
Learning SD-WAN
with Cisco

Transform Your Existing WAN Into
a Cost-effective Network
—
Stuart Fordham

Learning SD-WAN
with Cisco

Transform Your Existing WAN
Into a Cost-effective Network

Stuart Fordham

Learning SD-WAN with Cisco

ISBN-13 (pbk): 978-1-4842-7346-3 ISBN-13 (electronic): 978-1-4842-7347-0
https://doi.org/10.1007/978-1-4842-7347-0

Copyright © 2021 by Stuart Fordham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7346- 3.
For more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Stuart Fordham
Bedfordshire, UK

https://doi.org/10.1007/978-1-4842-7347-0

To my wife.

v

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

Chapter 1: An Introduction to SD-WAN ���1

The Traditional Network ��1

SD-WAN ���3

Cisco and SD-WAN ��5

Viptela ��8

Components of a Cisco SD-WAN ���11

Summary ���15

Chapter 2: Deployment Overview ���17

EVE-NG ��17

Getting the SD-WAN Software ���28

Topology ��42

Importing the Lab File ���44

Initial Configurations ���44

R1 ��44

ISP-R ��45

MPLS-R ��46

ESXi and KVM Configuration ���47

Summary���47

Table of Contents

vi

Chapter 3: Deploying vManage ���49

Installing vManage ��49

Certificates ��57

Users ���64

vManage Clustering ��67

Single- and Multi-tenancy Options ���78

Alternative vManage Deployments ���79

VMWare ���79

KVM ���94

The Viptela Serial File ���95

Summary���99

Chapter 4: Understanding the Overlay ��101

VPN 512 ��101

VPN 0 ��102

DTLS ��105

OMP���106

OMP Routes/vRoutes ���108

Service Routes ��110

TLOC ��112

BFD ���116

NETCONF ���118

Summary���119

Chapter 5: Deploying vBond ���121

Basic vBond Configuration ��121

vBond Network Configuration ��122

Adding vBond to vManage ���123

Table of ConTenTs

vii

Alternative vBond Deployments ��131

VMWare ���131

KVM ���136

Summary���136

Chapter 6: Deploying vSmart ��137

vSmart Basic Config ��137

vSmart Certificates ���139

vSmart Authentication and Validation ���145

Alternative vSmart Deployments ��147

VMWare ���147

KVM ���147

Summary���148

Chapter 7: Edge Devices ���149

CSR1000v ��164

vEdge Authentication ��171

Alternative vEdge Deployments ��173

vEdge in the Cloud ���173

Preparing vEdge for ZTP ���180

Summary���182

Chapter 8: Templates ��183

Creating Templates ���186

cEdge Templates ���197

vEdge Templates ���219

Summary���226

Table of ConTenTs

viii

Chapter 9: Routing ��227

OSPF ���227

BGP ���247

Public and Private ���265

SD-WAN Routing Preference ���274

Configuration to Template Overview ���275

Summary���282

Chapter 10: Policies and Quality of Service ��������������������������������������283

Configuring Policies Through vManage ���287

Localized Policies ��287

Centralized Policies ���304

Configuring Policies Through the CLI ��314

Summary���324

Chapter 11: Upgrades ���325

Managing Software Images ��325

Adding Images to the Repository ��326

Upgrading Images ���328

Activating Software Images ���328

Upgrading via the CLI ��329

Troubleshooting Image Upgrades ���336

Summary���336

Chapter 12: Security ���337

Setting Up Internet Access ��337

Linux VM��339

CSR-1 NAT ���340

Applying Security Rules ��349

Table of ConTenTs

ix

URL Filtering��358

Summary���375

Chapter 13: Management and Operations ��377

Email Alerts ���377

Audit Logs ���380

Syslog ���381

SNMP ��383

Maintenance Windows ��390

REST API ��392

Summary���399

Chapter 14: Troubleshooting ���401

Basic Troubleshooting Techniques ��401

Pinging ��401

Traceroute ���402

Troubleshooting vManage ���402

Troubleshooting vBond��405

Troubleshooting vSmart ��410

Troubleshooting Edge Devices ��411

Troubleshooting Certificate Issues ��415

vManage Troubleshooting Tools ��416

Summary���422

Index ���423

Table of ConTenTs

xi

About the Author

Stuart Fordham, CCIE 49337 is the Network

Manager and Infrastructure Team Leader

for SmartCommunications SC Ltd, the only

provider of a cloud-based, next-generation

customer communications platform. Stuart

has written a series of books on BGP, MPLS,

VPNs, and NAT, as well as a CCNA study guide

and the Cisco ACI Cookbook. He lives in the UK

with his wife and twin sons.

xiii

About the Technical Reviewer

David Samuel Peñaloza Seijas works as

a Principal Engineer at Verizon Enterprise

Solutions in the Czech Republic, focusing

on Cisco SD-WAN, ACI, OpenStack, and

NFV. Previously, he worked as a Data Center

Network Support Specialist in the IBM Client

Innovation Center in the Czech Republic.

As an expert networker, David has a wide

diapason of interests, while his favorite topics

include data centers, enterprise networks, and network design, including

software-defined networking (SDN).

xv

Acknowledgments

I’d like to say thanks to the following:

My wife for her encouraging words: “Well, if you played the guitar less,

you’d have that book finished by now.” It’s finished now. So back to playing

the guitar!

My boys for being patient while “Daddy is working again.” You guys are

amazing.

David Peñaloza: The best technical editor a guy could ask for.

The team at Apress, for giving me another shot after I had finished

freaking out about my workload.

My team at SmartCommunications. You guys are the best.

xvii

Introduction

Learning SD-WAN with Cisco explores what SD-WAN is and how it will

benefit modern networks and builds an example network.

This book covers the evolution of modern networks and how the

software-defined wide area network (SD-WAN) has risen to the forefront.

We will explore the components of SD-WAN for orchestration and

management and look at the edge devices and then go on to build a

network from the ground up, deploying cEdge and vEdge routers. We will

apply policies and templates to manage the control and data planes as well

as VPNs, Internet access, security, and quality of service.

We will also explore reporting and management, along with upgrading

and troubleshooting.

This book is intended for those who would like to get an understanding

of what SD-WAN is and how we deploy, configure, manage, and

troubleshoot it.

1© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_1

CHAPTER 1

An Introduction to
SD-WAN
In this chapter, we are going to look at what SD-WAN is and how it came

about.

 The Traditional Network
The networks we rely on for both business and pleasure on a day-to-day

basis are susceptible to many factors that can result in a slow and

unreliable experience.

We can experience latency, which either refers to the time between a

data packet being sent and received or the round-trip time, which is the

time it takes for the packet to be sent and for it to get a reply, such as when

we use ping.

We can also experience jitter, which is the variance in the time delay

between data packets in the network, basically a “disruption” in the

sending and receiving of packets.

We have fixed bandwidth networks that can experience congestion:

with 5 people sharing the same Internet link, each could experience a

stable and swift network, add another 20 or 30 people onto the same link

and the experience will be markedly different.

https://doi.org/10.1007/978-1-4842-7347-0_1#DOI

2

There are ways we can help manage the experience for all. We can

implement quality of service (QoS), which we can use to prioritize traffic,

such as voice and video, where fluctuations in the network due to these

factors are noticeable. We can also use QoS to give each user their fair

share of bandwidth and to ensure that the right amount of bandwidth is

assured for our mission-critical applications.

QoS works well within the boundaries of the network but requires

manual intervention. We need to know what our traffic is, where that traffic

needs to go, and what our priority traffic is. We can help it get there faster

and with a larger degree of assured delivery, but it still requires the network

administrators to ensure that the paths the traffic is to take are present,

working, and reliable. QoS, combined with policy-based routing (PBR),

can also provide a way to route traffic out of different interfaces, making

use of dedicated high-speed links for mission-critical traffic and other links

for user traffic such as Internet browsing and media streaming. These do,

again, require the network administrator to plan this traffic splitting out,

and this method is not exactly “dynamic.”

There are mechanisms to dynamically route traffic though, such as

Multiprotocol Label Switching Traffic Engineering (MPLS-TE). Through

the use of MPLS, a link-state protocol such as OSPF or IS-IS, RSVP

(Resource Reservation Protocol), and CBR (Constraint-Based Routing), we

can have a network that learns about changes in the network and reacts by

performing path selection in the network.

MPLS-TE is very much in the realm of large enterprises and ISPs, though,

and with it comes increased costs in both infrastructure and engineering.

Today, we are, however, deep into cloud adoption, where pretty much

everything can now be offered “As a Service.” Platform, infrastructure,

and software are all deployable at a click of a button, and whole virtual

data centers can be stood up in minutes. Names such as Microsoft Azure,

Amazon Web Services (AWS), and Google Cloud are so embedded in

21st-century technology that it is fast approaching the time where we will

soon not even begin to comprehend how we managed before “the cloud.”

Chapter 1 an IntroduCtIon to Sd-Wan

3

So how do we marry up the needs of today’s cloud computing, the

benefits of QoS, and MPLS-TE as well as the dynamism we need for

modern networks, while, at the same time, increasing security, reducing

costs, and having a technology that is easy to use? These seem like a lot of

contradictory criteria to fulfil.

The answer is SD-WAN, or software-defined networking in a wide area

network.

 SD-WAN
SD-WAN has taken the concept of software-defined networking (within a local

area network) and cloud orchestration and applied it to the wide area network.

There are, according to Gartner,1 four requirements for an SD-WAN:

• It must have the ability to support multiple connection

types.

• It should be able to perform dynamic path selection.

• It should have the ability to support VPNs and third-

party services (such as firewalls).

• It must have a simple interface.

It is not just Gartner that has put these requirements on paper. This

is also the standard defined by MEF (which once stood for the Metro

Ethernet Forum) in MEF 70. MEF is an international industry consortium

that looks to promote the adoption of assured and orchestrated

connectivity services across automated networks. Members of MEF

include Cisco, Ericsson, Huawei, Juniper, Nokia Networks, VMWare, and

more companies with “telecommunications” or “telecom” in their names

than you can shake a stick at.

1 www.networkworld.com/article/3031279/sd-wan-what-it-is-and-why-you-
ll-use-it-one-day.html

Chapter 1 an IntroduCtIon to Sd-Wan

http://www.networkworld.com/article/3031279/sd-wan-what-it-is-and-why-you-ll-use-it-one-day.html
http://www.networkworld.com/article/3031279/sd-wan-what-it-is-and-why-you-ll-use-it-one-day.html

4

MEF 702 is not the easiest document to understand. It uses many TLAs

(three-letter acronyms) and contains nuggets like this:

MEF Services, such as SD-WAN, are specified using Service
Attributes. A Service Attribute captures specific information
that is agreed on between the Service Provider and the
Subscriber of a MEF Service, and it describes some aspect of
the service behavior.

Got that? Great, neither did I. However, if we take an SD-WAN

deployment from a more practical angle and put it into some context, it

does start to make sense. I will try to translate as we go through the various

components.

We start with the SD-WAN edge device. These devices can either be

physical ones or virtual appliances. The SD-WAN edge devices need to

support multiple connection types, such as MPLS, Internet such as leased

lines, and LTE. The edge device is “situated between the SD-WAN UNI, on

its Subscriber side, and UCS UNIs of one or more Underlay Connectivity

Services on its network side,” meaning that these devices live at the

demarcation point between the business network (Customer Premises)

and the ISP, the SD-WAN UNI (User Network Interface), and the Underlay

Connectivity Service (UCS), or the Internet circuit.

Because we have an underlay service, it makes sense that we also have

an overlay. The overlay is the network we are orchestrating, and we do

this through the SD-WAN Controller and the SD-WAN Orchestrator; these

devices control our policies concerning application flow and security. The

overlay needs to be able to understand the network and feed information

back to the edge devices so that they may choose the best paths across the

network, as well as controlling our VPNs and other services.

So once we start looking at SD-WAN from a practical standpoint, MEF

70 actually starts to make sense.

2 www.mef.net/resources/technical-specifications/download?id=122&fileid=file1

Chapter 1 an IntroduCtIon to Sd-Wan

http://www.mef.net/resources/technical-specifications/download?id=122&fileid=file1

5

Cisco, along with Huawei, Nokia Networks, and Verizon, among others,

participated in the development of MEF 70, but this was by no means

Cisco’s first step into the world of SD-WAN.

 Cisco and SD-WAN
Cisco had a product called iWAN (intelligent WAN), which provided traffic

control and security and integrated into Cisco branch office routers. It

offered QoS, WAN optimization, and VPN tunneling, without the cost of

expensive MPLS VPNs.

iWAN made a lot of sense, as with the lowering cost of today’s Internet

links, along with the improvement in their SLAs, MPLS is becoming less

attractive. iWAN could provide similar capabilities to MPLS VPN, such

as WAN optimization, QoS, and VPN tunneling, all without affecting

performance, security, or reliability.

The network overlay used by iWAN is DMVPN (Dynamic Multipoint

VPN) and IPSec, which enables the use of any carrier service (MPLS,

broadband, and 3G/4G/LTE).

Traffic is routed based on metrics such as SLA, endpoint type, and

network conditions. This is achieved using PfRv3 (Performance Routing

Version 3), which uses differentiated services code points (DSCP), and

an application-based policy framework to optimize bandwidth and path

control, protecting applications and increasing bandwidth utilization.

PfRv3 looks at the application type, network performance in terms of jitter,

packet loss, and delay and can make decisions to forward traffic over the

best-performing path.

We can, with iWAN, make networks use MPLS networks for some

traffic (e.g., business-critical and VoIP) and other traffic (less critical) use

the public Internet, as shown in Figure 1-1.

Chapter 1 an IntroduCtIon to Sd-Wan

6

With PfR, border routers collect traffic and path information, sending

it to a master controller (a dedicated router). The master controller is

responsible for enforcing the service policies to match the requirements of

the application.

Applications are optimized over the WAN using Cisco’s Application

Visibility and Control (AVC) and Wide Area Application Services (WAAS).

AVC (which includes technologies such as Network-Based Application

Recognition 2 [NBAR 2], NetFlow, and QoS) is essential here as many

applications use the same ports (such as 443). Spotify, for example, uses a

destination port of 4070 for its player, but will use port 443 or even 80 if the

former port is unavailable, making the implementation of traffic control

Figure 1-1. The iWAN network

Chapter 1 an IntroduCtIon to Sd-Wan

7

on Spotify impossible when based on the destination port. Because of this

reuse of ports, we can no longer rely on static port classification, so AVC

uses deep packet inspection to identify applications and to monitor their

performance. iWAN also leverages Akamai for branch router caching.

iWAN is secured through IPSec encryption, zone-based firewalling,

and ACLs (access control lists), protecting the WAN over the public

Internet. It also uses Cisco’s Cloud Web Security to provide a proxy to

protect users over the Internet and is controlled using the APIC-EM

(Application Policy Infrastructure Controller Enterprise Module).

All this sounds great. But why has Cisco rapidly moved to SD-WAN,

instead of investing more in its existing product, iWAN?

The simple answer is that while all its benefits made it very attractive,

in reality, iWAN was hard to deploy and manage. iWAN is not alone in

technologies that have been sidelined, two more of which are PfR and

NBAR, which, coincidentally, are two technologies used by iWAN.

The use of APIC-EM, for example, while great for managing iWAN,

was only really useful in greenfield deployments. If you already had

the building blocks of iWAN in place (DMVPN, QoS, PfR), then rolling

out APIC-EM would pretty much require replacing all the existing

configurations, which made switching to use the APIC-EM a tough and

potentially expensive decision to make.

iWAN is not dead though, far from it. While new customers into the

field will be steered toward SD-WAN, the ISR routers that are key to an

iWAN deployment hold around 80% of the market share of branch office

routers, and each year, Cisco sells around $1.6 billion of ISRs. There is

too much invested by Cisco and its customers for iWAN to be ditched

completely. However, the focus is now pointed directly at SD-WAN,

which has some of the features that iWAN missed, such as an easy-to-use

interface, which is, perhaps, why Cisco set its sights on Viptela.

Chapter 1 an IntroduCtIon to Sd-Wan

8

 Viptela
Viptela was founded in 2012 by ex-Cisco directors Amir Khan and Khalid

Raza. While it was in “stealth mode” and no one (in the general public)

knew what it was doing, it received financial backing from Sequoia Capital.

Considering the companies that Sequoia has backed in the past, such as

Apple, Google, PayPal, YouTube, Instagram, and WhatsApp, Viptela was

probably a surefire winner early on.

Over the next couple of years, Viptela emerged from stealth mode into

the taking-the-network-world-by-storm mode. It garnered much praise

and many customers. It was named several times in CRN’s 10 Coolest

Networking Startups, named a Gartner Cool Vendor and a Next Billion

Dollar Startup by Forbes. Not a bad start (for a startup)!

Between 2012 and 2017, Viptela boasted customers such as Verizon,

Singtel, and The Gap. Others were used in published case studies but

preferred to remain unnamed, which is pretty common in the banking

world.

The lure of Viptela is that it offers virtualization of the WAN and is

carrier agnostic. Through the WAN overlay technology, communications

are secured across whichever medium is used, even broadband and 4G/

LTE. Similar to iWAN, in essence, but vastly different in deployment.

The report from clothing retailer The Gap makes for interesting reading

and gives the reader a good idea about how and why Viptela was able to

make such good ground within such a short amount of time.

The Gap started to roll out SD-WAN in 2015, to alleviate the reliance on

the expensive MPLS lines and instead move to the cheaper public Internet.

With SD-WAN, they could still do this, as well as keeping the traffic

encrypted. Snehal Patel, Gap’s network architect, said that they could

connect up to 25 or more of their stores per night. Each upgraded store

also had between ten and fifteen times the bandwidth it had previously.

SD-WAN was also about 50% less expensive than their original method.

Chapter 1 an IntroduCtIon to Sd-Wan

9

It is easy to see the benefits of Viptela’s SD-WAN. You get the increased

speed, at a lower cost, and rolling it out can be done at a very impressive

pace.

You can read the original transcript from the Wall Street Journal here:

https://web.archive.org/web/20160726182850/http://blogs.wsj.

com/cio/2015/11/05/gap-connects-stores-over-the-internet-with-

software-defined-networking/.

By 2017, Viptela had 16,000+ branch office deployments and

proclaimed on its website the following benefits:

• 50% lower costs

• 10x more bandwidth

• 5x cloud performance

With such stores as The Gap putting their success story in the light, it’s

easy to see why Viptela did so well so quickly.

This brand-new network as a service offered seamless integration with

Office 365, Azure, and AWS and used a simple interface (especially when

compared to iWAN’s APIC-EM). Policies can be used to send latency-

sensitive traffic across dedicated MPLS lines and use the “regular” Internet

for less critical applications, such as Office 365, and 4G/LTE for remote

office where MPLS or broadband is not an option (Figure 1-2).

Chapter 1 an IntroduCtIon to Sd-Wan

https://web.archive.org/web/20160726182850/http://blogs.wsj.com/cio/2015/11/05/gap-connects-stores-over-the-internet-with-software-defined-networking/
https://web.archive.org/web/20160726182850/http://blogs.wsj.com/cio/2015/11/05/gap-connects-stores-over-the-internet-with-software-defined-networking/
https://web.archive.org/web/20160726182850/http://blogs.wsj.com/cio/2015/11/05/gap-connects-stores-over-the-internet-with-software-defined-networking/

10

The difference between Viptela’s fabric and Cisco’s iWAN is in the ease

of connectivity into the likes of AWS, Azure, and Office 365, as well as the

simplified management (again, compared to APIC-EM).

It is no wonder, therefore, that in 2017, Cisco bought Viptela for $610

million. Viptela aligned perfectly with Cisco’s principles of security,

virtualization, automation, and analytics, in their DNA (Digital Network

Architecture).

Let’s look at the different components that make up the (Cisco)

SD-WAN (or SD-WAN Secure Extensible Network [SEN] as they also term it).

Figure 1-2. The Viptela SD-WAN

Chapter 1 an IntroduCtIon to Sd-Wan

11

 Components of a Cisco SD-WAN
From Figure 1-2, you can see that there are four distinct areas to the

SD-WAN. At the bottom, we have the connectivity aspect, the data plane.

This can be offices or third-party services such as AWS and Office 365.

For this connection, we need an “edge device.”

 vEdge and cEdge

Because of the purchase by Cisco, the Cisco ISR, ASR, and CSR1000v

routers are now part of the Viptela ecosystem (subject to running the

correct software image); this is in addition to the products already made

by Viptela, such as the low-cost vEdge 100b, which can be purchased for

under $300.

