT for Embracing GitOps
	Treating infrastructure as an application
	Understanding IaC
	Understanding infrastructure as applications in Argo CD’s GitOps framework
	Embracing infra-as-apps – bridging GitOps and infrastructure management
	How IaC can be used to deploy infrastructure
	Why infra-as-apps is a game-changer?

	Understanding the principles of immutable infrastructure
	The essence of immutable infrastructure
	Integrating immutable infrastructure with GitOps

	Introducing DORA metrics
	Understanding the need for continual improvement in GitOps
	Overcoming cultural barriers to adopt GitOps
	A project’s story – exchange, experiences, and learnings
	Essential Q&A from another recent project

	Summary
	References

	Part 3:
Hands-on Automating Infrastructure and
CI/CD with GitOps
	Chapter 8: GitOps with OpenShift
	Technical requirements
	Introduction to Red Hat OpenShift
	Red Hat OpenShift environment setup
	Troubleshooting OpenShift CRC setup issues

	Setting Up GitOps in Red Hat OpenShift
	Leveraging Red Hat OpenShift’s CI/CD for GitOps
	Automation and configuration best practices
	A comparison of Kubernetes Red Hat OpenShift
	Summary

	Chapter 9: GitOps for Azure and AWS Deployments
	Technical requirements
	Azure and AWS accounts

	Cloud GitOps essentials – Azure and AWS
	Azure GitOps essentials
	AWS GitOps essentials

	GitOps applications in cloud environments
	Cross-cloud strategies

	GitOps strategies for Azure and AWS deployments for Kubernetes
	Azure GitOps strategies
	AWS GitOps strategies

	Summary

	Chapter 10: GitOps for Infrastructure Automation – Terraform
and Flux CD
	Technical requirements
	Introducing infrastructure automation with Terraform and Flux CD
	Setting up Terraform in a GitOps workflow
	Tofu Controller (formerly Weave TF-Controller)
	Getting started with the setup

	Exploring Flux CD – enabling CD in Kubernetes
	Combining Terraform and Flux CD for enhanced automation
	Providing new infrastructure by updating Terraform files
	Enhanced disaster recovery capabilities
	Creating and managing multi-stage environments

	Version control and automation with Terraform and Flux CD
	Security and best practices with Terraform and Flux CD
	Best practices for configuration and maintenance
	Best practices for managing multi-environment configurations
	Git workflow strategies

	Multi-environment management with Terraform and Flux CD
	Summary

	Chapter 11: Deploying Real-World Projects with GitOps on Kubernetes
	Technical requirements
	Establishing a GitOps and Kubernetes development environment
	Implementing CI/CD with GitOps
	Final objective and implementation
	CI/CD pipeline using GitHub Actions and Terraform
	Using Argo CD for the continuous deployment

	Designing for scalability and efficiency
	Architectural principles
	Resource management
	Testing for scalability

	Resources management and scalability
	Optimizing resource usage
	Implementing the HPA
	Testing for scalability – an example

	Monitoring and securing your application
	Monitoring
	Setting up Prometheus and Grafana
	Understanding Kubernetes security

	Summary

	Part 4:
Operational Excellence Through GitOps Best Practices
	Chapter 12: Observability with GitOps
	Exploring the fundamentals of SRE for GitOps and Kubernetes
	The intersection of SRE with GitOps
	SRE principles in a Kubernetes context

	Understanding internal (white box) versus external (black box) observability
	Internal or white box observability explained
	External or black box observability defined
	Balancing internal and external observability

	Exploring SLO-driven multi-stage performance with DORA
	Integrating SLOs with DORA metrics
	Applying a multi-stage approach

	Implementing distributed tracing in GitOps with Linkerd
	Implementing monitoring in GitOps with tools such as Uptime Kuma and OpenTelemetry
	Uptime Kuma – the external watchdog for your online services
	OpenTelemetry – a unified observability framework

	Looking at alerting strategies in a GitOps framework
	Some relevant alerting rules
	Diving deeper into node overcommitment in Kubernetes

	Scaling observability with GitOps
	Scaling observability components
	Organizational strategies for effective observability
	Selecting the right observability tools for specific use cases
	Enterprise-level best practices with observability and GitOps

	Summary
	References

	Chapter 13: Security with GitOps
	Hardening declarative GitOps CD on Kubernetes
	Addressing configuration vulnerabilities
	Enhancing password management and RBAC

	Committing everything to Git? What about Secrets?
	Sealed Secrets
	External Secrets

	Leveraging a policy engine for policy-as-code practices
	Integrating Kyverno and OPA
	Hands on – let’s put theory into practice [6]

	Automating security scanning and compliance
	KubeClarity
	Falco

	Keeping your platform catalog up-to-date
	Summary
	References

	Chapter 14: FinOps, Sustainability, AI, and Future Trends for GitOps
	Covering the fundamentals of FinOps
	Forecasting and monitoring costs with GitOps
	How GitOps complements FinOps
	Utilizing GitOps with FinOps
	OpenCost versus Kubecost with GitOps

	Optimization techniques for cloud spend
	Combining GitOps and Kubecost for cloud spend optimization

	Assessing carbon footprint and promoting green operations
	Assessing carbon footprint with kube-green
	Promoting green operations with Armada
	Assessing carbon footprint by integrating with GitOps

	Looking at GitOps and AI-driven automation
	Robusta.dev

	Future challenges and opportunities in GitOps
	The role of GitOps in emerging technologies
	Summary
	References

	Index
	Other Books You May Enjoy