The edge device takes care of the packet forwarding; they establish the

secure virtual overlay network and come in many different flavors:

• vEdge 100b (Ethernet only)

• vEdge 100m (Ethernet and an integrated 2G/3G/4G

modem)

• vEdge 100wm (as the 100m but with wireless LAN

functionality)

• vEdge 1000 (8 fixed GE SFP ports)

• vEdge 2000 (2 pluggable interface modules)

• vEdge 5000 (4 Network Interface Modules)

• ISR 1100 4G (4 GE WAN ports)

• ISR 1100 6G (4 GE WAN ports and 2 SFP WAN ports)

• ISR 1000 series

• ISR 4000 series

Chapter 1 an IntroduCtIon to Sd-Wan

12

• ASR 1000 series

• ENCS 5000

• vEdge Cloud

• CSR1000v

The vEdge Cloud device can run in VMWare ESXi (5.5. and 6.0), KVM,

AWS, and Azure, and it is this image we will be using the most (along with

the CSR1000v).

As well as looking after the routing (which can be either OSPF or BGP,

or static), the vEdge devices also support AAA, bridging (802.1Q, VLANs,

integrated routing-bridging), IPSec, DDOS prevention, NAT (network

address translation) traversal, QoS, multicast and policies for routing,

application awareness, control and data policies, ACL policies, VPN

membership policies, and service advertisement and insertion policies. It

also supports the standard set of functions that you would expect from any

router, such as SNMP, NTP, DHCP (client, server, and relay), Syslog, SSH,

NAT, and PAT.

The vEdge certainly feels like a very well-rounded and fully functioning

replacement for most existing router deployments.

The next step-up in the overlay is the control plane, which uses vSmart

devices.

 vSmart

The vSmart controller controls the data flowing through the network, it is

the “routing brain,” and once the vBond orchestrator has authenticated the

vEdge devices, the vSmart controller manages the connectivity between

vEdge devices.

The vSmart devices have a centralized policy engine that looks after

the routing data, access control, segmentation, extranets, and service

chaining.

Chapter 1 an IntroduCtIon to Sd-Wan

13

There are six main functions provided by the vSmart controller:

• Control plane establishment and maintenance with

each vEdge device.

Each connection is a DTLS tunnel (Datagram

Transport Layer Security) carrying the encrypted

payload between the vSmart controller and the

vEdge router. This information is what allows

the vSmart controller to build up a picture of the

network, the topology, and for the vSmart controller

to perform route calculations to determine the best

paths.

• Overlay Management Protocol (OMP). We will look in

greater depth at OMP in Chapter 4, but essentially OMP

facilitates the overlay network.

• Authentication. Using preinstalled credentials, the

vSmart controller can communicate with each new

vEdge device as they come online, ensuring that only

authenticated devices can connect to the network.

• Key reflection and rekeying. vEdge routers send data-

plane keys to the vSmart orchestrator which sends

them to other vEdge routers.

• Policy engine. vSmart provides the inbound and

outbound policies to look after routing and access

control.

• Netconf and CLI. Netconf is used to provision vSmart

controllers. Each vSmart controller provides local CLI

access.

In Chapter 6, we will deploy a vSmart controller.

Chapter 1 an IntroduCtIon to Sd-Wan

14

 vManage

vManage is a Network Management System (NMS) that is used to

configure and manage the overlay network. We use this to configure and

manage vEdge devices.

Like any good NMS, we can use vManage to create and store the

configurations of our network devices. vManage will push down the

certificate and configurations onto vEdge and cEdge devices as they

come online (this is different in hardware devices, where the certificate is

preinstalled on a SUDI or TPM chip during the manufacturing process).

It can also generate bootstrap configurations and decommission vEdge

devices if required.

We will deploy a vManage server (also referred to as a “controller” or

“device” throughout this book) in Chapter 3.

 vBond

The vBond device performs functions such as the authentication and

authorization of each element in the network, onboarding, and STUN. It

is this piece of the topology that tells the rest of the network how they

interconnect to the other components, essentially sitting between the

vEdge and vSmart devices passing messages for them (initially at least,

until the onboarding process has completed).

The functions performed by the vBond are

• Control plane connection. Each vBond orchestrator

maintains a DTLS tunnel with each vSmart controller

in the network. It also uses DTLS to communicate with

the vEdge routers as they come online so that it can

authenticate the router and aid the router to join the

network.

Chapter 1 an IntroduCtIon to Sd-Wan

15

• NAT traversal. vBond is also responsible for helping

vEdge or vSmart devices that sit behind network

address translation communicate with the rest of the

network, orchestrating the NAT traversal (initially). For

this to work, the vBond should live in a public address

space.

• Load balancing. Where there are two or more vSmart

controllers, the vBond performs load balancing of

vEdge routers between the vSmart controllers.

We will deploy a vBond orchestrator in Chapter 5.

 Summary
In this, our first chapter, we looked at the driving forces behind the birth

of SD-WAN, as well as the different parts that will make up our network.

But first, we need to create that network, which we will do using EVE-NG

(Emulated Virtual Environment Next Generation).

Chapter 1 an IntroduCtIon to Sd-Wan

17© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_2

CHAPTER 2

Deployment Overview
In this chapter, we are going to set up EVE-NG, create our SmartNet

account, and download the components we need to make our network. At

the end of the chapter, we will look at VMWare and KVM as alternatives to

EVE-NG.

 EVE-NG
EVE-NG (Emulated Virtual Environment Next Generation) is a virtual

platform designed to run many different network devices, as well as

Windows and Linux operating systems.

Many years ago there was a bit of software called Cisco IOU (IOS On

Unix), and a very kind and clever guy called Andrea Dainese put a web

front end on it and called it iou-web. It was very popular. Then he created

UNetLab (Unified Networking Lab), which allowed the use of different

vendor images.

UNetLab then forked into EVE-NG, which is where we are now.

There are two versions of EVE-NG: the community edition, which is

free, and the professional edition. The professional edition, which costs

99EUR, can run up to 1024 nodes and has Docker support. The community

version, which is free, can run up to 63 nodes and lacks Docker support,

but this is fine for our purposes.

https://doi.org/10.1007/978-1-4842-7347-0_2#DOI

18

The environment can run on vSphere, VMWare Workstation, or bare

metal servers. If you have ever installed a Linux operating system, then it is

all very straightforward, and there should be no surprises. For this chapter,

I am assuming that you will be installing the server on a hypervisor.

Download the install ISO from www.eve- ng.net/index.php/

download/. Again, the community version is more than suitable for our

needs.

We need to properly size our server, so give it as much memory and

CPU cores as you can. To get a rough idea of what we need, see Table 2-1.

We also need enough ram and CPU to run the actual operating system.

While, thanks to hypervisor magic, we can over-provision memory and

CPU, you still need something fairly capable.

The network we are going to run was created on a dual Xeon X5675

running at 3.06GHz with 48GB of memory. Running 15 QEMU nodes, CPU

usage was around 28% and memory usage ran at around 79%. So there is

some wiggle room in what can be run.

Once your VM has been created, boot it up using the ISO image

downloaded from the link provided earlier. The first screen will be the

Ubuntu installation window (Figure 2-1).

Table 2-1. Hardware resource requirements

vCPU Memory (GB) Disk space (GB)

vBond 2 4 10

vManage 16 32 30 + 100GB

vManage(2nd) 16 32 30 + 100GB

vSmart 2 4 16

vEdge 2 2 8

Total 38 74 294

ChaptEr 2 DEployMEnt ovErviEw

http://www.eve-ng.net/index.php/download/
http://www.eve-ng.net/index.php/download/

19

Select the option “Install Eve VM” (unless you are doing a bare metal,

in which case choose the “Install Eve Bare” option).

In the next window, choose your language (Figure 2-2).

Figure 2-1. The initial install screen

ChaptEr 2 DEployMEnt ovErviEw

20

Then select your location (Figure 2-3).

Figure 2-2. Choosing your language

ChaptEr 2 DEployMEnt ovErviEw

21

Set the hostname (Figure 2-4).

Figure 2-3. Select your location

Figure 2-4. Setting the hostname

ChaptEr 2 DEployMEnt ovErviEw

22

Set the time zone (Figure 2-5).

If you use a proxy on your network, then set it in the following window

(Figure 2-6).

The installation should complete now, and you should be greeted with

the login screen, as shown in Figure 2-7.

Figure 2-5. Setting the time zone

Figure 2-6. Setting the proxy information

Figure 2-7. The EVE-NG logon screen

ChaptEr 2 DEployMEnt ovErviEw

23

If you see the same warning as the preceding, then you need to shut

down your VM and edit your settings. Don’t do this just yet though, as we

need to complete the setup.

You will be prompted to enter the root password (Figure 2-8), so enter

one of your choosing.

Type the password again, when prompted, and then set the hostname

(again) (Figure 2-9).

Figure 2-8. Setting the root password

ChaptEr 2 DEployMEnt ovErviEw

24

Then set the DNS domain name, if you need to (Figure 2-10).

On the next page, we set our networking connectivity, either DHCP or

static (Figure 2-11).

Figure 2-10. Setting the DNS domain name

Figure 2-9. Setting the hostname

ChaptEr 2 DEployMEnt ovErviEw

25

Set the NTP server, if you have one running in your network (Figure 2- 12).

Figure 2-11. Setting the network adapter

Figure 2-12. Setting the time servers

ChaptEr 2 DEployMEnt ovErviEw

26

Lastly, set the proxy details (or leave as the default if you do not have a

proxy) as shown in Figure 2-13.

If you did get the warning about “neither Intel VT-x or AMD-V found,”

then edit your VM settings to enable virtualization support.

In VMWare Fusion, it looks like this (Figure 2-14).

Figure 2-13. Proxy configuration

ChaptEr 2 DEployMEnt ovErviEw

27

Now your login page should look like this after a restart of the virtual

machine (Figure 2-15).

We are good to proceed.

Figure 2-14. Virtualization support

Figure 2-15. The EVE-NG login screen without warnings

ChaptEr 2 DEployMEnt ovErviEw

28

 Getting the SD-WAN Software
We need to download the software from Cisco next. For this, you will need

a valid service contract. Your Cisco rep may also be able to help you out

here.

Head over to https://software.cisco.com, and select “Manage

Smart Account.” Then click Virtual Accounts.

Create a new virtual account. Give it a name, and set it to Private. Click

Save (Figure 2-16).

Your virtual account should be visible (Figure 2-17).

Figure 2-16. Creating the SmartNet virtual account

Figure 2-17. The virtual account has been created

ChaptEr 2 DEployMEnt ovErviEw

https://software.cisco.com

29

The next step is to create a vBond controller. Head back to the main

software page where we started, and click the “Plug and Play Connect” link

(Figure 2-18).

Select the virtual account you created earlier (Figure 2-19).

Next, click “Controller Profiles” (Figure 2-20).

Figure 2-18. The Plug and Play Connect portal

Figure 2-19. Selecting the virtual account

Figure 2-20. Controller Profiles

ChaptEr 2 DEployMEnt ovErviEw

30

Click “Add Profile” (Figure 2-21).

Select VBOND from the drop-down menu (Figure 2-22).

Give the profile a name, and set an organization name. Set the Primary

controller to IPv4, and add an IP address. You can use any address you like

here (Figure 2-23).

Click Next.

Figure 2-21. Adding a profile

Figure 2-22. Selecting vBond

ChaptEr 2 DEployMEnt ovErviEw

31

Confirm your settings, and click Submit (Figure 2-24).

Figure 2-23. Adding the controller profile

Figure 2-24. Confirming the settings

ChaptEr 2 DEployMEnt ovErviEw

32

Click Done to confirm the profile (Figure 2-25).

You should see the profile that has been created (Figure 2-26).

Go to Devices (Figure 2-27).

Figure 2-25. Finishing the controller profile

Figure 2-26. The new controller profile

Figure 2-27. Devices

ChaptEr 2 DEployMEnt ovErviEw

33

Select “Add Software Devices” (Figure 2-28).

Click “Add Software Device” (Figure 2-29).

In the Base PID box, start typing “VEDGE-CLOUD-DNA,” and select it

from the drop-down when it appears (Figure 2-30).

Figure 2-28. Add software devices

Figure 2-29. Identifying the devices

ChaptEr 2 DEployMEnt ovErviEw

34

Set the desired quantity (such as 5 which is a good number; there is a

limit of 20 “free” nodes), and from the Controller Profile drop-down, select

the profile name we created a moment ago (Figure 2-31).

Click Save, and then click Next (Figure 2-32).

Figure 2-31. Associating the device to the controller profile

Figure 2-30. Selecting vEdge

ChaptEr 2 DEployMEnt ovErviEw

35

Click Submit (Figure 2-33).

Your request will be processed in the background, and you will receive

an email once it has completed (I have obscured my work email address!)

(Figure 2-34).

Figure 2-32. Setting the number of vEdge devices

Figure 2-33. Submitting the vEdge quantities

Figure 2-34. Email confirmation

ChaptEr 2 DEployMEnt ovErviEw

36

Usually, this process is pretty quick, so give a few moments and refresh

your page, and you should see your devices (Figure 2-35).

Repeat the process, and add some CSR routers (Figure 2-36).

Set the quantity and your profile (Figure 2-37).

Figure 2-35. Our device list

Figure 2-36. Adding CSR devices

ChaptEr 2 DEployMEnt ovErviEw

37

These should appear alongside the VEDGE devices (Figure 2-38).

Figure 2-37. 5 CSR devices

Figure 2-38. Our device list in full

ChaptEr 2 DEployMEnt ovErviEw

38

Go back to Controller Profiles, and select the provisioning file

(Figure 2- 39).

Select the “18.3 and newer” option, and download the file (Figure 2-40).

The next step is to download the software. Because we are using

EVE- NG, it is best to find the QCOW versions, so head back to the main

Cisco website and search for “viptela qcow2” and download the vEdge,

vSmart, vManage images. Also, download the SDWAN CSR1000v image

(Figure 2-41).

Figure 2-39. Getting the provisioning file

Figure 2-40. Downloading the provisioning file

ChaptEr 2 DEployMEnt ovErviEw

39

The versions used in the majority of the book are either 19.2.1 or 19.3.0

for the Viptela images and 16.12.2r for the CSR1000v.

Note we do go through some upgrades later in the book, bumping
all the “v” devices up to 20.1.1 and the CSr device up to 17.2.1r.
the reasons for this is that firstly, upgrading is good practice, and
secondly, the later versions include some features we need in the
book, so the choice is yours as to whether to go straight for the later
versions or follow along with the chapter on upgrades.

Figure 2-41. The downloads we need

ChaptEr 2 DEployMEnt ovErviEw

40

For the routers and switches, I am using vIOS 15.6 and vIOS-L2 15.2,

respectively. Follow the steps on the EVE-NG website for how to generate

these images from the VIRL originals: www.eve- ng.net/index.php/

documentation/howtos/howto- add- cisco- vios- from- virl/. You can use

other router and switch images (such as Cumulus VX) should you so wish.

The Ubuntu image is the desktop version, 17.10.1. You need to

have OpenSSL installed. You can either create your own or download

a ready- built image from here: www.eve- ng.net/index.php/

documentation/howtos/howto- create- own- linux- host- image/.

If you are using different images, then please update the folder and file

names accordingly.

Once you have downloaded the files, SSH onto your EVE-NG install

and create the folders we will need:

cd /opt/unetlab/addons/qemu

mkdir vtbond-19.3.0

mkdir vtedge-19.3.0

mkdir vtsmart-19.3.0

mkdir vtmgmt19.3.0

mkdir csr1000vng-ucmk9.16.12.2r-sdwan

Then using FileZilla or WinSCP, copy the files as in Table 2-2.

Table 2-2. Appliance versions

Folder Image

vtbond-19.3.0 viptela-edge-19.3.0-genericx86-64.qcow2

vtedge-19.3.0 viptela-edge-19.3.0-genericx86-64.qcow2

vtsmart-19.3.0 viptela-smart-19.3.0-genericx86-64.qcow2

vtmgmt-19.3.0 viptela-vmanage-19.3.0-genericx86-64.qcow2

csr1000vng-ucmk9.16.12.2r- sdwan csr1000v-ucmk9.16.12.2r.qcow2

ChaptEr 2 DEployMEnt ovErviEw

http://www.eve-ng.net/index.php/documentation/howtos/howto-add-cisco-vios-from-virl/
http://www.eve-ng.net/index.php/documentation/howtos/howto-add-cisco-vios-from-virl/
http://www.eve-ng.net/index.php/documentation/howtos/howto-create-own-linux-host-image/
http://www.eve-ng.net/index.php/documentation/howtos/howto-create-own-linux-host-image/

41

The next step is to rename the files and create a second disk for

vManage:

cd csr1000vng-ucmk9.16.12.2r-sdwan

mv csr1000v-ucmk9.16.12.2r.qcow2 virtioa.qcow2

cd ..

cd vtbond-19.3.0/

mv viptela-edge-19.3.0-genericx86-64.qcow2 hda.qcow2

cd ..

cd vtedge-19.3.0/

mv viptela-edge-19.3.0-genericx86-64.qcow2 hda.qcow2

cd ..

cd vtsmart-19.3.0/

mv viptela-smart-19.3.0-genericx86-64.qcow2 hda.qcow2

cd ..

cd vtmgmt-19.3.0/

mv viptela-vmanage-19.3.0-genericx86-64.qcow2 hda.qcow2

/opt/qemu/bin/qemu-img create -f qcow2 hdb.qcow2 100G

cd ..

Lastly, update the wrappers using the command “unl_wrapper –a

fixpermissions” (which corrects any permission issues after copying

images around):

root@eve-ng:/opt/unetlab/addons/qemu# /opt/unetlab/wrappers/

unl_wrapper -a fixpermissions

root@eve-ng:/opt/unetlab/addons/qemu#

ChaptEr 2 DEployMEnt ovErviEw

42

The resulting directory listing (with the router, switch, and Linux

images) should look like this:

root@eve-ng:/opt/unetlab/addons/qemu# tree

.

├── csr1000vng-ucmk9.16.12.2r-sdwan
│ └── virtioa.qcow2
├── linux-ubuntu-desktop-17.10.1
│ └── virtioa.qcow2
├── vios-156
│ └── virtioa.qcow2
├── viosl2-152
│ └── virtioa.qcow2
├── vtbond-19.3.0
│ └── hda.qcow2
├── vtedge-19.3.0
│ └── hda.qcow2
├── vtmgmt-19.3.0
│ ├── hda.qcow2
│ └── hdb.qcow2
└── vtsmart-19.3.0
 └── hda.qcow2

8 directories, 9 files

root@eve-ng:/opt/unetlab/addons/qemu#

 Topology
Our initial topology looks like this (Figure 2-42).

ChaptEr 2 DEployMEnt ovErviEw

43

Figure 2-42. Our initial topology

ChaptEr 2 DEployMEnt ovErviEw

44

We have a central site, our headquarters, which is designated as

“site 100.” We also have two branch sites, site 200 and site 300. These are

connected to our HQ using MPLS as well as standard Internet links.

We have three networks that we are going to use SD-WAN to provide

connectivity for, and these are 172.16.10.0/24 in site 100, 172.16.20.0/24 in

site 200, and 172.16.30.0/24 in site 300.

We have Linux machines connected to VPN 512 (for management) and

also to VPN 0, which we will mainly be using as our certificate server; this

is the one we will be using most. If resources are an issue, then you can just

use the Linux server in VPN 0.

The topology will change as we move through this book.

You can download the lab file from www.apress.com.

 Importing the Lab File
To import the lab file, log into the EVE-NG GUI via your browser, and click

the Import button. Browse to the zip file containing the lab and select it.

Click the Upload button. You can then start the lab.

 Initial Configurations
The initial configurations for R1, ISP-R, and MPLS-R are as follows. They

have been truncated to just show the important configurations.

 R1
R1#sh run

!

hostname R1

!

interface GigabitEthernet0/0

ChaptEr 2 DEployMEnt ovErviEw

http://www.apress.com

45

 description VPN0 Inside

 ip address 10.1.1.1 255.255.255.0

 no shut

!

interface GigabitEthernet0/1

 description VPN0 Outside

 ip address 10.2.1.1 255.255.255.0

 no shut

!

interface GigabitEthernet0/2

 description MPLS Outside

 ip address 10.3.1.1 255.255.255.0

 no shut

!

interface GigabitEthernet0/3

 description MPLS Inside

 ip address 20.1.1.1 255.255.255.0

!

ip route 50.0.0.0 255.0.0.0 10.2.1.254

ip route 60.0.0.0 255.0.0.0 10.3.1.254

!

end

R1#

 ISP-R
ISP-R#sh run

!

hostname ISP-R

!

interface GigabitEthernet0/0

ChaptEr 2 DEployMEnt ovErviEw

46

 description VPN0

 ip address 10.2.1.254 255.255.255.0

 no shut

!

interface GigabitEthernet0/1

 Link to vEdge02

 ip address 50.11.11.254 255.255.255.0

 no shut

!

interface GigabitEthernet0/2

 no ip address

!

interface GigabitEthernet0/3

 Link to CSR-1

 ip address 50.10.10.254 255.255.255.0

 no shut

!

ip route 10.1.1.0 255.255.255.0 10.2.1.1

!

end

ISP-R#

 MPLS-R
MPLS-R#sh run

!

hostname MPLS-R

!

interface GigabitEthernet0/0

 description MPLS

 ip address 10.3.1.254 255.255.255.0

ChaptEr 2 DEployMEnt ovErviEw

47

 no shut

!

interface GigabitEthernet0/1

 Link to vEdge02

 ip address 60.22.22.254 255.255.255.0

 no shut

!

interface GigabitEthernet0/2

 Link to CSR-1

 ip address 60.20.20.254 255.255.255.0

 no shut

!

ip route 10.1.1.0 255.255.255.0 10.3.1.1

!

end

MPLS-R#

 ESXi and KVM Configuration
This network can also be set up on VMWare and KVM. While the steps for

creating each of the SD-WAN VMs will be given for both platforms at the

end of each respective chapter, explaining the full set up of ESXi, vCenter,

and KVM is beyond the scope of this book.

 Summary
We have set up our EVE-NG server, created our smart account, generated

our serial file list so that we can run some edge devices, and downloaded

our device images. We should also have the routers configured, ready to

start sending traffic around our network. With that in mind, let’s get started

with our vManage server.

ChaptEr 2 DEployMEnt ovErviEw

49© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_3

CHAPTER 3

Deploying vManage
In this chapter, we will set up our vManage servers. vManage is the NMS

(Network Management System) which controls our SD-WAN, so it makes

sense that we start here. We will set up our organization, the certificates

we need to add and authenticate our devices, and look at how to control

our users, implementing clustering for high availability and resilience. We

will also look at single- and multi-tenancy options, installation of vManage

on ESXi and KVM, and how to install the serial file we generated from the

Smart account.

 Installing vManage
Because we are using a ready-made appliance, all the heavy lifting has

been done for us, so just right-click vManage01 in EVE-NG and select

“Start,” and then left-click it to start the telnet console session.

After a while, you will be prompted to log in; use the default username

and password of “admin”, setting a new password when prompted. The

next step is to format the storage disk, so select the 100G disk created

earlier, and press “y” to format it. Once this is done, the system will reboot.

vmanage login: admin

Password:

Welcome to Viptela CLI

admin connected from 127.0.0.1 using console on vmanage

https://doi.org/10.1007/978-1-4842-7347-0_3#DOI

50

Available storage devices:

hdb 100GB

hdc 3GB

1) hdb

2) hdc

Select storage device to use: 1

Would you like to format hdb? (y/n): y

mke2fs 1.43.8 (1-Jan-2018)

Creating filesystem with 26214400 4k blocks and 6553600 inodes

Filesystem UUID: bc995938-6aeb-49c9-aeba-48d70b18235b

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736,

1605632, 2654208,

 4096000, 7962624, 11239424, 20480000, 23887872

Allocating group tables: done

Writing inode tables: done

Creating journal (131072 blocks): done

Writing superblocks and filesystem accounting information: done

vmanage# wall: cannot get tty name: Success

Broadcast message from root@vmanage (somewhere) (Mon Mar 30

09:35:19 2020):

Mon Mar 30 09:35:19 UTC 2020: The system is going down for

reboot NOW!

Stopping services...

acpid: exiting

When the system has come back up again, log in and set the system IP

address (100.100.1.2), the site-id (100), the organization name (Learning_

SD- WAN), and the hostname (vManage01) (as shown in Figure 2-42 in the

previous chapter).

Chapter 3 Deploying vManage

51

Mon Mar 30 09:36:19 UTC 2020: System Ready

viptela 19.3.0

vmanage login: admin

Password:

Welcome to Viptela CLI

admin connected from 127.0.0.1 using console on vmanage

vmanage#

vmanage#

vmanage# config

Entering configuration mode terminal

vmanage(config)# system

vmanage(config-system)# system-ip 100.100.1.2

vmanage(config-system)# site-id 100

vmanage(config-system)# organization-name Learning_SD-WAN

vmanage(config-system)#

vmanage(config-system)# host-name vManage01

vmanage(config-system)#

The next step is to create the management VPN (VPN 512).

vmanage(config-system)# vpn 512

vmanage(config-vpn-512)# interface eth0

vmanage(config-interface-eth0)# ip address 100.1.1.2/24

vmanage(config-interface-eth0)# no shutdown

vmanage(config-interface-eth0)#

vmanage(config-interface-eth0)# exit

vmanage(config-vpn-512)#

The management VPN carries the out-of-band network management

traffic for the SD-WAN devices.

Chapter 3 Deploying vManage

52

Now we can create our WAN overlay VPN (VPN 0):

vmanage(config-vpn-512)# vpn 0

vmanage(config-vpn-0)# no interface eth0

vmanage(config-vpn-0)# interface eth1

vmanage(config-interface-eth1)# ip address 10.1.1.2/24

vmanage(config-interface-eth1)# tunnel-interface

vmanage(config-tunnel-interface)# exit

vmanage(config-interface-eth1)# no shutdown

vmanage(config-interface-eth1)#

vmanage(config-interface-eth1)# exit

vmanage(config-vpn-0)#ip route 0.0.0.0/0 10.1.1.1

vmanage(config-vpn-0)# exit

vmanage(config)#

VPN 0 carries our control traffic. By default, all of our interfaces will

be added to VPN 0, and the interfaces are disabled. We, therefore, have

to remove eth0 from VPN 0 (because we need eth0 to be in VPN 512) and

enable eth1, configuring the IP address and setting it as a tunnel interface.

We also add a default route. You will notice that no default route was added

to our VPN 512 configuration, but this is due to the size of our topology; in

a real-world set up, this may be required.

The last step of our configuration is to save our settings. Before we try

and commit our changes, we should confirm that the settings are valid,

which we can do by using the “validate” command or “commit check”.

vmanage(config)# validate

Validation complete

vmanage(config)# commit check

Validation complete

vmanage(config)# commit and-quit

Commit complete.

vManage01#

Chapter 3 Deploying vManage

53

If all is working, we should have connectivity to the R1 router:

vManage01# ping 10.1.1.1

Ping in VPN 0

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.

64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=1.61 ms

64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=0.825 ms

64 bytes from 10.1.1.1: icmp_seq=3 ttl=64 time=0.787 ms

64 bytes from 10.1.1.1: icmp_seq=4 ttl=64 time=0.680 ms

64 bytes from 10.1.1.1: icmp_seq=5 ttl=64 time=0.743 ms

^C

--- 10.1.1.1 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5001ms

rtt min/avg/max/mdev = 0.680/0.897/1.611/0.322 ms

vManage01#

From the Linux machine in VPN 0, launch the browser and connect to

the management interface on https://10.1.1.2 (Figure 3-1).

Chapter 3 Deploying vManage

54

You can also use the Linux machine in VPN 512 and connect using

the URL https://100.1.1.2. Log in using the username admin and the

password you set during setup.

TIP there is a lot of information on the dashboard, so if you find
your screen resolution is too small, as it can be with QeMU devices,
then you can change it if you set your QeMU vM properties to use
“-vga virtio” instead of “-vga std”, as shown in Figure 3-2.
you will need to stop and then start the linux vM for the change to
take effect.

Figure 3-1. The vManage login page

Chapter 3 Deploying vManage

55

The vManage interface (Figure 3-3) shows us our connected devices

at the top, listing the vSmart, WAN Edge, vBond devices, and vManage

servers.

The middle sections show us our WAN status and site health, and at

the bottom, we have our applications and application-aware routing.

Figure 3-2. Use -vga virtio for a bigger window size

Chapter 3 Deploying vManage

56

There is an issue at the moment, though. We can tell this as there is a

(invalid) warning at the top right-hand corner (Figure 3-4).

Clicking the number takes us into the error detail, where we can see

that we have a problem with our certificate (Figure 3-5).

Figure 3-3. The main vManage dashboard

Figure 3-4. Certificate invalid message

Chapter 3 Deploying vManage

57

 Certificates
Certificates in the SD-WAN network are hugely important; they form a very

large role in the authentication of devices.

We need to generate the CA certificates and upload them to the

vManage server. The easiest way to do this is to enable SSH on the

vManage server so that we can use SCP (Secure Copy Protocol) to upload

the files we need. We enable this under the VPN 0 tunnel interface.

vManage01(config)# vpn 0

vManage01(config-vpn-0)# interface eth1

vManage01(config-interface-eth1)# tunnel-interface

vManage01(config-tunnel-interface)# allow-service sshd

vManage01(config-tunnel-interface)#

vManage01(config-tunnel-interface)# end

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vManage01#

We will be using the Linux host to be our certificate authority (CA) so

that it can sign our certificates.

The first step is to set it up as our CA. Open the console window on the

Linux host, and enter the following:

openssl genrsa –out CA.key 2048

openssl req –new –x509 –days 1000 –key CA.key –out CA.crt

Figure 3-5. Certificate issue detail

Chapter 3 Deploying vManage

58

As mentioned in the previous chapter, your Linux VM will need to have

the OpenSSL packages installed for this to work. This will generate our CA

certificate. Next, copy it across to the vManage server using SCP (“scp CA.crt

admin@10.1.1.2:”), typing in the vManage admin password when prompted.

Switching back to the vManage server, install the CA certificate, using

the command “request root-cert-chain install”:

vManage01# request root-cert-chain install /home/admin/CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /home/admin/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

vManage01#

Now that the vManage server knows that we have a CA, we can use it to

sign our CSRs.

We must have our organization name set at this stage. If it is not set,

then go to Administration ➤ Settings and set it.

As we are running this in a virtual lab, we need to switch how our

certificates are provisioned to us. Go to Administration ➤ Settings, and

click “edit” next to “Controller Certificate Authority.”

By default, it is set to “Cisco” as shown in Figure 3-6.

Figure 3-6. Default certificate authority

Chapter 3 Deploying vManage

59

Click the “Enterprise Root Certificate” option (Figure 3-7), and confirm

the change by clicking “Proceed.”

Upload the CA.crt file next (Figure 3-8).

Figure 3-7. Confirm the change

Figure 3-8. Upload the CA certificate

Chapter 3 Deploying vManage

60

Click “Import & Save” (Figure 3-9).

Generate a certificate request by going to Configuration ➤ Certificates

(Figure 3-10).

Figure 3-9. Import and save the CA certificate

Chapter 3 Deploying vManage

61

There won’t be any certificates for the WAN Edge yet (Figure 3-11), so

click “Controllers.”

Figure 3-10. The certificates menu

Figure 3-11. Certificates (or lack of)

Chapter 3 Deploying vManage

62

The Controllers page will show “No certificate installed.” Click the

three buttons on the right-hand side, and select “Generate CSR”; vManage

will generate a certificate (Figure 3-12).

Download the CSR and save it. Back on the Linux machine, sign the

CSR, making sure that the CSR is in the right directory (Figure 3-13):

openssl x509 –req –in vManage01.csr –CA CA.crt –CAkey CA.key –

CAcreateserial –out vManage01.crt –days 1000 –sha256

Once the certificate has been generated, go back to the vManage GUI,

and select the “Install Certificate” option. Click “Select a file,” and select

the vManage01.crt file we just created (Figure 3-14).

Figure 3-12. vManage CSR

Figure 3-13. Signing the vManage CSR

Chapter 3 Deploying vManage

63

Click Install. The certificate will then synchronize (Figure 3-15).

Figure 3-14. Installing the signed vManage certificate

Figure 3-15. Certificate synchronization

Chapter 3 Deploying vManage

64

If the certificate takes a while to synchronize, you can speed it up using

the API, by going to https://10.1.1.2/dataservice/system/device/

sync/rootcertchain (Figure 3-16).

While our certificate synchronizes, let’s take a moment to look at users

and clustering.

 Users
We only have one user at the moment, the admin user. We can create

more, if we want to, by going to Administration ➤ Manage Users.

There are three groups (by default) that we add users into, and these

are basic, netadmin, and operator. The NetAdmin role has full rights over

every aspect of the SD-WAN software. The operator has read-only rights,

and the basic role can only look at the interface and the system. The full list

of privileges is listed in Table 3-1.

Figure 3-16. Certificate synchronization through the API

Chapter 3 Deploying vManage

https://10.1.1.2/dataservice/system/device/sync/rootcertchain
https://10.1.1.2/dataservice/system/device/sync/rootcertchain

65

Table 3-1. User privileges

Basic NetAdmin Operator

alarms – Full read

audit log – Full read

Certificates – Full read

Cloud onramp – Full read

Cluster – Full read

Colocation – Full read

Device inventory – Full read

Device monitoring – Full read

Device reboot – Full read

events – Full read

interface read Full read

Manage users – Full read

policy – Full read

policy configuration – Full read

policy deploy – Full read

routing – Full read

Security – Full read

Security policy configuration – Full read

Settings – Full read

Software upgrade – Full read

(continued)

Chapter 3 Deploying vManage

66

We can create custom groups by clicking the “Add User Group” button,

and we can also create new users, by clicking the “Add User” button. Here,

we can create an account for “monitoring,” which is a member of the

“basic” user group (Figure 3-17).

Our new user is visible along with the default admin account

(Figure 3- 18).

Table 3-1. (continued)

Basic NetAdmin Operator

System read Full read

template configuration – Full read

template deploy – Full read

tools – Full read

vanalytics – Full read

Figure 3-17. A basic user

Chapter 3 Deploying vManage

67

 vManage Clustering
As vManage is the linchpin of the SD-WAN, it needs to be resilient.

We can have multiple vManage servers and cluster them to ensure the

configuration among them is consistent.

Navigate to Administration ➤ Cluster Management (Figure 3- 19).

Figure 3-18. A new user

Figure 3-19. Cluster Management

Chapter 3 Deploying vManage

68

By default, the local vManage server will show an IP address of

“localhost” as shown in Figure 3-20.

We need to be able to distinguish between our vManage servers, so we

have to change the IP address first, before we can add any new servers to

our cluster.

Click the triple dots at the right-hand side of the server, and select

“Edit” (Figure 3-21).

Figure 3-20. vManage as localhost

Figure 3-21. Editing the vManage server

Chapter 3 Deploying vManage

69

Select the IP address (10.1.1.2) from the drop-down, and enter the

username and password (Figure 3-22).

Click “Update.” In the next window, you will be prompted to reboot the

vManage server (Figure 3-23).

Click OK. You will see now that the IP address has changed (Figure 3- 24).

Figure 3-22. Setting the vManage IP address

Figure 3-23. Rebooting the vManage

Chapter 3 Deploying vManage

70

We can now add a new vManage node, and we can do this by copying

the existing one on the EVE-NG server:

root@eve-ng:~# cd /opt/

root@eve-ng:/opt# cd unetlab/addons/qemu/

root@eve-ng:/opt/unetlab/addons/qemu# cp -R vtmgmt-19.3.0

vtmgmt-19.3.0-2

root@eve-ng:/opt/unetlab/addons/qemu# /opt/unetlab/wrappers/

unl_wrapper -a fixpermissions

root@eve-ng:/opt/unetlab/addons/qemu#

Add a new vManage server to our topology by right-clicking on a blank

area of the topology in EVE-NG and selecting “Node” (Figure 3-25).

Figure 3-24. New vManage IP address

Chapter 3 Deploying vManage

71

Figure 3-25. Adding a new node to EVE-NG

Scroll down until you see “Viptela vManage,” and click it (Figure 3-26).

Select the second instance we just created (Figure 3-27).

Figure 3-26. Adding the second vManage server

Chapter 3 Deploying vManage

72

Name it “vManage02” and click Save.

Hover over the new instance with your mouse and then drag the orange

network cable icon over to Net100, making sure that eth0 is connected to

Net100. You will need to right-click on the VPN0 switch and stop it, then

connect the eth1 interface from vManage02 to Gi1/0 on the switch. Start the

switch again.

Right-click the topology, and add a text object of “.22”. The new

topology should look like Figure 3-28.

Figure 3-27. Select the second vManage node

Chapter 3 Deploying vManage

73

Right-click vManage02 and select start (Figure 3-29).

Figure 3-28. The new topology

Figure 3-29. Starting vManage02

Chapter 3 Deploying vManage

74

Left-click it to launch a telnet connection.

Once the console has loaded, you will be prompted to change the

password and format the disk, as we did at the start of the chapter. Once

the VM has rebooted, configure it as follows:

vmanage# config

Entering configuration mode terminal

vmanage(config)# system

vmanage(config-system)# system-ip 100.100.1.22

vmanage(config-system)# site-id 100

vmanage(config-system)# organization-name Learning_SD-WAN

vmanage(config-system)# host-name vManage02

vmanage(config-system)#

vmanage(config-system)# vpn 512

vmanage(config-vpn-512)# interface eth0

vmanage(config-interface-eth0)# ip address 100.1.1.22/24

vmanage(config-interface-eth0)# no shutdown

vmanage(config-interface-eth0)# exit

vmanage(config-vpn-512)#

vmanage(config-vpn-512)# vpn 0

vmanage(config-vpn-0)# no interface eth0

vmanage(config-vpn-0)# interface eth1

vmanage(config-interface-eth1)# ip address 10.1.1.22/24

vmanage(config-interface-eth1)# no shut

vmanage(config-interface-eth1)# tunnel-interface

vmanage(config-tunnel-interface)# allow-service all

vmanage(config-tunnel-interface)# exit

vmanage(config-interface-eth1)# ip route 0.0.0.0/0 10.1.1.1

vmanage(config-vpn-0)# end

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vManage02# ping 10.1.1.2

Chapter 3 Deploying vManage

75

Ping in VPN 0

PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.

64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=0.623 ms

64 bytes from 10.1.1.2: icmp_seq=2 ttl=64 time=0.647 ms

^C

--- 10.1.1.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.623/0.635/0.647/0.012 ms

vManage02#

I have been a bit lazy with the preceding settings and allowed all

services, but this does make life a lot easier when setting up a cluster. In

production, I would say that as a minimum, SSHD and NetConf should be

allowed, but each deployment will have its separate requirements.

Before we can add this new vManage server to the cluster, we need to

complete the setup, which means we need to follow the same steps as we

did with vManage01 and add the enterprise root certificates and create a

certificate for vManage02.

Once this is complete, we should not have any warnings on the main

dashboard on vManage02.

Repeat the process of setting the IP address under Administration ➤

Cluster Management as we did for vManage01, and wait for vManage02 to

come back up again.

Returning to vManage01, we can now add vManage02 to the cluster,

click the “Add vManage” button, and enter the IP address of vManage02

and the username and password (Figure 3-30).

Chapter 3 Deploying vManage

76

Click “Add” and accept the prompt to reboot vManage02 (Figure 3-31).

The new server will have a state of pending until it has rebooted

(Figure 3-32).

Figure 3-31. Rebooting vManage02

Figure 3-30. Adding vManage02 to the cluster

Chapter 3 Deploying vManage

77

Once the server has rebooted, it should be part of the cluster. This will

be reflected in the dashboard, as the number of vManage systems should

now be 2. We can also see this in the cluster details, as the hostname has

changed and the status is now “Ready” (Figure 3-33).

Figure 3-32. vManage02 is pending

Figure 3-33. Both vManage servers are ready

Chapter 3 Deploying vManage

78

 Single- and Multi-tenancy Options
Cisco’s SD-WAN has tenancy options, so we can enable multi-tenancy

support; however, once we enable multi-tenancy, we cannot go back to

single-tenancy mode, so don’t go through these steps (unless you really

fancy rebuilding your vManage servers)!

To enable multi-tenancy, go to Administration ➤ Settings. Select the

Edit button next to “Tenancy Mode,” and select “Multitenant,” enter a

domain name and a cluster-ID, and then click Save (Figure 3-34).

The vManage server will then reboot and come up in multi-tenancy

mode.

To create tenants, go to the new vManage URL, which, in this

example, would be https://1.acme.org. From the main screen, go to

Administration ➤ Tenant Management and click “Add Tenant.” Enter

the details for the new tenant, such as the tenant name, description, the

organization name, and the domain name for the tenant, and then click

save.

Figure 3-34. Setting up tenancies

Chapter 3 Deploying vManage

https://1.acme.org

79

 Alternative vManage Deployments
 VMWare
Installing vManage on VMWare is very straightforward. In vCenter, click

File ➤ Deploy OVF Template… (Figure 3-35).

Select the viptela-vmanage-19.3.0-genericx86_64.ova file (Figure 3-36).

Figure 3-35. Deploying OVF templates

Chapter 3 Deploying vManage

80

Click Next to see the OVF details (Figure 3-37).

Figure 3-37. The OVF details

Figure 3-36. Selecting the OVF

Chapter 3 Deploying vManage

81

Name the VM and select a location (Figure 3-38).

Select an ESXi host (if you have more than one) (Figure 3-39).

Select a datastore (Figure 3-40).

Figure 3-38. Setting the virtual machine name

Figure 3-39. Selecting an ESXi host

Chapter 3 Deploying vManage

82

Click Next through the disk format (Figure 3-41).

Figure 3-40. Selecting the datastore

Figure 3-41. VM disk format

Chapter 3 Deploying vManage

83

Select the networks to use (Figure 3-42).

Click Finish (Figure 3-43).

Figure 3-42. VMWare networks

Chapter 3 Deploying vManage

84

The VM will be deployed (Figure 3-44).

Figure 3-44. Deploying the vManage server in VMWare

Figure 3-43. Finishing the setup

Chapter 3 Deploying vManage

85

The next step is to add the second hard disk for storage.

Select the vManage01 VM, and click “Edit virtual machine settings”

(Figure 3-45).

Click “Add…” (Figure 3-46).

Figure 3-45. Editing the virtual machine settings

Chapter 3 Deploying vManage

86

In the Add Hardware dialog box, click Hard Disk (Figure 3-47).

Figure 3-46. Adding new hardware

Chapter 3 Deploying vManage

87

Click Next to select the option to create a new virtual disk (Figure 3-48).

Figure 3-47. Adding a hard disk

Chapter 3 Deploying vManage

88

Set the size to be 100GB, and click Next (Figure 3-49).

Figure 3-48. Create a virtual disk

Chapter 3 Deploying vManage

89

Set the Virtual Device Node to be “IDE”; SCSI is not supported

(Figure 3-50).

Figure 3-49. Set the disk size

Chapter 3 Deploying vManage

90

Click Next and then click Finish (Figure 3-51).

Figure 3-50. Make sure you select IDE!

Chapter 3 Deploying vManage

91

The next and final stage is to add a second NIC, for the out-of-band

management (VPN 512).

Click “Edit virtual machine settings,” and then click Add and select

“Ethernet Adapter” (Figure 3-52).

Figure 3-51. Finishing the additional hard disk

Chapter 3 Deploying vManage

92

The type should be “VMXNET 3” (Figure 3-53).

Figure 3-52. Adding a new Ethernet adapter

Chapter 3 Deploying vManage

93

Click “Next” and then “Finish” (Figure 3-54).

Figure 3-53. Selecting the network

Chapter 3 Deploying vManage

94

vManage is ready to run on ESXi now.

 KVM
Using the qemu-img command, create a second disk:

qemu-img create -f qcow2 vmanage-disk2.qcow2 100G

Setup vManage as follows:

virt-install \

 --name vManage01 \

 --os-type linux \

 --os-variant ubuntu14.04 \

Figure 3-54. Finishing the vManage hardware changes

Chapter 3 Deploying vManage

95

 --cpu host \

 --vcpus=2 \

 --hvm \

 --arch=x86_64 \

 --ram 16384 \

 -- disk path=viptela-vmanage-19.3.0-genericx86-64.qcow2,size=

16,device=disk,bus=ide,format=qcow2 \

 -- disk path=vmanage-disk2.qcow2,size=16,device=disk,bus=ide,

format=qcow2 \

 --network=network:default,model=virtio \

 --network=network:default,model=virtio \

 --graphics none \

 --import

 The Viptela Serial File
In the previous chapter, we downloaded a serial file from the Smart

account portal. We now need to get this file into vManage.

The first step is to copy the file over to the VM directory, using

something like FileZilla. Once it is there, we should be able to see it along

with the virtioa.qcow2 file (I have edited the folder name to make it easier

to read the output in the following):

root@eve-ng:~# cd /opt/unetlab/addons/qemu/linux-ubun-

dsktp-17.10.1/

root@eve-ng:/opt/unetlab/addons/qemu/linux-ubun-dsktp-17.10.1# ls

serialFile.viptela virtioa.qcow2

root@eve-ng:/opt/unetlab/addons/qemu/linux-ubun-dsktp-17.10.1#

You need to install the MKISOFS utility, which you can do by following

the guide on this page: www.802101.com/how- to- get- files- into- qemu- vm/

Chapter 3 Deploying vManage

http://www.802101.com/how-to-get-files-into-qemu-vm/

96

The next stage is to create a CD ROM for our Linux machine:

root@eve-ng:/opt/unetlab/addons/qemu/linux-ubun-dsktp-17.10.1#

mkisofs -o cdrom.iso serialFile.viptela

I: -input-charset not specified, using utf-8 (detected

in locale settings)

Total translation table size: 0

Total rockridge attributes bytes: 0

Total directory bytes: 0

Path table size(bytes): 10

Max brk space used 0

176 extents written (0 MB)

root@eve-ng:/opt/unetlab/addons/qemu/linux-ubun-dsktp-17.10.1# ls

cdrom.iso serialFile.viptela virtioa.qcow2

root@eve-ng:/opt/unetlab/addons/qemu/linux-ubun-dsktp-17.10.1#

Reboot the Linux VM and the CD Rom should be visible (Figure 3-55).

Figure 3-55. We have a CDROM!

Chapter 3 Deploying vManage

97

Figure 3-57. Uploading the WAN edge list

The serialFile.viptela will have had the name truncated as we used the

standard format (ISO 9660) when creating our ISO file, so file names have

a maximum of eight characters with a three-character extension. Later on,

we’ll use Joliet extensions so that this does not happen again. Copy the

serialfi.vip file to /tmp, and rename it back to serialFile.viptela (Figure 3- 56).

On vManage01, navigate to Configuration ➤ Devices, and click

“Upload WAN Edge List” (Figure 3-57).

Select the serialFile.viptela file that is in the /tmp directory (Figure 3- 58).

Figure 3-56. Renaming our serial file

Chapter 3 Deploying vManage

98

The file will upload (Figure 3-59).

We can check this in the Configuration ➤ Devices page (Figure 3-60).

Figure 3-59. The successful upload

Figure 3-58. Yes, we are sure

Chapter 3 Deploying vManage

99

Now that we have our vManage server up and running and loaded with

our serial file, we can start to build out the rest of the network.

 Summary
In this chapter, we set up our vManage NMS cluster and set the certificate

authority using our Linux server in VPN 0. We set up some extra users and

looked at tenancy options. We then uploaded the Viptela serial which will

enable us to add our edge devices. Next up, we should look at how the SD-

WAN network will operate.

Figure 3-60. Our edge device list!

Chapter 3 Deploying vManage

101© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_4

CHAPTER 4

Understanding
the Overlay
During our setup of the vManage server(s), we created two VPN

connections, VPN 0 and VPN 512. These have different purposes; we use

VPN 512 for out-of-band management, whereas VPN 0 is our transport

VPN, but can also be used for management purposes.

In this chapter, we are going to look at these two VPNs in greater detail

and the OMP routing protocol, which forms the overlay network used

by the SD-WAN, as well as BFD and NETCONF (Network Configuration

Protocol).

 VPN 512
This management VPN is enabled by default on all Viptela devices, but will

be unconfigured, such as here on the vSmart controller:

vSmart01# sh run vpn 512

vpn 512

!

vSmart01#

Typically, on vEdge devices, the Gigabit Ethernet interface will be used;

on other devices, such as vBond, the Ethernet interface will be used.

https://doi.org/10.1007/978-1-4842-7347-0_4#DOI

102

The IP address configuration can be configured for static or DHCP IP

addressing:

vBond01# sh run vpn 512

vpn 512

 interface eth0

 ip address 100.1.1.3/24

 ipv6 dhcp-client

 no shutdown

 !

!

vBond01#

Apart from a little bit of routing, there is little we can do with VPN 512,

so let’s look at VPN 0 instead.

 VPN 0
VPN 0 is where all the magic happens; this is the WAN transport VPN. All

the control plane traffic is carried by this VPN through the overlay network,

within OMP sessions.

Note If a device is to be part of the overlay network, then at least
one interface must be connected to VPN 0.

We start by defining the interface to be used for VPN 0 and then set the

IP address; this address can be IPv4 or IPv6 (or both if you are so inclined):

vBond01# sh run vpn 0

vpn 0

 interface ge0/0

 ip address 10.1.1.3/24

 ipv6 dhcp-client

ChaPter 4 UNderstaNdINg the OVerlay

103

Next, we define our tunnel interface. On the vBond and vEdge devices,

we need to set an encapsulation method, which can be IPSec or GRE (this

is for the TLOC, or Transport Location). We do not need to specify the

encapsulation on all devices. It is mandatory on the vBond device, but

not required (or even available as a command) on the vSmart or vManage

devices.

 tunnel-interface

 encapsulation ipsec

Within the tunnel interface, we specify the allowed services. Routing-

wise we can enable BGP and OSPF. To overcome issues with NAT, we

can enable the STUN (Session Traversal Utilities for NAT) protocol. For

management, we can enable SSH (sshd), NTP, NETCONF, ICMP, HTTP,

DNS, and DHCP.

We can enable all of the services (using the command “allow- service

all”), but even so, will still see those commands that have not been

explicitly permitted or denied showing in the configuration as having their

default values. Hopefully, this will be changed in future versions:

 allow-service all

 no allow-service bgp

 allow-service dhcp

 allow-service dns

 allow-service icmp

 no allow-service sshd

 no allow-service netconf

 no allow-service ntp

 no allow-service ospf

 no allow-service stun

 allow-service https

 !

ChaPter 4 UNderstaNdINg the OVerlay

104

Access such as SSH will be available over VPN 512 by default; however,

we can also enable this over VPN 0. NETCONF should be enabled on edge

devices as this is how vManage provisions virtual devices, as well as the

edge devices using NETCONF to send notifications back to vManage.

The VPN 0 interface will, by default, be placed in a shutdown state. We

need to enable it.

 no shutdown

 !

Lastly, we (may) need to provide routing information, which is done

under the interface, where we set the IP address:

 ip route 0.0.0.0/0 10.1.1.1

!

vBond01#

The options available under the tunnel interface differ depending on the

platform. There are, however, some constants, such as the allowed services,

the Hello interval, and Hello tolerance, which set the time (in seconds) that

we send hello packets and the control tolerance of these packets.

The Hello interval is the time between Hello packets. These packets are

used to check that tunnels between devices are still active and act to keep

the tunnel alive. These are sent every one second, by default. If no Hello

packet is received, then we use the Hello tolerance to keep the tunnel

up that little bit longer. The Hello tolerance is set to 11 seconds (again by

default), so if no Hello packet is received within 12 seconds (the original

Hello interval plus the tolerance), the tunnel is taken down.

If the interval and tolerance have different values at each end of the

DTLS tunnel, then the lower hello interval and higher tolerance interval

will be used between controller devices (vManage, vBond, and vSmart). If

one side of the tunnel is an edge router, then the tunnel will use the values

configured on the router. This is to minimize the amount of traffic sent

over the tunnel.

ChaPter 4 UNderstaNdINg the OVerlay

105

 DTLS
The Viptela/Cisco SD-WAN uses DTLS or TLS tunnels between devices

(Figure 4-1). DTLS (Datagram Transport Layer Security) is based on

TLS and was designed to do what SSL could not, namely, create a secure

protocol under UDP. The vBond will only use DTLS, though.

TCP has measures built into it to make it reliable. It will request

missing packets, and it will reorder packets received so they are in the

correct order. These are all excellent ways of giving us a network we can

use. However, once we start putting TCP within TCP (like in tunnels), then

these reliability measures can be detrimental. This is referred to as “TCP

meltdown.”

With TCP meltdown, when the underlying protocol has an issue, it tries

to recover (by requesting a missing packet, for example); this can cause the

preceding layer to also compensate, which can, in turn, cause delays on

the network.

To avoid this, UDP is used instead. While UDP is connectionless and

lacks recovery mechanisms, issues with loss of datagrams and out-of-order

packets have to be offloaded to the application (SD-WAN), instead of having

TCP do this for us. But at least we avoid TCP meltdown.

Within the tunnel are the OMP messages (Figure 4-2).

Figure 4-1. A DTLS tunnel

ChaPter 4 UNderstaNdINg the OVerlay

106

 OMP
OMP is the Overlay Management Protocol. This is the control plane of the

SD-WAN and runs between the vEdges and the vSmart controllers.

OMP performs the following functions:

• Network overlay orchestration, such as site connectivity

• Distribution of routing information and location

mappings (the TLOCs)

• Data-plane security parameter distribution

• Control and distribution of routing policy

OMP is enabled by default, as we can see on the vSmart controller:

vSmart01# show omp summary

oper-state UP

admin-state UP

personality vsmart

omp-uptime 4:19:03:49

routes-received 0

routes-installed 0

routes-sent 0

tlocs-received 0

tlocs-installed 0

Figure 4-2. DTLS tunnel carrying OMP messages

ChaPter 4 UNderstaNdINg the OVerlay

107

tlocs-sent 0

services-received 0

services-installed 0

services-sent 0

mcast-routes-received 0

mcast-routes-installed 0

mcast-routes-sent 0

hello-sent 0

hello-received 0

handshake-sent 0

handshake-received 0

alert-sent 0

alert-received 0

inform-sent 0

inform-received 0

update-sent 0

update-received 0

policy-sent 0

policy-received 0

total-packets-sent 0

total-packets-received 0

vsmart-peers 0

vedge-peers 0

vSmart01#

OMP advertises the following:

• OMP routes/vRoutes

• Service routes

• TLOCs

ChaPter 4 UNderstaNdINg the OVerlay

108

To understand these three different types of routes a little easier,

we can break our network into two halves: the service side and the

transport side.

 OMP Routes/vRoutes
OMP routes are also known as vRoutes; these will be the service prefixes

mentioned earlier. These routes are advertised to the vSmart controller

as they are collected from the edge devices. Any connected, static,

OSPF inter-area or intra-area routes will be automatically injected into

OMP. BGP and OSPF external routes will need to be manually redistributed

within OMP.

Looking at our topology, in Figure 4-3, the lines in black would be our

OMP routes.

ChaPter 4 UNderstaNdINg the OVerlay

109

Figure 4-3. Our OMP routes

ChaPter 4 UNderstaNdINg the OVerlay

110

 Service Routes
Service routes are identifiers that link an OMP route to a service on a vEdge

router or within the site that the vEdge router is in. These services could

be a firewall, IPS/IDS, or a load balancer, for example. These routes specify

the location of the service. We do not have any of these in our topology, but

if we did (such as a firewall inside site 100), the service routes would look

like in Figure 4-4.

ChaPter 4 UNderstaNdINg the OVerlay

111

Figure 4-4. Service routes

ChaPter 4 UNderstaNdINg the OVerlay

112

Service routes use the Subsequent Address Family Identifier (SAFI),

which include the following attributes:

• VPN ID

• Service ID

• FW

• IDS

• IDP

• Generic net-svc

• Label

• Originator ID

• TLOC

• Path ID

 TLOC
TLOC stands for Transport Location, and it is a way of separating the route

from the endpoint on which it sits; routes are based on location, not on

specific router interfaces. TLOCs are our next hops and WAN attachment

points, they are the only part of the OMP that is visible to the physical

network, and these TLOCs must be reachable by the routing domain.

Figure 4-5 shows these TLOCs.

ChaPter 4 UNderstaNdINg the OVerlay

113

Figure 4-5. TLOCs

ChaPter 4 UNderstaNdINg the OVerlay

114

A TLOC has three components:

• System IP. We have seen these already when we set

up our vManage NMS. This “IP” does not have to be

routable or reachable; it is for identification only,

similar to a BGP router ID. It is not an IP in the proper

sense, it is purely a dotted decimal set of numbers. We

set this in the system properties.

• Color. The color is used to distinguish between

different transports.

• Encapsulation type, which will either be GRE or IPSec.

The TLOC will advertise the following:

• TLOC private address

• TLOC public address

• Carrier

• Color

• Encapsulation type

• Preference

• Site ID

• Tag

• Weight

The carrier attribute is an identifier, and there are eight options to

choose from (carrier1 through to carrier8). The carrier attribute is used,

when we are using NAT and private colors, to control whether we use the

ChaPter 4 UNderstaNdINg the OVerlay

115

private or public IP address for session establishment. If the carrier setting

is the same, then the private IP address is used. If the carrier setting is

different, then then public IP address is used:

vBond01(config-tunnel-interface)# carrier ?

Description: Set carrier for TLOC

Possible completions:

 <default carrier1 carrier2 carrier3 carrier4 carrier5

carrier6 carrier7 carrier8>[default]

vBond01(config-tunnel-interface)#

The color identifies the link type from a predefined list:

vBond01(config-tunnel-interface)# color ?

Description: Set color for TLOC

Possible completions:

 <3g biz-internet blue bronze custom1 custom2 custom3

default gold green lte metro-ethernet mpls public-

internet red silver private1 private2 private3 private4

private5 private6>[default]

vBond01(config-tunnel-interface)# color

Color does more than link identification; it defines the VPN tunnel

establishment logic, as we will see later. Color is an important area to

understand, so we will go into this in greater detail in Chapter 9 when we

can see it in action.

Preference is used to differentiate OMP routes advertised by two

different TLOCs; the TLOC with the highest preference will be advertised

out. If an OMP route is reachable through two (or more TLOCs), then we

can use the weight attribute to control our outbound traffic.

ChaPter 4 UNderstaNdINg the OVerlay

116

Note By default, traffic will be balanced equally across multiple
tlOCs, and each of these will have a value of 1. If this value is
increased (to a maximum of 255), then more traffic will be sent to
this tlOC. We can use this to perform unequal cost multi-pathing,
for example, to send more flows across higher-bandwidth lines,
by configuring one tlOC with a weight of 100 and the other with a
weight of 10, to get a 10:1 traffic ratio.

The tag is used for TLOC filtering; this is an optional, transitive path

attribute.

We will look closer at TLOCs in Chapter 7 when we set up our edge

routers.

 BFD
BFD, or Bidirectional Forwarding Detection, is used to quickly detect path

failures. BFD is used by several technologies such as OSPF and BGP as well

as SD-WAN.

BFD sessions are created automatically when edge routers come up

and they run inside IPSec connections:

vEdge01# show bfd summary

sessions-total 1

sessions-up 1

sessions-max 2

sessions-flap 2

poll-interval 600000

vEdge01# show bfd tloc-summary-list

ChaPter 4 UNderstaNdINg the OVerlay

117

IF SESSIONS SESSIONS SESSIONS

NAME ENCAP TOTAL UP FLAP

--

ge0/0 ipsec 1 1 2

vEdge01#

We can use the “show bfd history” and “show bfd sessions”

commands to look at the BFD details. The history command (Figure 4-6)

shows us the state changes and when they occurred.

The sessions command (Figure 4-7) shows us our current sessions.

BFD is used to confirm that remote TLOCs are active. We have one

BFD session per TLOC per destination TLOC, and if the BFD session fails,

then the vSmart controller will remove all the routes which point to that

particular TLOC as a next hop.

Figure 4-6. BFD history

Figure 4-7. BFD sessions

ChaPter 4 UNderstaNdINg the OVerlay

118

 NETCONF
NETCONF (Network Configuration Protocol) is the last topic for this

chapter. NETCONF is a “simple mechanism through which a network

device can be managed” (RFC 47411). It allows us to pull configuration

data out and push configuration data in and uses XML to encode a remote

procedure call (RPC).

The RFC for NETCONF (RFC 4741) was published in 2006 by Rob

Enns, then of Juniper Networks. We then have another couple of useful

RFCs, such as RFC 47422 for using NETCONF over SSH and RFC 55393 for

NETCONF over TLS.

NETCONF can be seen as four different layers:

• Content (configuration data and notification data)

• Operations (retrieve and edit the configuration data)

• Messages (for encoding RPCs and notifications)

• Secure transport (secure and reliable transport of

messages between a client and a server)

The basic NETCONF operations are shown in Table 4-1.

1 https://tools.ietf.org/html/rfc4741
2 https://tools.ietf.org/html/rfc4742
3 https://tools.ietf.org/html/rfc5539

ChaPter 4 UNderstaNdINg the OVerlay

https://tools.ietf.org/html/rfc4741
https://tools.ietf.org/html/rfc4742
https://tools.ietf.org/html/rfc5539

119

When we send configurations to our edge devices, these configurations

are sent as NETCONF messages, within IPSec tunnels. NETCONF is

also used to send the signed certificate to the vEdge devices during the

onboarding process and then to push localized policies from vManage to

the vEdge devices.

 Summary
We have looked at the overlay network, including VPN 512 and 0, and

covered the DTLS tunnels and the OMP messages carried within them. We

then looked at BFD and NETCONF. In the next chapter, we will set up our

vBond controller.

Table 4-1. NETCONF commands

Operation Purpose

<get> retrieve the running configuration and device state

information

<get-config> retrieve all or part of a specific configuration datastore

<edit-config> edit the configuration through creating, deleting, merging,

or replacing

<copy-config> Copy the configuration datastore to another configuration

datastore

<delete-config> delete a configuration datastore

<lock> lock the configuration datastore of a device

<unlock> Unlock a locked configuration datastore

<close- session> Close a NetCONF session (gracefully)

<kill-session> Close a NetCONF session (ungracefully)

ChaPter 4 UNderstaNdINg the OVerlay

121© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_5

CHAPTER 5

Deploying vBond
In this chapter, we are going to set up the vBond server. The basic setup

is very similar to the vManage, as all the devices share the same basic

configuration.

As with all the devices, you will be prompted to change the password

for the admin account when you first log in.

Because vBond and vEdge share the same software image, the device

will default to the hostname of “vedge” when it starts up for the first time.

 Basic vBond Configuration
Start by entering the hostname, system IP, site ID, and organization name:

vedge# config

Entering configuration mode terminal

vedge(config)# system

vedge(config-system)# host-name vBond01

vedge(config-system)# system-ip 100.100.1.3

vedge(config-system)# site-id 100

vedge(config-system)# organization-name "Learning_SD-WAN"

vedge(config-system)#

Next, set the vBond IP address. This must match the IP address we

set on our VPN 0 interface. We also specify that we are the “local” vBond

controller. Commit your configuration.

https://doi.org/10.1007/978-1-4842-7347-0_5#DOI

122

vedge(config-system)#

vedge(config-system)# vbond 10.1.1.3 local

vedge(config-system)# commit

Note You may see some documentation also using the option of
“vbond-only” as well as “local.” You can still use this option,
and it will work in the configuration, but it was deprecated in Viptela
version 16.2.

In a real-life deployment, the vBond IP address should be a publicly

reachable IP address. Next, we move on to our network configuration.

 vBond Network Configuration
Type the following:

vBond01(config-system)# vpn 0

vBond01(config-vpn-0)# ip route 0.0.0.0/0 10.1.1.1

vBond01(config-vpn-0)# interface ge0/0

vBond01(config-interface-ge0/0)# ip address 10.1.1.3/24

vBond01(config-interface-ge0/0)# no tunnel-interface

vBond01(config-interface-ge0/0)# commit and-quit Commit complete.

vBond01#

We need to remove the tunnel interface from VPN 0; otherwise, we will

not be able to add vBond to vManage, and we will just get a Java exception

error.

We should also set up our management connectivity:

vBond01# conf t

Entering configuration mode terminal

vBond01(config)# vpn 512

Chapter 5 DeploYing VBonD

123

vBond01(config-vpn-512)# interface eth0

vBond01(config-interface-eth0)# ip address 100.1.1.3/24

vBond01(config-interface-eth0)# no shutdown

vBond01(config-interface-eth0)# exit

vBond01(config-vpn-512)# commit and-quit

Commit complete.

vBond01#

We should now be able to copy over our CA certificate, so, from the

Linux server’s command prompt, CD into the Downloads directory and

type, filling in the authentication details when prompted:

scp CA.crt admin@10.1.1.3:

Switch back to the vBond01 VM and install the certificate:

vBond01# request root-cert-chain install /home/admin/CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /home/admin/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

vBond01#

We should now be able to add the vBond device to vManage.

 Adding vBond to vManage
Firstly, make sure that vManage has been set up with a vBond device.

Go to Administration ➤ Settings, and edit the vBond configuration,

adding the IP address of our vBond controller. This must be the VPN 0

address we configured earlier (Figure 5-1).

Chapter 5 DeploYing VBonD

124

Click Save.

Next, navigate to Configuration ➤ Devices (Figure 5-2).

Click “Controllers” (Figure 5-3).

Figure 5-1. Adding the IP address of the vBond controller to
vManage

Figure 5-2. The Devices menu

Chapter 5 DeploYing VBonD

125

Click “Add Controller,” and select the vBond option (Figure 5-4).

Enter the IP address and username and password of the vBond device,

and click “Add” (Figure 5-5).

Figure 5-3. Controllers

Figure 5-4. Adding a new controller

Chapter 5 DeploYing VBonD

126

We should see the vBond controller added to our list now as seen in

Figure 5-6.

We still have some work to do, as the vBond server details are missing,

and we do not have a certificate installed.

Navigate to Configuration ➤ Certificates ➤ Controllers. The vBond

controller will have an operation status of “CSR generated,” so click

the triple dots and select “View CSR.” Download it to the Linux server

(Figure 5-7).

Figure 5-5. The name is Bond. vBond

Figure 5-6. Our controller list

Chapter 5 DeploYing VBonD

127

Sign the certificate using the Linux server:

openssl x509 –req –in undefined.csr –CA CA.crt –CAkey CA.key

–CAcreateserial –out vBond01.pem –days 1000 –sha256

Back on vManage, navigate to Configuration ➤ Certificates ➤

Controllers. Click “Install Certificate.” Select the vBond01.pem certificate

and install it.

The task view will first show that the install is scheduled (Figure 5-8).

Figure 5-7. The vBond CSR

Figure 5-8. vBond certificate install scheduled

Chapter 5 DeploYing VBonD

128

Then, it will show that it was (hopefully) successful (Figure 5-9).

Head back to Configuration ➤ Devices ➤ Controllers; we will see that

the Certificate Status now shows as “Installed,” and we should be fully

populated with the hostname and system IP (Figure 5-10).

If you don’t get the same result, then head over to the troubleshooting

chapter (Chapter 14).

Assuming all is well, we should see that our dashboard has updated to

reflect the new vBond orchestrator (Figure 5-11).

Our Network page (Monitor ➤ Network) will also show the new

controller (Figure 5-12).

Figure 5-10. All the vBond details!

Figure 5-11. We have a vBond

Figure 5-9. vBond certificate install success

Chapter 5 DeploYing VBonD

129

We can use the console to check our orchestrator properties (“show

orchestrator local-properties”), which is great for troubleshooting

certificate issues, as well as misconfiguration such as organization names

that do not match.

vBond01# show orchestrator local-properties

personality vbond

sp-organization-name Learning_SD-WAN

organization-name Learning_SD-WAN

system-ip 100.100.1.3

certificate-status Installed

root-ca-chain-status Installed

certificate-validity Valid

certificate-not-valid-before Apr 01 08:23:30 2020 GMT

certificate-not-valid-after Dec 27 08:23:30 2022 GMT

chassis-num/unique-id 87563514-cc06-47a9-85ea-

03d4cf2e0a24

serial-num C024D682372213FA

number-active-wan-interfaces 1

protocol dtls

INSTANCE INDEX PORT VSMARTS VMANAGES STATE

--

0 0 12346 0 4 up

vBond01#

Figure 5-12. The Network monitoring page

Chapter 5 DeploYing VBonD

130

We can also check out the connections we have using the command

“show orchestrator connections”. The output for this is quite long, as

shown in Figure 5-13!

By now, the serial number list we downloaded from SmartNet and

uploaded to vManage should have downloaded to vBond (this output has

been truncated to avoid sharing serial numbers):

vBond01# show orchestrator valid-vedges serial-number

CHASSIS NUMBER SERIAL NUMBER

--

00B6B5DD-15FB-123FFFF 1ddb68eb80270123FFFF

567F7A4B-0720-123FFFF ceb5021fb63bd123FFFF

60389EF5-8D88-123FFFF 1ef3a68c75c43123FFFF

B0EA9F50-99AC-123FFFF a2d1493536d8f123FFFF

CD24A6C9-330E-123FFFF 2664fe69a308c123FFFF

CSR-0502AB1A-123FFFF 2501e42780753123FFFF

CSR-17B237B8-123FFFF e8c8481cc8dda123FFFF

CSR-E5C01068-123FFFF 26f0b73247dd4123FFFF

CSR-ED477D6F-123FFFF a4f4d0216a7cb123FFFF

CSR-F1C7D091-123FFFF 7a652bb5c0b47123FFFF

vBond01#

Figure 5-13. The output from “show orchestrator connections”

Chapter 5 DeploYing VBonD

131

The final stage of setting up the vBond controller is to enable the

tunnel interface under VPN 0. We need this for the vSmart and edge

devices to be able to connect to vBond.

vBond01# config

Entering configuration mode terminal

vBond01(config)# vpn 0

vBond01(config-vpn-0)# interface ge0/0

vBond01(config-interface-ge0/0)# tunnel-interface

vBond01(config-tunnel-interface)# allow-service all

vBond01(config-tunnel-interface)# encapsulation ipsec

vBond01(config-tunnel-interface)# commit and-quit

Commit complete.

vBond01#

 Alternative vBond Deployments
We can also set up the vBond appliance on VMWare and KVM.

 VMWare
Within vSphere, click File ➤ Deploy OVF Template…, then select viptela-

edge-19.3.0-genericx86-64.ova, and click Next (Figure 5-14).

Chapter 5 DeploYing VBonD

132

Click Next.

Name the new VM, and select a location (Figure 5-15).

Figure 5-14. vBond install on ESXi

Chapter 5 DeploYing VBonD

133

Select a host and click Next.

Select a datastore.

Click next on Disk Format.

Select the networks you will be using; each should be mapped to

different networks (ideally) (Figure 5-16).

Figure 5-15. Naming the vBond controller on ESXi

Chapter 5 DeploYing VBonD

134

Click Next to complete the deployment settings, and finally, click

Finish (Figure 5-17).

Figure 5-16. vBond networks

Chapter 5 DeploYing VBonD

135

Figure 5-17. vBond configuration

Figure 5-18. vBond successful deployment

The deployment will complete (Figure 5-18).

Chapter 5 DeploYing VBonD

136

 KVM
If you want to install vBond on KVM, use the following:

virt-install \

 --name vbond01 \

 --os-type linux \

 --os-variant ubuntu14.04 \

 --cpu host \

 --vcpus=2 \

 --hvm \

 --arch=x86_64 \

 --ram 2048 \

 -- disk path=viptela-bond-19.3.0-genericx86-64.qcow2,

size=16,device=disk,bus=ide,format=qcow2 \

 --network=network:default,model=virtio \

 --network=network:default,model=virtio \

 --graphics none \

 --import

 Summary
In this chapter, we have set up our vBond controller. The next step in

building our topology is to set up vSmart.

Chapter 5 DeploYing VBonD

137© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_6

CHAPTER 6

Deploying vSmart
The vSmart controller sits between the vEdge devices and the vBond

orchestrator; it helps with the authentication of edge devices to the vBond

and manages the connectivity between the edge devices.

 vSmart Basic Config
The vSmart configuration follows the same steps as the vBond from the

previous chapter:

vsmart# config

Entering configuration mode terminal

vsmart(config)# system

vsmart(config-system)# host-name vSmart01

vsmart(config-system)# organization-name Learning_SD-WAN

vsmart(config-system)# site-id 100

vsmart(config-system)# system-ip 100.100.1.4

vsmart(config-system)#

vsmart(config-system)# vbond 10.1.1.3

vsmart(config-system)#

https://doi.org/10.1007/978-1-4842-7347-0_6#DOI

138

For the VPN 0 configuration, we need to enable the NETCONF service

in the tunnel interface:

vsmart(config-system)# vpn 0

vsmart(config-vpn-0)#

vsmart(config-vpn-0)# no interface eth0

vsmart(config-vpn-0)# interface eth1

vsmart(config-interface-eth1)# ip address 10.1.1.4/24

vsmart(config-interface-eth1)# no shut

vsmart(config-interface-eth1)# ip route 0.0.0.0/0 10.1.1.1

vsmart(config-interface-eth1)# tunnel-interface

vsmart(config-tunnel-interface)# allow-service netconf

vsmart(config-tunnel-interface)# commit and-quit

Commit complete.

vSmart01#

Whereas the vBond IP address should be a public IP (in a real-life

deployment), the IP address we assign to the eth1 interface does not have

to, but will be determined by your deployment needs. We can now test

connectivity.

vSmart01# ping 10.1.1.2

Ping in VPN 0

PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.

64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=3.41 ms

64 bytes from 10.1.1.2: icmp_seq=2 ttl=64 time=1.48 ms

^C

--- 10.1.1.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 1.484/2.450/3.416/0.966 ms

vSmart01#

Chapter 6 Deploying vSmart

139

Let’s set up our management connectivity:

vSmart01# config

vSmart01(config)# vpn 512

vSmart01(config-vpn-512)# interface eth0

vSmart01(config-interface-eth0)# ip address 100.1.1.4/24

vSmart01(config-interface-eth0)# no shutdown

vSmart01(config-interface-eth0)# exit

vSmart01(config-vpn-512)# commit and-quit

Commit complete.

vSmart01#

 vSmart Certificates
This is the same process as the other devices. We start by copying the CA

certificate from the Linux server to the vSmart controller.

scp CA.crt admin@10.1.1.4:

Then we install the certificate:

vSmart01# request root-cert-chain install /home/admin/CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /home/admin/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

vSmart01#

The next step is to add vSmart to vManage. Navigate to Configuration

➤ Devices Controllers, click “Add Device,” and select vSmart. Add the IP

address, username, and password, and set the protocol, which can be left

as the default of “DTLS” (Figure 6-1).

Chapter 6 Deploying vSmart

140

View and save the CSR (Figure 6-2).

Figure 6-1. Adding a vSmart controller

Chapter 6 Deploying vSmart

141

Because we will already have a file called “undefined.csr”, we should

rename this new file when we generate the certificate (Figure 6-3).

Upload the certificate back into vManage, by going to Configuration ➤

Certificates ➤ Controllers, clicking “Upload certificate,” and selecting the

vSmart01.pem certificate we just created.

Figure 6-2. The vSmart CSR

Figure 6-3. Generating the vSmart certificate

Chapter 6 Deploying vSmart

142

The vSmart should then be fully populated with the hostname and

system IP (Figure 6-4).

Similarly, the Devices page should show also be updated (Figure 6-5).

If you are missing the hostname and system IP, then head over to the

troubleshooting chapter.

Our dashboard should now show that we have one vSmart (Figure 6-6).

Figure 6-5. vSmart in Devices

Figure 6-6. vSmart in the dashboard

Figure 6-4. vSmart showing in the NMS

Chapter 6 Deploying vSmart

143

This should be reflected in the Network page (Figure 6-7).

We can also use the CLI to gauge the health of our vSmart controller, by

checking the connections to our vBond device, using the command “show

transport connection”:

vSmart01# show transport connection

TRACK

TYPE SOURCE DESTINATION HOST INDEX TIME STATE

--

system - 10.1.1.3 0 Wed Apr 1 20 up

vSmart01#

As well as looking at this (truncated) output from “show control

local-properties”:

vSmart01# show control local-properties

personality vsmart

sp-organization-name Learning_SD-WAN

organization-name Learning_SD-WAN

root-ca-chain-status Installed

Figure 6-7. The Network page

Chapter 6 Deploying vSmart

144

certificate-status Installed

certificate-validity Valid

certificate-not-valid-before Apr 01 17:39:14 2020 GMT

certificate-not-valid-after Dec 27 17:39:14 2022 GMT

dns-name 10.1.1.3

site-id 100

domain-id 1

protocol dtls

tls-port 23456

system-ip 100.100.1.4

chassis-num/unique-id 611a5b84-b2e5-4c7f-951b-

a91c93520063

serial-num C024D682372213FB

token -NA-

retry-interval 0:00:00:17

no-activity-exp-interval 0:00:00:20

dns-cache-ttl 0:00:02:00

port-hopped FALSE

time-since-last-port-hop 0:00:00:00

cdb-locked false

number-vbond-peers 1

INDEX IP PORT

0 10.1.1.3 12346

number-active-wan-interfaces 2

vSmart01#

The output has been truncated due to the connection details at the

end, which have been removed to preserve print formatting. From here, we

can check our certificate validity.

Chapter 6 Deploying vSmart

145

We can also check our control connections using the command “show

control connections” (Figure 6-8).

We have full connections to the vBond and vManage over DTLS.

 vSmart Authentication and Validation
Behind the scenes, the vSmart controller and the vBond start a mutual

process of validation and authentication between each other. We start this

process when we add the IP address (or DNS name) of the vBond device

during the initial configuration of the vSmart device:

 vsmart(config-system)# vbond 10.1.1.3

The second part of this initial validation and authentication is

performed when we add vSmart to vManage and issue the certificates.

vManage then initiates an update of vBond (Figure 6-9).

Figure 6-8. Show control connections

Figure 6-9. vManage updating vBond with the details of vSmart

Chapter 6 Deploying vSmart

146

vManage has now sent the serial number of vSmart to vBond, priming

it for vSmart to start talking to it over a DTLS tunnel, which is encrypted

using RSA private- and public-key pairs.

With the tunnel in place, vBond sends the root CA to vSmart, along

with the vEdge serial number file. vSmart checks the organization name

in the certificate against its own configured organization name. If the

organization name is the same, then vSmart will check the certificate

against the CA root chain (which explains why we have uploaded the

CA.crt file every time we have started a new device up). If the certificate

signature is correct, the DTLS tunnel stays up and the authentication of the

vBond orchestrator to vSmart has completed.

Naturally, vBond must perform similar checks. So vSmart also sends

the root CA certificate to vBond, and vBond checks the serial number,

organization name, and certificate signature as well. If these checks pass,

then authentication of vSmart to vBond has completed.

The temporary DTLS tunnel that was created for this initial

authentication now transitions to a permanent tunnel.

If the vBond orchestrator has not started when the vSmart controller is

in the position to start the authentication sequence, then the vSmart will

periodically attempt to start the sequence, until it is eventually successful.

If we have more than one vSmart controller, then the process is much

the same. Each vSmart controller learns of the other vSmart controller(s)

from vBond. Once each vSmart controller receives the serial number file

from the vBond orchestrator, it initiates a DTLS connection to the other

vSmart controller. The first vSmart will send its trusted root CA-signed

certificate to the other vSmart controller. The second vSmart controller

checks the serial number of the first vSmart controller against the serial

number file it has received from vBond and checks the organization name

in the certificate and the signature of the certificate. This process is also

performed by the other vSmart controller so that there is a two-way trust

between the controllers. Again, if each step is completed successfully, the

Chapter 6 Deploying vSmart

147

temporary DTLS tunnel is replaced with a permanent one. vBond will

then balance the control connections between the vEdge devices and the

vSmart controllers automatically.

If any of the steps fail, and the same is true for the authentication

sequence between vSmart and vBond devices, then the temporary DTLS

tunnel will be torn down and the authentication attempt stops.

 Alternative vSmart Deployments
Like the other appliances, we can run the vSmart on VMWare or KVM.

 VMWare
As the steps for installing the vSmart are no different than those of

vManage or vBond, there is no benefit in showing you all the steps.

 KVM
From the Linux command prompt type, the following:

virt-install \

 --name vSmart01 \

 --os-type linux \

 --os-variant ubuntu14.04 \

 --cpu host \

 --vcpus=2 \

 --hvm \

 --arch=x86_64 \

 --ram=2048 \

 - -disk path=viptela-smart-19.3.0-genericx86_64.qcow2,

size=16,device=disk,bus=ide,format=qcow2 \

Chapter 6 Deploying vSmart

148

 --network=network:default,model=virtio \

 --network=network:default,model=virtio \

 --graphics none \

 --import

 Summary
We have now set up our vSmart controller which acts as the gateway

between the vBond and vManage devices and the vEdge devices. We will

look at the role of the vSmart controller further, when we start to provision

policies in Chapter 10, but for now, we are at a position where we can start

adding our vEdge devices.

Chapter 6 Deploying vSmart

149© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_7

CHAPTER 7

Edge Devices
In this chapter, we will set up two vEdge devices and one cEdge device.

vEdge means that it is a Viptela device, and cEdge means that it is a Cisco

device (a CSR1000v in this instance). Although they are technically now

the same company, vEdge and cEdge are still used to distinguish between

the two different router types and the OS that they run.

We begin with the vEdge router, in our HQ, in the same way as the

other devices we have previously configured, by changing the password:

vedge login: admin

Password:

Welcome to Viptela CLI

admin connected from 127.0.0.1 using console on vedge

You must set an initial admin password.

Password:

Re-enter password:

vedge#

The basic set up is the same as the other devices we have configured:

vedge# config

Entering configuration mode terminal

vedge(config)# system

vedge(config-system)# host-name vEdge01

vedge(config-system)# site-id 100

vedge(config-system)# system-ip 100.100.1.5

vedge(config-system)# vbond 10.1.1.3

https://doi.org/10.1007/978-1-4842-7347-0_7#DOI

150

vedge(config-system)# organization-name Learning_SD-WAN

vedge(config-system)#

vedge(config-system)# commit and-quit

Commit complete.

vEdge01#

We can then move on to VPN 0:

vEdge01(config)# vpn 0

vEdge01(config-vpn-0)# ip route 0.0.0.0/0 10.1.1.1

vEdge01(config-vpn-0)# interface ge0/0

vEdge01(config-interface-ge0/0)# ip address 10.1.1.5/24

vEdge01(config-interface-ge0/0)# no shut

vEdge01(config-interface-ge0/0)#

vEdge01(config-interface-ge0/0)# tunnel-interface

vEdge01(config-tunnel-interface)# encapsulation ipsec

vEdge01(config-tunnel-interface)# color blue

vEdge01(config-tunnel-interface)#

vEdge01(config-tunnel-interface)# validate

Validation complete

vEdge01(config-tunnel-interface)# commit and-quit

Commit complete.

vEdge01#

Once the changes have been committed, confirm that you can reach

the vBond and vSmart devices:

vEdge01# ping 10.1.1.3

Ping in VPN 0

PING 10.1.1.3 (10.1.1.3) 56(84) bytes of data.

64 bytes from 10.1.1.3: icmp_seq=1 ttl=64 time=26.2 ms

64 bytes from 10.1.1.3: icmp_seq=2 ttl=64 time=28.8 ms

^C

Chapter 7 edge deviCes

151

--- 10.1.1.3 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 26.239/27.525/28.811/1.286 ms

vEdge01#

vEdge01# ping 10.1.1.4

Ping in VPN 0

PING 10.1.1.4 (10.1.1.4) 56(84) bytes of data.

64 bytes from 10.1.1.4: icmp_seq=1 ttl=64 time=1.36 ms

64 bytes from 10.1.1.4: icmp_seq=2 ttl=64 time=1.31 ms

^C

--- 10.1.1.4 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 1.316/1.340/1.365/0.044 ms

vEdge01#

Next, on the vManage server, navigate to Configuration ➤ Devices ➤

WAN Edge List. Select the first vEdge Cloud device (not the CSR1000v), and

click the three dots on the right-hand side, and select “Generate Bootstrap

Configuration” from the drop-down list (Figure 7-1).

We need the configuration to be in “Cloud-Init” format. Click OK

(Figure 7-2).

Figure 7-1. Generating the vEdge bootstrap configuration

Chapter 7 edge deviCes

152

The file contains a few lines of text as well as the certificates we need

for the communication to occur between the edge device and the control

devices (Figure 7-3).

Save the file locally, and open it up in a text editor, so that we can copy

the parts we need, which are the UUID and the OTP (one-time password).

The UUID is our chassis number, and the OTP is the one-time token code.

The OTP is referred to as a “token” in the CLI and as an “OTP” in the

vManage GUI, so these terms may be used interchangeably.

Figure 7-2. Select Cloud-Init

Figure 7-3. The vEdge bootstrap configuration

Chapter 7 edge deviCes

153

Back on the vEdge router, request activation using the “request

vedge- cloud activate chassis-number <UUID> token <OTP>”

command using the UUID and the OTP from the file we just downloaded:

vEdge01# request vedge-cloud activate chassis-number 577f7a4b-

0720- fa13-8556-f66dece9dd77 token ceb5021fb63bdb334b1128c373b5

7d09

As we are using an OTP, the command can only be run once. If the

activation fails, then the device must be decommissioned from vManage,

so that the serial is released for reuse and a new OTP must be generated.

The UUID will remain the same though.

For the certificate chain to be valid, we need to upload the CA

certificate from the Linux server. Start by enabling SSH on the vEdge

device.

vEdge01# config

Entering configuration mode terminal

vEdge01(config)# vpn 0

vEdge01(config-vpn-0)# interface ge0/0

vEdge01(config-interface-ge0/0)# tunnel-interface

vEdge01(config-tunnel-interface)# allow-service sshd

vEdge01(config-tunnel-interface)#

vEdge01(config-tunnel-interface)# commit and-quit

Commit complete.

vEdge01#

Upload the certificate from the Linux device:

scp CA.crt admin@10.1.1.5:

Chapter 7 edge deviCes

154

Then install the CA certificate:

vEdge01# request root-cert-chain install /home/admin/CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /home/admin/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

vEdge01#

Assuming all goes well, we should see the edge device listed in

vManage (Figure 7-4).

If we look at our network now (Monitor ➤ Network), we should see the

edge device (Figure 7-5).

It will also be visible in our WAN Edge List (Figure 7-6).

Figure 7-5. The network monitoring page

Figure 7-6. The edge list

Figure 7-4. Our edge device showing in vManage

Chapter 7 edge deviCes

155

We can look at the vSmart controller and see the OMP connections:

vSmart01# show omp summary

oper-state UP

admin-state UP

personality vsmart

omp-uptime 4:20:06:20

routes-received 0

routes-installed 0

routes-sent 0

tlocs-received 1

tlocs-installed 1

tlocs-sent 0

services-received 0

services-installed 0

services-sent 0

mcast-routes-received 0

mcast-routes-installed 0

mcast-routes-sent 0

hello-sent 5

hello-received 6

handshake-sent 1

handshake-received 1

alert-sent 0

alert-received 0

inform-sent 3

inform-received 3

update-sent 0

update-received 1

policy-sent 0

policy-received 0

total-packets-sent 9

Chapter 7 edge deviCes

156

total-packets-received 11

vsmart-peers 0

vedge-peers 1

vSmart01#

Note that we have received (and installed) a TLOC, but have not

received any routes yet. So, let’s add a route on our edge router and see

what happens. This will become VPN 1. We can support a huge amount

of VPNs, from 1 to 511 and then from 513 to 65527! That said, the vEdge

devices can support a total of 64 concurrent VPNs.1

vEdge01# config

Entering configuration mode terminal

vEdge01(config)# vpn ?

This line doesn't have a valid range expression

Possible completions:

 Allowed values on vedge: <0..65527>

 Allowed values on vsmart/vmanage/vcontainer: <0 and 512>

 0

 512

vEdge01(config)#

vEdge01(config)# vpn 1

vEdge01(config-vpn-1)# interface loopback1

vEdge01(config-interface-loopback1)# ip address 172.16.10.1/24

vEdge01(config-interface-loopback1)# no shut

vEdge01(config-interface-loopback1)# end

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vEdge01#

1 www.slideshare.net/CiscoCanada/understanding-cisco-next-generation-
sdwan-solution

Chapter 7 edge deviCes

http://www.slideshare.net/CiscoCanada/understanding-cisco-next-generation-sdwan-solution
http://www.slideshare.net/CiscoCanada/understanding-cisco-next-generation-sdwan-solution

157

Now if we look at the vSmart controller again, we can see that we have

received an additional route:

vSmart01# show omp summary

oper-state UP

admin-state UP

personality vsmart

omp-uptime 4:20:59:09

routes-received 1

routes-installed 0

routes-sent 0

tlocs-received 1

tlocs-installed 1

tlocs-sent 0

services-received 1

services-installed 1

services-sent 0

mcast-routes-received 0

mcast-routes-installed 0

mcast-routes-sent 0

hello-sent 164

hello-received 166

handshake-sent 1

handshake-received 1

alert-sent 0

alert-received 0

inform-sent 7

inform-received 7

update-sent 0

update-received 3

policy-sent 0

policy-received 0

Chapter 7 edge deviCes

158

total-packets-sent 172

total-packets-received 177

vsmart-peers 0

vedge-peers 1

vSmart01#

We can use the “show omp routes” command to look at the routes we

have received. Note that the tloc color (blue) matches what we configured

on the vEdge01 device when we set it up:

vSmart01# show omp routes

omp route entries for vpn 1 route 172.16.10.0/24

 RECEIVED FROM:

peer 100.100.1.5

path-id 74

label 1003

status C,R

loss-reason not set

lost-to-peer not set

lost-to-path-id not set

 Attributes:

 originator 100.100.1.5

 type installed

 tloc 100.100.1.5, blue, ipsec

 ultimate-tloc not set

 domain-id not set

 overlay-id 1

 site-id 100

 preference not set

Chapter 7 edge deviCes

159

 tag not set

 origin-proto connected

 origin-metric 0

 as-path not set

 unknown-attr-len not set

vSmart01#

Let’s add vEdge02, following the configuration given here:

vedge# config

Entering configuration mode terminal

vedge(config)# system

vedge(config-system)# host-name vEdge02

vedge(config-system)# site-id 100

vedge(config-system)# system-ip 60.100.100.1

vedge(config-system)# vbond 10.1.1.3

vedge(config-system)# organization-name Learning_SD-WAN

vedge(config-system)# vpn 0

vedge(config-vpn-0)# no interface ge0/0

vedge(config-vpn-0)# ip route 0.0.0.0/0 50.11.11.254

vedge(config-vpn-0)# interface ge0/1

vedge(config-interface-ge0/1)# ip address 50.11.11.1/24

vedge(config-interface-ge0/1)# no shut

vedge(config-interface-ge0/1)# tunnel-interface

vedge(config-tunnel-interface)# encapsulation ipsec

vEdge02(config-tunnel-interface)# allow-service sshd

vedge(config-tunnel-interface)# color red

vedge(config-tunnel-interface)# commit and-quit

Commit complete.

vEdge02#

Chapter 7 edge deviCes

160

Note i have placed it into site 100, instead of site 200 as shown in
the topology in Chapter 2. this is on purpose and will be explained in
the next chapter.

Before moving on, we should check our connectivity, first by pinging

ISP-R, and then vBond:

vEdge02# ping 50.11.11.254

Ping in VPN 0

PING 50.11.11.254 (50.11.11.254) 56(84) bytes of data.

64 bytes from 50.11.11.254: icmp_seq=1 ttl=64 time=0.900 ms

64 bytes from 50.11.11.254: icmp_seq=2 ttl=64 time=0.521 ms

^C

--- 50.11.11.254 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.521/0.710/0.900/0.191 ms

vEdge02#

vEdge02# ping 10.1.1.3

Ping in VPN 0

PING 10.1.1.3 (10.1.1.3) 56(84) bytes of data.

64 bytes from 10.1.1.3: icmp_seq=1 ttl=62 time=25.8 ms

64 bytes from 10.1.1.3: icmp_seq=2 ttl=62 time=27.0 ms

^C

--- 10.1.1.3 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1001ms

rtt min/avg/max/mdev = 25.814/26.456/27.099/0.662 ms

vEdge02#

Next, we can copy the CA.crt over to vEdge02 (from the Linux server):

scp CA.crt admin@50.11.11.1:

Chapter 7 edge deviCes

161

Then, install the certificate:

vEdge02# request root-cert-chain install /home/admin/CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /home/admin/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

vEdge02#

On vManage, we can navigate to Configuration ➤ Devices and generate the

bootstrap code for the second vEdge Cloud device on the list and activate it:

vEdge02# request vedge-cloud activate chassis-

number b0ea9f50-99ac-8bee-4fdd-91a83cdf41f5 token

a2d1493536d8f4b2aebdc7f845d416

vEdge02#

We should now see that the device list has been updated (Figure 7-7).

Similarly, our list of network devices has also been updated (Figure 7- 8).

Figure 7-7. The WAN edge device list

Figure 7-8. The Network monitor window (again)

Chapter 7 edge deviCes

162

Let’s test OMP by creating a new VPN on vEdge02 (as we did on vEdge01):

vEdge02# config

Entering configuration mode terminal

vEdge02(config)# vpn 1

vEdge02(config-vpn-1)# interface loopback1

vEdge02(config-interface-loopback1)# ip address 172.16.20.1/24

vEdge02(config-interface-loopback1)# no shutdown

vEdge02(config-interface-loopback1)# end

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vEdge02#

We can confirm that we can see both of the routes using the command

“show omp routes received”:

vEdge02# show omp routes received

omp route entries for vpn 1 route 172.16.10.0/24

 RECEIVED FROM:

peer 100.100.1.4

path-id 1

label 1003

status Inv,U

loss-reason not set

lost-to-peer not set

lost-to-path-id not set

 Attributes:

 originator 100.100.1.5

 type installed

 tloc 100.100.1.5, blue, ipsec

 ultimate-tloc not set

Chapter 7 edge deviCes

163

 domain-id not set

 overlay-id 1

 site-id 100

 preference not set

 tag not set

 origin-proto connected

 origin-metric 0

 as-path not set

 unknown-attr-len not set

omp route entries for vpn 1 route 172.16.20.0/24

 RECEIVED FROM:

peer 0.0.0.0

path-id 72

label 1003

status C,Red,R

loss-reason not set

lost-to-peer not set

lost-to-path-id not set

 Attributes:

 originator 60.100.100.1

 type installed

 tloc 60.100.100.1, red, ipsec

 ultimate-tloc not set

 domain-id not set

 overlay-id 1

 site-id 100

 preference not set

 tag not set

Chapter 7 edge deviCes

164

 origin-proto connected

 origin-metric 0

 as-path not set

 unknown-attr-len not set

vEdge02#

So far, so good. In the final part of our topology configuration, we will

set up the CSR1000V.

 CSR1000v
The commands used by the CSR1000v differ (slightly) from the other

configurations we have encountered so far, as you might expect coming

from a different vendor.

We start as usual, by logging in using admin/admin as the username

and password and then setting a new password when prompted:

User Access Verification

Username: admin

Password:

Default admin password needs to be changed.

Enter new password:

Confirm password:

System status solid green (reason: All daemons up)

Router>

Router>

Successfully set new admin password

Router>

Chapter 7 edge deviCes

165

From here on, things get a bit different:

Router>en

Router#config

This command is not supported

Router#configure terminal

This command is not supported

Router#

We can no longer use the “config” command. Instead, we need to use

the “config-transaction” command:

Router#config-transaction

admin connected from 127.0.0.1 using console on Router

Router(config)#

Now we are progressing. The hostname command is not configured

under the system options (unlike the vEdges); instead, it is set at the top

level of the configuration:

Router(config)# hostname CSR-1

The SD-WAN parameters are under the system command, though:

Router(config)# system

Router(config-system)# site-id 100

Router(config-system)# organization-name Learning_SD-WAN

Router(config-system)# vbond 10.1.1.3

Router(config-system)# system-ip 70.100.100.1

Router(config-system)#

Router(config-system)# commit

Commit complete.

CSR-1(config-system)#

Chapter 7 edge deviCes

166

The way we configure VPN 0 is also different:

CSR-1(config-system)# vpn 0

----------------------^

syntax error: unknown command

CSR-1(config-system)#

We have to jump around the console to get the SD-WAN tunnel

prepared, starting by configuring the interface:

CSR-1(config-system)# exit

CSR-1(config)#

CSR-1(config)# interface GigabitEthernet 1

CSR-1(config-if)#

CSR-1(config-if)# ip address 50.10.10.1 255.255.255.0

CSR-1(config-if)# no shut

CSR-1(config-if)# ip route 0.0.0.0 0.0.0.0 50.10.10.254

CSR-1(config)# commit

Commit complete.

CSR-1(config)# end

We can test connectivity now to both our default gateway (ISP-R) and

the vBond controller:

CSR-1#ping 50.10.10.254

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 50.10.10.254, timeout is 2

seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max =

1/5/22 ms

CSR-1#ping 10.1.1.3

Type escape sequence to abort.

Chapter 7 edge deviCes

167

Sending 5, 100-byte ICMP Echos to 10.1.1.3, timeout is 2

seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max =

20/27/30 ms

CSR-1#

Next, we create a tunnel interface, which is a hidden option, so make

sure you don’t put a space between “tunnel” and “1”; otherwise, the

command will fail. Start with a “show interface summary” so you can

copy and paste easily later on (I have truncated the output for formatting).

We also need to set the tunnel mode to “sdwan.”

CSR-1#show interface summary

Interface IHQ IQD OHQ OQD RXBS RXPS TXBS

* GigabitEthernet1 0 0 0 0 0 0 0

* GigabitEthernet2 0 0 0 0 0 0 0

* GigabitEthernet3 0 0 0 0 0 0 0

* GigabitEthernet4 0 0 0 0 0 0 0

* Loopback65528 0 0 0 0 0 0 0

CSR-1#

CSR-1#config-transaction

CSR-1(config)# interface ?

Possible completions:

 ATM ATM-ACR

 AppGigabitEthernet AppNav-Compress

 AppNav-UnCompress BD-VIF

 BDI CEM

 CEM-ACR Cellular

 Dialer Embedded-Service-Engine

 Ethernet Ethernet-Internal

Chapter 7 edge deviCes

168

 FastEthernet FiveGigabitEthernet

 FortyGigabitEthernet GMPLS

 GigabitEthernet Group-Async

 HundredGigE LISP

 Loopback Multilink

 Port-channel SM

 Serial Service-Engine

 TenGigabitEthernet Tunnel

 TwentyFiveGigE TwentyFiveGigabitEthernet

 TwoGigabitEthernet Vif

 Virtual-PPP Virtual-Template

 VirtualPortGroup Vlan

 Wlan-GigabitEthernet nat64

 nat66 nve

 ospfv3 overlay

 pseudowire ucse

 vasileft vasiright

CSR-1(config)# interface Tunnel1

CSR-1(config-if)# ip unnumbered GigabitEthernet1

CSR-1(config-if)# tunnel source GigabitEthernet1

CSR-1(config-if)# tunnel mode sdwan

CSR-1(config-if)# no shutdown

CSR-1(config-if)#

CSR-1(config-if)# commit

Commit complete.

CSR-1(config-if)#

*Apr 7 19:35:34.704: %LINEPROTO-5-UPDOWN: Line protocol on

Interface Tunnel1, changed state to down

CSR-1(config-if)#

Chapter 7 edge deviCes

169

Next, we configure the SD-WAN commands, setting the physical

interface, the encapsulation, and the color:

CSR-1(config)# sdwan

CSR-1(config-sdwan)# interface GigabitEthernet1

CSR-1(config-interface-GigabitEthernet1)# tunnel-interface

CSR-1(config-tunnel-interface)# encapsulation ipsec

CSR-1(config-tunnel-interface)# color biz-internet

CSR-1(config-tunnel-interface)# commit

Commit complete.

CSR-1(config-tunnel-interface)#

*Apr 7 19:40:45.596: %LINEPROTO-5-UPDOWN: Line protocol on

Interface Tunnel1, changed state to up

CSR-1(config-tunnel-interface)#

Whatever you do, don’t be tempted to shorten the interface name

to Gi1 (as most engineers would); the IOS XE CLI is very picky, and

the interface name you use in the tunnel declaration and the SDWAN

configuration has to match the output of “show interface summary”.

Select the three dots next to the first CSR1000v device under

Configuration ➤ Devices, and select the Generate Bootstrap Configuration

option from the drop-down, selecting Cloud-Init when prompted. Save the

file, and open it in a text editor (again so that we can grab the UUID and OTP).

Enable SSHD on the router, so that we can SCP the file across, and we

might as well enable NETCONF, while we are there:

CSR-1(config-tunnel-interface)# allow-service sshd

CSR-1(config-tunnel-interface)# allow-service netconf

CSR-1(config-tunnel-interface)# commit

CSR-1(config-tunnel-interface)# end

Chapter 7 edge deviCes

170

Copy the certificate over from the Linux server, the command for

which is slightly different for this device:

scp CA.crt admin@50.10.10.1:bootflash:/CA.crt

Check that the file has been copied over:

CSR-1#dir | i CA

 21 -rw- 1363 Apr 9 2020 08:56:49 +00:00 CA.crt

CSR-1#

SSH onto the router from the Linux machine, and then enter the

following, copying and pasting the chassis number and OTP into the

appropriate places:

CSR-1# request platform software sdwan vedge_cloud activate

chassis-number <uuid> token <otp>

Note how different the command is compared to the vEdge devices we

set up previously:

vEdge02# request vedge-cloud activate chassis-number <uuid>

token <otp>

vEdge02#

With the cEdge, we need to install the new image and activate it; this is

why we specify the “platform software sdwan”.

Install the CA certificate, and watch the magic happen!

CSR-1#request platform software sdwan root-cert-chain install

bootflash:CA.crt

Uploading root-ca-cert-chain via VPN 0

Copying ... /bootflash/CA.crt via VPN 0

Updating the root certificate chain..

Successfully installed the root certificate chain

CSR-1#

Chapter 7 edge deviCes

171

We can now see the CSR-1 router under devices (Figure 7-9).

It has also increased the edge device count on our dashboard

(Figure 7-10).

Now we will turn our attention to what happens behind the scenes

when we add an edge device onto the network.

 vEdge Authentication
When we deploy vEdge routers, they need to connect to the vManage

server so it may receive the configuration and to the vSmart controller so it

can become part of the overlay network.

Before the vEdge router can talk to the vManage or vSmart devices, it

builds a connection to the vBond, and once this has been completed, the

vBond sends the IP addresses of vManage and vSmart to the vEdge.

The vEdge starts by initiating a DTLS connection to the IP address of

the vBond device that is set in its configuration. This is secured through

RSA private and public keys.

The vBond then works out whether the vEdge is behind a NAT device

and, if it is, maps the public IP address and port to the private IP address.

Now that the DTLS tunnel has been established, the two devices can

authenticate against each other.

Figure 7-10. Our updated dashboard

Figure 7-9. Our CSR-1 device

Chapter 7 edge deviCes

172

Firstly, vBond sends the root CA-signed certificate to the vEdge

router. The organization name is extracted from the certificate, and

vEdge compares the one in the certificate to the one locally configured.

If the names match, then vEdge checks that the vBond certificate is signed

by the root CA. If the organization name and the certificate pass the

check, then vBond has authenticated to vEdge. If either of these two checks

fails, the DTLS tunnel is torn down and periodically retried. You can see a

Wireshark capture of this traffic in Chapter 14.

Now, vEdge must authenticate to vBond.

vBond starts by sending A 256-bit challenge (a random value), and in

return, vEdge sends the following to vBond:

• The serial number

• The chassis number

• The board ID certificate (located on a chip inside the

router)

• A 256-bit random value signed with the vEdge’s

private key

Once the vBond has received these, it compares the serial number and

chassis number to the list it has been sent by vManage. If these are found

in the list, vBond then checks the 256-bit random value to check that it has

been correctly signed using the vEdge’s public key, which is gained from

the board ID certificate. If this is correctly signed, then vBond uses the root

CA chain to validate the board ID certificate.

If the board ID certificate is valid, then the authentication of vEdge

to vBond is also complete. vBond now sends two messages. The first

message is sent to the vEdge, and this contains the IP addresses and the

serial number of the vManage and vSmart controllers in the network. The

second message is sent to the vSmart controllers and contains a message

 announcing a new vEdge router in the network and a request for the

vSmart to set up a session with the new router.

Chapter 7 edge deviCes

173

With this done, vEdge terminates the DTLS tunnel to vBond and starts

a DTLS tunnel to vManage.

vManage sends its trusted root CA-signed certificate to vEdge, which

vEdge uses to check the organization name. If this matches, then vEdge

uses its own CA certificate to check that the certificate is valid. If both pass,

then vManage has authenticated to vEdge.

If this is starting to sound familiar, it is because it is. The process then

follows with vManage sending a 256-bit random value challenge to vEdge,

and vEdge sends the same details that it sent to vBond, to vManage.

vManage then performs the same checks against this, checking the serial

and chassis numbers, uses vEdge’s board ID certificate to extract vEdge’s

public certificate, and checks the board ID certificate using the CA

certificate. If these pass, then vEdge has authenticated to vEdge.

The next step is that vManage then sends the configuration file to the

vEdge router (if one exists). Once received, this is activated, and vEdge

starts advertising its prefixes to vSmart.

This kicks off another set of authentications, of vSmart to vEdge and

vice versa, which once completed switches the temporary DTLS tunnel

used for authentication to a permanent tunnel over which OMP sessions

will run.

 Alternative vEdge Deployments
As the vEdge device is the same as vBond, refer back to that chapter for the

installation steps on KVM and VMWare.

 vEdge in the Cloud
Viptela edge devices are also offered by several cloud providers, such as

AWS and Azure, and in this step, we will look at how to deploy vEdge in

AWS.

Chapter 7 edge deviCes

174

Start by navigating to the AWS Console (https://aws.amazon.com/

console/), and then select the option for EC2. Select the Launch instance

option in the main window (Figure 7-11).

In the net window, search for “vEdge,” and select the AWS Marketplace

option (Figure 7-12).

Select the Cisco vEdge Cloud Router option, review the pricing details,

and select Continue (Figure 7-13).

Figure 7-12. The AWS marketplace

Figure 7-11. Launching a vEdge EC2 instance

Chapter 7 edge deviCes

https://aws.amazon.com/console/
https://aws.amazon.com/console/

175

Figure 7-13. Many different size options

Choose your instance type, some of which are eligible for “free tier”

(Figure 7-14).

Figure 7-14. Choosing the AWS instance type

Chapter 7 edge deviCes

176

Review and launch (Figure 7-15).

Select an existing key pair, or create a new key pair (Figure 7-16). You

do need to do this, even though some (older) documentation specifies to

not use a key pair. If you are creating a new key pair, download it and keep

it safe.

Figure 7-15. Reviewing before launch

Chapter 7 edge deviCes

177

Click Launch Instances, which will start the build process (Figure 7- 17).

Figure 7-16. The AWS key pair

Figure 7-17. Initiating the instance

Chapter 7 edge deviCes

178

After a few moments, the instance will be ready for you to connect

(Figure 7-18).

Once it is in a “running” state, click Connect (Figure 7-19).

The next window will explain how to connect to your instance

(Figure 7-20).

Figure 7-18. The launched instance

Figure 7-19. Connecting to the instance

Chapter 7 edge deviCes

179

Note, though, that we need to connect with the “admin” username,

rather than “root,” as shown:

iMac:Docs sfordham$ chmod 400 sd-wan-kpair.pem

iMac:Docs sfordham$ ssh -i "sd-wan-kpair.pem" root@ec2-54-

80- 35-220.compute-1.amazonaws.com

The authenticity of host 'ec2-54-80-35-220.compute-1.amazonaws.

com (54.80.35.220)' can't be established.

ECDSA key fingerprint is SHA256:wzOA5ECpcg5v7eeVSMIOWmmBL2rqlF8

kmFX0Xgh6tmc.

Figure 7-20. Connection details

Chapter 7 edge deviCes

180

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-54-80-35-220.compute-1.

amazonaws.com,54.80.35.220' (ECDSA) to the list of known hosts.

viptela 18.3.0

Please login as the user "admin" rather than the user "root".

Connection to ec2-54-80-35-220.compute-1.amazonaws.com closed.

iMac:Docs sfordham$ ssh -i "sd-wan-kpair.pem" admin@ec2-54-

80- 35-220.compute-1.amazonaws.com

viptela 18.3.0

Last login: Wed Oct 16 21:58:25 2019 from 54.185.130.54

Welcome to Viptela CLI

admin connected from 18.175.30.183 using ssh on vedge

vedge#

vedge# exit

Connection to ec2-54-80-35-220.compute-1.amazonaws.com closed.

iMac:Docs sfordham$

From there, the configuration is exactly as we have performed earlier

in the chapter, and if your vBond is publicly accessible, the AWS vEdge will

connect to it.

 Preparing vEdge for ZTP
ZTP stands for zero-touch provisioning and allows us to configure vEdge

devices to join the overlay just by powering them up! OK, so the process isn’t

quite that simple; we do need to make sure we have things set up already:

 1. The site the new router is on must have access to vtp.

viptela.com, and this must be reachable via public

DNS servers (Cisco recommends using Google’s

DNS servers 8.8.8.8 and 8.8.4.4).

Chapter 7 edge deviCes

http://vtp.viptela.com
http://vtp.viptela.com

181

 2. The correct ZTP interface must be connected.

For vEdge 1000, this is ge0/0; for vEdge 2000, the

interface to use is g2/0; and for the 100 series

routers, it is ge0/4.

The process of zero-touch provisioning is as follows:

 3. The router boots up.

 4. The router tries to get an IP address from

DHCP. With vEdge routers, if there is no DHCP

server, then the router initiates an automatic IP

address detection, by examining ARP packets on the

network and using a free IP address in the range to

assign to the ZTP interface. For the IOS XE routers,

if there is no DHCP server available, then the ZTP

process stops.2

 5. The router sends a DNS request for ztp.viptela.com.

 6. The vEdge connects to the ZTP server, which then

verifies the router and sends it the IP address of the

vBond orchestrator.

 7. The vEdge router sends the chassis ID and serial

number to the vBond orchestrator. Once the vBond

has verified the chassis ID and serial number,

it sends the vEdge router the IP address for the

vManage NMS.

 8. The router connects to and is verified by the vManage

NMS, which then sends it back its system IP.

2 www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/sdwan-xe-
gs-book/cisco-sd-wan-overlay-network-bringup.html

Chapter 7 edge deviCes

http://ztp.viptela.com
http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/sdwan-xe-gs-book/cisco-sd-wan-overlay-network-bringup.html
http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/sdwan-xe-gs-book/cisco-sd-wan-overlay-network-bringup.html

182

 9. Now that the new vEdge router has a system IP, it

reconnects to the vBond orchestrator using its new

system IP.

 10. The vEdge router also re-establishes a connection to

the vManage NMS, and, if necessary and enforced,

the NMS pushes a software image to the router,

whereupon the router will install this and reboot.

 11. After the reboot, the router re-establishes the

connection to the vBond orchestrator and the

vManage NMS. The vManage then pushes the full

configuration to the router.

 12. Now that the router has the full configuration, it

joins the overlay network.

For this process to work, the vManage NMS requires device

configuration templates for the ZTP routers; otherwise, the process will

fail. While we cannot, in our lab environment, test out ZTP fully, in the next

chapter, we are going to start creating and applying some templates and

correct some of the “misconfigurations” created in this chapter.

 Summary
In this chapter, we set up our three edge devices and started to advertise

some routes into our network. We also looked at cloud deployment and

zero-touch provisioning.

Chapter 7 edge deviCes

183© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_8

CHAPTER 8

Templates
In this chapter, we are going to look at, create, and apply templates to our

devices. Using templates, the edge device configurations will, for the most

part, be the same, leaving us just to fill in the parts that are unique (such as

IP addresses).

We are going to start this by putting things right which once went

wrong. Just like Doctor Samuel Beckett.

We start with vEdge02 which, according to the topology, should be in

site 200, so let’s put this into the correct site:

vEdge02# config

Entering configuration mode terminal

vEdge02(config)# system

vEdge02(config-system)# site-id 200

vEdge02(config-system)# commit and-quit

Commit complete.

vEdge02#

We can see that the overlay network updates quickly to reflect the

change:

vBond01# show orchestrator connections

https://doi.org/10.1007/978-1-4842-7347-0_8#DOI

184

 PEER PEER PEER SITE DOMAIN

INSTANCE TYPE PROTOCOL SYSTEM IP ID ID IP

--

0 vedge dtls 100.100.1.5 100 1

0 vedge dtls 70.100.100.1 100 1

0 vedge dtls 60.100.100.1 200 1

0 vsmart dtls 100.100.1.4 100 1

0 vsmart dtls 100.100.1.4 100 1

0 vmanage dtls 100.100.1.2 100 0

0 vmanage dtls 100.100.1.2 100 0

0 vmanage dtls 100.100.1.2 100 0

0 vmanage dtls 100.100.1.2 100 0

vBond01#

Now let’s try the same with CSR-1, which should be in site 300:

CSR-1#config-transaction

admin connected from 127.0.0.1 using console on CSR-1

CSR-1(config)# sdwan

CSR-1(config)# system

CSR-1(config-system)# site-id 300

CSR-1(config-system)# commit

Aborted: 'system is-vmanaged': This device is being managed by

the vManage. Configuration through the CLI is not allowed.

CSR-1(config-system)#

Now, this is why we made the “misconfigurations” in the last chapter,

so we can see what kind of issues we might run into. With this in mind, we

are going to look at templates and the caveats that come with them.

Templates work well, but they can also completely hose your

configurations if implemented incorrectly.

Chapter 8 templates

185

The example here is that I created a basic template that included a new

user. I assigned it to the CSR-1, which was then downloaded and applied to

the router. So far, so good, I thought.

I then lost connectivity between the new router and vSmart, and I

could see this on the router console:

OMPD: vSmart peer 100.100.1.4 state changed to Init

OMPD: vSmart peer 100.100.1.4 state changed to Handshake

OMPD: vSmart peer 100.100.1.4 state changed to Up

OMPD: Number of vSmarts connected : 1

Line protocol on Interface Tunnel1, changed state to down

Line protocol on Interface Tunnel1, changed state to up

Configured from NETCONF/RESTCONF by vmanage-admin, transaction- id 591

Line protocol on Interface NVI0, changed state to up

OMPD: vSmart peer 100.100.1.4 state changed to Init

OMPD: Number of vSmarts connected : 0

OMPD: Operational state changed to DOWN

OMPD: Operational state changed to UP

OMPD: vSmart peer 100.100.1.4 state changed to Init

OMPD: vSmart peer 100.100.1.4 state changed to Handshake

OMPD: vSmart peer 100.100.1.4 state changed to Up

OMPD: Number of vSmarts connected : 1

Line protocol on Interface Tunnel1, changed state to down

Line protocol on Interface Tunnel1, changed state to up

Configured from NETCONF/RESTCONF by system, transaction-id 627

OMPD: vSmart peer 100.100.1.4 state changed to Init

OMPD: Number of vSmarts connected : 0

OMPD: Using empty policy from peer 100.100.1.4

I have truncated the output, but you should be able to see that initially

we connect to vSmart, we receive a new configuration, courtesy of

NETCONF, and then lose our vSmart connection.

Chapter 8 templates

186

So, what went wrong?

Programmatically, nothing went wrong. The overlay did exactly as it

was told. It applied the template as it was instructed. From an operator

standpoint, everything went wrong. The template had several defaults left

in it, one of which was this:

interface GigabitEthernet1

 no shutdown

 arp timeout 1200

 ip address dhcp client-id GigabitEthernet1

 ip redirects

 ip dhcp client default-router distance 1

 ip mtu 1500

 mtu 1500

 negotiation auto

exit

Instead of the IP address I set in the previous chapter, the interface was

now set for DHCP, and the admin password had changed (again, according

to the template default).

Taking into account the ease with which you can turn a working

network into a non-working network through applying badly configured

templates, we are going to tread very lightly!

 Creating Templates
The basic process of templating is that we create a template and attach a

device (or devices) to that template and then vManage pushes it out to the

respective endpoints.

We can create two types of templates: device and feature. Device

templates are assigned to devices, and feature templates target specific

areas of the configuration, such as AAA, but are also for specific devices.

Don’t worry, this will make more sense as we move forward.

Chapter 8 templates

187

Device templates are essentially an amalgamation of different feature

templates. We do not cover CLI templates here, but these allow us to create

the templates by typing (or pasting) the configuration directly in the browser.

We start by navigating to Configuration ➤ Templates (Figure 8-1).

The choices here are Device or Feature. Let’s start by creating some

feature templates. Select the Feature option at the top of the page, and then

click “Add Template.”

We won’t see the available options until we select a device model, or

models (Figure 8-2).

Figure 8-1. Creating our first template

Figure 8-2. Select a device

Chapter 8 templates

188

We can select multiple models as some templates will be more generic

than others, and having the same code-base or command structure means

that one template can span multiple different devices. Our first feature

template will be for local users. However, as we will see, sometimes it’s not

easy to create one template for everything.

Start by searching for “cloud” and selecting the vEdge Cloud device

(Figure 8-3).

You will see that we now have some options, including AAA, which

is what we need. Now search for CSR, and select the CSR1000v device

(Figure 8-4).

Notice that we have now lost AAA, as well as Archive. This is because

we cannot use the same code for creating the same user. On the vEdge

routers, the command syntax would be

Figure 8-3. vEdge Cloud templates

Figure 8-4. CSR1000v templates

Chapter 8 templates

189

vEdge01# config

Entering configuration mode terminal

vEdge01(config)# system

vEdge01(config-system)# aaa

vEdge01(config-aaa)# user test

vEdge01(config-user-test)# exit

vEdge01(config-aaa)#

Or simply

vEdge01(config)# system aaa user test

vEdge01(config-user-test)#

But for the CSR router, we do not need to use such a long command to

achieve the same result:

CSR-1#config-transaction

CSR-1(config)# user test

CSR-1(config-user-test)# exit

CSR-1(config)#

Therefore, we will have to create two templates, one for each of our

router types. Deselect the CSR router from the left-hand side, so that we

are left with just the vEdge Cloud ticked. Select AAA from the options

under Basic Information when it reappears. Call the new template “v-AAA”

(the “v” is for vEdge), and give it a description (Figure 8-5).

Chapter 8 templates

190

By default, the “admin” user has a password of “admin” (Figure 8-6).

If we apply the template as it currently stands, then it will overwrite the

password set when the router was set up, so let’s start by changing the

default.

Figure 8-6. The default admin user

Figure 8-5. v-AAA template

Chapter 8 templates

191

Click the action icon at the right-hand side to bring up the user

properties window. Change the password to something you prefer, and

click “Save Changes” (Figure 8-7).

Now click “New User,” and create a user called “net-ops” making them

a member of the Operators group (Figure 8-8).

Figure 8-7. Editing the admin user

Figure 8-8. Creating a new user

Chapter 8 templates

192

Click “Add” at the bottom right-hand side of the window. The new user

should appear in our user list (Figure 8-9).

We are not going to add any more under AAA, so scroll to the end of

the page and click “Save.”

Our first template should show up under our feature template list.

Repeat the process, this time selecting the CSR1000v router and the

AAA-Cisco template, naming the template “c-AAA” (the “c” is for Cisco).

The net-ops user will have to have privilege 1 (Figure 8-10).

Scroll down to the end of the page, and select the ServerGroups

priority order, which is the authentication order, and select the “local”

option. Click “Save” (Figure 8-11).

Figure 8-10. Our cEdge users

Figure 8-11. AAA authentication order

Figure 8-9. Our vEdge users

Chapter 8 templates

193

You should end up with this (Figure 8-12).

We have our first two device-specific templates. Let’s add a template that

we can use across both devices, something nice and simple, like a banner.

Click Add Template, and then select the CSR1000v and vEdge Cloud

devices. From the “Other Templates” section, select Banner. Call the

banner “c-v-Banner,” and set a useful description.

There are two types of banners: login and MOTD (message of the day).

Select the drop-down next to Login Banner (Figure 8-13).

Figure 8-12. Our AAA feature templates

Figure 8-13. A login banner template

Chapter 8 templates

194

We have three options: Global, Device Specific, and Default. The

Default option will always be the one selected when creating templates

(because, you know, it’s the default). For banners, the Default option is

that there is no banner (we can tell this as we would have seen one when

connecting to our devices already).

Global will apply to all devices, so we could use this to set the same

banner across all the devices the template is applied to. This is what we

want to go for at the moment, so select that and enter a suitable banner in

the box (Figure 8-14).

Click Save at the bottom of the page. We should now have three

templates (Figure 8-15).

Let’s now create a template that is a little less generic to our

deployment.

The “Device Specific” option allows us to customize the template on

a per-device basis. This can either be manual, whereby the vManage NMS

will prompt us for the values when we attach it to a device, or we can use

a CSV file to read values and insert them into our templates on a device-

by- device basis. So we can have one template that says to assign a site ID,

Figure 8-14. A global banner for all our devices

Figure 8-15. Three templates

Chapter 8 templates

195

but each site ID is matched to a device and can be unique (or as unique as

you need depending on your network). In a large deployment, the CSV file

is the preferred option, but for smaller-scale deployments, like ours, we

can use the manual option. We are going to use both types for fun.

Create a new template, selecting both the device types in our

network and select System. Name the template “c-v-System,” and give it a

description (Figure 8-16).

Many of the fields are already set as Device Specific, and there is

nothing there to change.

Moving down the template, set the Location and the Console Baud

Rate (bps) (Figure 8-17).

TIP You have to set the baud rate; otherwise, you’ll get an error.

Figure 8-16. The System template

Chapter 8 templates

196

Once you click Save, we should have our fourth template (Figure 8-18).

Let’s move on to the network settings. By default, the interface

templates are set for DHCP, and if we start to apply templates now, that is

what we will inherit and we’ll lose connection to our devices.

Figure 8-18. Four templates

Figure 8-17. Setting the location and baud rate

Chapter 8 templates

197

Note With the vedge templates, we can implement a rollback timer,
which will allow a vedge device to roll back its configuration if it is
unable to start after a preconfigured time.1

We are going to take a slightly different approach to this next template

and create it as part of our CSR1000v device template.

 cEdge Templates
Click Device and then select Create Template ➤ From Feature Template

(Figure 8-19).

Select CSR1000v from the drop-down list, name the template

“t- CSR1000v” (the “t” being short for template), and set a description

(Figure 8-20).

Figure 8-19. From Feature Template

1 https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/
Release_18.3/Configuration/Templates#Change_the_Device_Rollback_Timer

Chapter 8 templates

https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Configuration/Templates#Change_the_Device_Rollback_Timer
https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Configuration/Templates#Change_the_Device_Rollback_Timer

198

In the Basic Information section, select the c-v-System template we

created earlier (Figure 8-21).

Next, select the c-AAA template we created in the AAA-Cisco field

(Figure 8-22).

Figure 8-21. Using the system template in our feature template

Figure 8-22. Select the c-AAA template

Figure 8-20. The t-CSR1000v template

Chapter 8 templates

199

Scroll down to “Additional Templates,” and select the c-v-Banner we

created (Figure 8-23).

We now need to start adding our VPN information to the template.

Head back up to the Transport & Management VPN section. Click the

drop-down for the VPN Interface section, and click “Create Template”

(Figure 8-24).

Figure 8-23. Select the c-v-Banner template

Chapter 8 templates

200

In the new window, we can set up our interface. By default, the

interface is in a shutdown state (Figure 8-25).

Change the setting to Global, and click the “No” radio button where

it says “Shutdown,” so that the interface will be enabled. Set the interface

name, which must match the interface name on the device. In our case,

this is “GigabitEthernet1” (Figure 8-26).

Figure 8-25. Default interface template settings

Figure 8-24. Creating a VPN interface template

Chapter 8 templates

201

Scroll down, and under the IPv4 settings, set the IPv4 address to

“Device Specific” (Figure 8-27).

Save the template. The new template will appear in our template list

(Figure 8-28).

Figure 8-26. Setting the interface details

Figure 8-27. Setting the IP address to Device Specific

Chapter 8 templates

202

On the same line, click the triple dots, and select “Export CSV”

(Figure 8-29).

Save and open the downloaded CSV file. At the top of the file will be

our template values, and each line under that can be for one of our devices

(Figure 8-30).

Figure 8-28. Our device template list

Figure 8-29. Exporting the CSV file

Chapter 8 templates

203

Now we just need to edit our CSV file adding in the device-specific

details. If you switch over to the Network details in vManage, then you can

copy and paste the UUID of the device, and this goes into the csv-deviceid

field (Figure 8-31), and then fill in the rest of the details for CSR-1.

Save the file, making sure that you keep the CSV format. Before we see

the CSV upload in action, we should look at manually setting the details.

We start by attaching a device to a template. To attach the CSR-1 router to

this template, head back over to the template page, and click the triple dots

and select “Attach Devices” (Figure 8-32).

Figure 8-30. The basic CSV file

Figure 8-31. The CSV for CSR-1

Chapter 8 templates

204

In the window that pops up, select our CSR-1 router (Figure 8-33).

Click the arrow to move it over to the Selected Devices list, and click

“Attach” (Figure 8-34).

Figure 8-32. Attaching CSR-1 to our template

Figure 8-33. Select CSR-1

Chapter 8 templates

205

We now get a new window, where we can double-click in any empty

field and enter the details manually (Figure 8-35).

Enter the IPv4 address of 50.10.10.1/24 and tab into the next field

(Figure 8-36).

If the horizontal view is awkward, then click the three-dot menu, and

select “Change Device Template” to switch to a vertical view. We could

carry on like this, entering all the information manually, or we can upload

the CSV file we created, by clicking the upload icon (Figure 8-37).

Figure 8-34. Click the arrow to select the device

Figure 8-35. Manually entering device details

Figure 8-36. Manually entering the details

Chapter 8 templates

206

Browse to and select the CSV file we edited earlier, and then click

Upload (Figure 8-38).

Et voila! All our fields are populated (Figure 8-39).

There is a slightly easier way to fill out the CSV file, and that is to

download it from the same window in which we upload the CSV. If we

choose this option, then the CSV file will be prepopulated with the device

IDs of the devices we are trying to configure. It’s a little easier than typing

in the long UUID each time.

Figure 8-37. Uploading the CSV file

Figure 8-38. Select the t-CSRV1000v.csv file

Figure 8-39. Populated by CSV!

Chapter 8 templates

207

Click the “Next” button at the bottom of the window. Now we have to

apply the template, which will configure the devices. Click the device in

the left-hand column (Figure 8-40).

The main window will then change to show us the configuration

preview (Figure 8-41).

Figure 8-40. Select the device you are configuring

Figure 8-41. The configuration preview

Chapter 8 templates

208

We can also compare the current configuration with the one that will

be applied (Figure 8-42).

The lines highlighted in green are the new lines to be added, and the

ones in red are the ones that will be removed. If you have ever used a

program such as RANCID or SolarWinds, then this should be familiar.

So far, it looks OK. We gain a location of “UK,” and the site ID will be

corrected. The console-baud-rate will also change, which is not a big deal

in our environment, though you should check the documentation for

the devices to make sure that the baud rate is supported. Scrolling down

though, we appear to lose our SD-WAN configuration (Figure 8-43).

Figure 8-42. The configuration differences

Chapter 8 templates

209

More drastically, we lose our default route (Figure 8-44).

Figure 8-43. We are going to lose our SD-WAN configuration!

Chapter 8 templates

210

This would mean that if we needed to correct our device, vManage

would not be able to contact it!

We can temporarily overwrite such issues, but we would see this kind

of warning:

CSR-1#config-transaction

CSR-1(config)# interface GigabitEthernet1

CSR-1(config-if)#

CSR-1(config-if)# ip address 50.10.10.1 255.255.255.0

CSR-1(config-if)# ip route 0.0.0.0 0.0.0.0 50.10.10.254

CSR-1(config-if)# commit

The following warnings were generated:

 'system is-vmanaged': This device is being managed by the

vManage. Any configuration changes to this device will be

overwritten by the vManage after the control connection to

the vManage comes back up.

Figure 8-44. And our default route

Chapter 8 templates

211

Proceed? [yes,no] yes

Commit complete.

CSR-1(config-if)#

In this case, if you had pushed the template to the device, manually

adding the default route may allow vManage to push down the corrected

configuration to the device.

Thankfully, we have a big “Cancel” button at the bottom of the screen.

Click it (Figure 8-45).

Click “OK” on the dialog box, and head back over to templates and into

Feature templates.

Somewhat annoyingly, when we create feature templates from

the device template screen, you are dropped straight into the basic

configuration setting, so it is easy to miss the naming section. The new

feature template gets the same name as the device template, so go to the

feature templates and select the “t-CSR1000v” template and edit it using

the drop-down options after you click the three dots.

Click Tunnel, then set it to Global, and select “On” (Figure 8-46).

Figure 8-45. Cancel before we do some damage!

Chapter 8 templates

212

Under “Allow Service,” make sure that NETCONF and SSH are set to

“On” (Figure 8-47).

Figure 8-46. Turn on the tunnel interface

Figure 8-47. Enabling NETCONF and SSH in templates

Chapter 8 templates

213

Click “Update” to update the template. But what about the default

route? For this, we need to create a new VPN template. Name the template

“c-VPN0,” and set a description (Figure 8-48).

Scroll down to “IPv4 Route,” or click the menu item to be taken straight

to that section (Figure 8-49).

Click “New IPv4 Route” and enter 0.0.0.0/0 in the Prefix field. Leave the

gateway as “next hop,” and click “Add Next Hop” (Figure 8-50).

Figure 8-48. The new VPN template

Figure 8-49. IPv4 routes

Chapter 8 templates

214

As we could have several devices, each with a unique next hop, we are

going to use the device-specific option (Figure 8-51).

Click “Add,” and then make sure you click “Add” again, so it shows in

the route section (Figure 8-52):

Figure 8-50. Adding a next hop

Figure 8-51. Device Specific Options

Figure 8-52. Our default route

Chapter 8 templates

215

Save the template. Now we should have another template in our list

(Figure 8-53).

Head back to device templates, and edit the t-CSR1000v template.

Scroll down to Transport & Management VPN, and select c-VPN0 from the

list (Figure 8-54).

We should see both templates applied now (Figure 8-55).

Figure 8-53. our c-VPN0 template

Figure 8-54. Select the c-VPN0 template

Chapter 8 templates

216

Click Update. Repeat the process of attaching the CSR device and

uploading the CSV file to fill in the blanks, as well as the new field for the

next hop, which will be 50.10.10.254 (Figure 8-56).

Click Next and look at the config diff (Figure 8-57); it should be much

cleaner, and, more critically, the default route should still be present (albeit

with a distance attached, which we previously did not have).

Figure 8-55. Both VPN templates applied

Figure 8-56. Add the next hop

Figure 8-57. We have a default route (again)

Chapter 8 templates

217

If you are happy with the results, click “Configure Devices” (Figure 8- 58).

We will see the progress in the next window (Figure 8-59).

During this process, vManage performs syntax checks for the variables

entered. If any are incorrect, then the template will not be attached. For

example, if the variable has the incorrect syntax (as in a text string is put

into a field requiring an IP address), this will be picked up on. An incorrect

IP address will not be picked up during this check, and if there are no other

issues causing the checks to fail, then the template will be attached.

Figure 8-58. Configuring the CSR

Figure 8-59. The configuration in action

Chapter 8 templates

218

On the CSR routers, we can watch everything happening on the

console:

%SYS-5-CONFIG_P: Configured programmatically by process iosp_

vty_100001_dmi_nesd from console as NETCONF on vty32131

%DMI-5-CONFIG_I: R0/0: nesd: Configured from NETCONF/RESTCONF

by vmanage-admin, transaction-id 45215

%Cisco-SDWAN-RP_0-OMPD-3-ERRO-400002: R0/0: OMPD: vSmart peer

100.100.1.4 state changed to Init

%Cisco-SDWAN-RP_0-OMPD-6-INFO-400005: R0/0: OMPD: Number of

vSmarts connected : 0

%Cisco-SDWAN-RP_0-OMPD-3-ERRO-400003: R0/0: OMPD: Operational

state changed to DOWN

%Cisco-SDWAN-RP_0-OMPD-5-NTCE-400003: R0/0: OMPD: Operational

state changed to UP

%Cisco-SDWAN-RP_0-OMPD-3-ERRO-400002: R0/0: OMPD: vSmart peer

100.100.1.4 state changed to Init

%DMI-5-AUTH_PASSED: R0/0: dmiauthd: User 'vmanage-admin'

authenticated successfully from 100.100.1.2:54107 and was

authorized for netconf over ssh. External groups:

%Cisco-SDWAN-RP_0-OMPD-6-INFO-400002: R0/0: OMPD: vSmart peer

100.100.1.4 state changed to Handshake

%Cisco-SDWAN-RP_0-OMPD-5-NTCE-400002: R0/0: OMPD: vSmart peer

100.100.1.4 state changed to Up

%Cisco-SDWAN-RP_0-OMPD-6-INFO-400005: R0/0: OMPD: Number of

vSmarts connected : 1

%Cisco-SDWAN-RP_0-VDAEMON-2-CRIT-500010: R0/0: VDAEMON: CDB

snapshotted after vmanage connection establishedHands off my

SD-WAN!

User Access Verification

Username:

Chapter 8 templates

219

Figure 8-60. CSR-1 now has a corrected site ID

Now we can find out if we mistyped the password in the template, and

check that we have a banner (just in case you missed it in the previous output):

Username: admin

Password:

CSR-1>en

CSR-1#

CSR-1#sh run | i banner

banner login ^CHands off my SD-WAN!^C

CSR-1#

Back in vManage, we can see that the site ID has updated (Figure 8-60).

 vEdge Templates
Let’s go ahead and create the same set of templates for our vEdge devices.

I won’t be using screenshots in this next section; instead, we’ll just run

through the steps to create the templates we need.

Feature Template ➤ Add Template ➤ VPN

Name: v-VPN0

Basic Configuration:

VPN: 0

Chapter 8 templates

220

IPv4 route:

0.0.0.0/0 to device-specific next hop

Feature Template ➤ Add Template ➤ VPN Interface

Ethernet

Name: v-VPN-Interface

Basic Configuration:

Shutdown: Global/No

Interface name: Device Specific

IPv4 Address: Device Specific

Tunnel Interface:

Global, On

Allow Services:

NETFCONF & SSH: On

Feature Template ➤ Add Template ➤ VPN

Name: v-VPN512

Basic Configuration:

VPN: 512

Feature Template ➤ Add Template ➤ VPN Interface

Ethernet

Name: v-VPN512-Interface

Basic Configuration:

Shutdown: Global/No

Interface Name: eth0

Dynamic

Chapter 8 templates

221

You should end up with a list of templates that looks like Figure 8-61.

Head back to Device, and create the main device template, selecting

vEdge Cloud as the device model, calling it “t-vEdge” (Figure 8-62).

Select the generic c-v-System template we created earlier, as well as the

device-specific v-AAA template (Figure 8-63).

Figure 8-62. Our t-vEdge template

Figure 8-61. Our long list of templates

Chapter 8 templates

222

Under Transport & Management VPN, select v-VPN0, and v-VPN-

Interface for VPN 0, and v-VPN512 and v-VPN512-Interface for VPN 512

(Figure 8-64).

Figure 8-63. Adding our existing templates

Figure 8-64. Setting the VPN templates

Chapter 8 templates

223

To set the VPN interface for VPN 512, you need to click the plus sign

next to “VPN Interface” under “Additional VPN 512 Templates.” Set the

banner under “Additional Templates” (Figure 8-65).

Save the template. We now have two device templates (Figure 8-66).

Assign the two vEdge Cloud devices by clicking the three dots next

to our new template and selecting “Attach Devices.” Move them from the

available devices column to the selected devices column (Figure 8-67).

Figure 8-65. Setting the banner

Figure 8-66. Our device templates

Chapter 8 templates

224

We will see the familiar window where we need to add the device- specific

variables (Figure 8-68).

Either fill in the details manually or download the CSV, edit it, and

reupload it. Once all the details have been entered, you will see green ticks

under the Status column (Figure 8-69).

Once we have the green, we can click Next. Check the config diff

window, and make sure all is OK to proceed.

Figure 8-67. Select the vEdge devices

Figure 8-68. Add the details for the vEdge devices

Figure 8-69. Completed vEdge details

Chapter 8 templates

225

Figure 8-71. Our final configuration push

Because of our template, we are going to lose our VPN 1 configuration,

but we will recreate it shortly. If all else is OK, then click Configure Devices

and acknowledge the prompt (Figure 8-70).

Watch the progress to check everything is proceeding as planned.

We can check if the template has worked in a couple of ways; the

quickest is to see if we can log in and have a banner:

vEdge01#

*** IDLE TIMEOUT ***

viptela 19.2.1

Figure 8-70. Committing the vEdge templates

Chapter 8 templates

226

vEdge01 login:

Hands off my SD-WAN!

vEdge01 login: admin

Password:

Welcome to Viptela CLI

admin connected from 127.0.0.1 using console on vEdge01

vEdge01#

We do. We are good to move on to the next chapter!

 Summary
Wow! This has been a long chapter, and we have had some major wins and

some minor losses (the VPN 1s we configured on our vEdge devices, for

example).

In the next chapter, we will be adding those back as we look at routing.

Chapter 8 templates

227© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_9

CHAPTER 9

Routing
In this chapter, we are going to use templates to set up routing in our

network. Cisco’s SD-WAN supports dynamic routing by way of OSPF, BGP

in vEdge, and the IOS XE cEdge. The latter also supports EIGRP, IS-IS, and

LISP. We are not going to go through all of them; instead, we will use the

“public” Internet for OSPF and our “MPLS” link for BGP. The reason we

are not going to do the others is that OSPF and BGP redistribute nicely into

OMP, whereas the others don’t.

 OSPF
Our OSPF network is going to look like Figure 9-1.

https://doi.org/10.1007/978-1-4842-7347-0_9#DOI

228

Figure 9-1. The OSPF network

Chapter 9 routing

229

As you will recall, we lost our VPN 1s when we applied our templates in

the previous chapter, not that they were doing much anyway. We are going

to use templates to set them up again, from scratch. The process is similar

to how we set up our VPN 0s in the last chapter. There will be a couple of

hurdles along the way as you will see.

The first step is to tell each router that we want to redistribute OSPF

routes into OMP. This way, we can leave our overlay network to do all the

hard work for us.

We can do this with a joint template for both CSR-1 and the vEdge, so

head over to feature templates and create a new OMP template (Figure 9- 2).

Click “Advertise” and select OSPF External and save the template

 (Figure 9-3).

Figure 9-2. Our OMP template

Chapter 9 routing

230

Next, we can create the loopback interface (loopback1), which is a

WAN Edge interface and can be created for both router types (Figure 9-4).

Figure 9-4. Loopback1 interface

Figure 9-3. Advertising OSPF into OMP

Chapter 9 routing

231

The IP address will be device specific, and we will fill in the details

when we apply the template to our devices. Now create a new VPN

interface template for VPN 1 (Figure 9-5).

Lastly, we set up OSPF, using a joint template for both router types. We

are going to manually add the router ID. Although the router ID will, by

default, inherit the system IP of the router, router IDs for routing protocols

should be hard coded (Figure 9-6).

Figure 9-5. VPN 1 interface

Chapter 9 routing

232

The area ID will also be individual to each router. This will be

interesting as none of our routers will have interfaces in the same area, so

we are going against how OSPF operates here (Figure 9-7).

Figure 9-6. OSPF template

Figure 9-7. The OSPF area

Chapter 9 routing

233

We now need something to advertise into OSPF, so click “Add

Interface” (Figure 9-8).

Click “Add Interface” again, and when the new window pops up, enter

Loopback1, and then click “Add” (Figure 9-9).

Figure 9-8. Adding an interface to OSPF

Chapter 9 routing

234

Click “Add” again so that the interface is added to the template

(Figure 9-10).

The template should now show the area details (Figure 9-11).

Figure 9-10. Loopback 1 added to OSPF

Figure 9-9. Advertising the Loopback 1 network

Chapter 9 routing

235

Save the template, and then head back to device templates, and edit

the t-CSR1000v template. Under Basic Information, set the OMP template

to be the c-v-OMP feature template (Figure 9-12).

Scroll down to Service VPN, and click the plus sign and add one service

VPN. The number in the box that comes up just means how many you

want to add, rather than the service VPN number (Figure 9-13).

Figure 9-11. The OSPF area

Figure 9-12. Adding the OMP template

Chapter 9 routing

236

In the VPN box, select c-v-VPN1. Click the plus sign next to OSPF on

the right-hand side, and select c-v-OSPF in the drop-down box. Lastly,

click the plus sign next to VPN Interface and select c-v-Loopback1. You

should end up with the same settings as Figure 9-14.

Click “Update” at the bottom of the page to update the device

template, and on the next page, enter the OSPF details for CSR-1, which

are the network to advertise (172.16.30.1/24), the router ID (3.3.3.3), and

the area number (3) (Figure 9-15).

Figure 9-13. Adding a service VPN

Figure 9-14. The service VPN settings

Figure 9-15. Adding the OSPF details for CSR-1

Chapter 9 routing

237

Click Next. We can see the new lines in the config diff, and these look

correct as we are advertising OSPF via OMP up to the vSmart controller

(Figure 9-16).

Figure 9-16. Advertising OSPF into OMP

Chapter 9 routing

238

Our loopback interface is getting created and is OSPF enabled

 (Figure 9-17).

We also have the OSPF routing declarations (Figure 9-18).

There is also a VRF (virtual routing and forwarding) definition, but this

is not pictured. Click Configure Devices to apply the template changes, and

we should have a success (Figure 9-19).

Figure 9-17. CSR-1’s loopback interface configuration

Figure 9-18. CSR-1’s OSPF configuration

Chapter 9 routing

239

We can confirm the changes on the router by looking at the interfaces:

CSR-1#sh ip int bri

Interface IP-Address OK? Method Status Protocol

GigabitEthernet1 50.10.10.1 YES other up up

GigabitEthernet2 unassigned YES unset up up

GigabitEthernet3 unassigned YES unset up up

GigabitEthernet4 unassigned YES unset up up

Loopback1 172.16.30.1 YES other up up

Loopback65528 192.168.1.1 YES other up up

NVI0 unassigned YES unset up up

Tunnel1 50.10.10.1 YES TFTP up up

CSR-1#

Let’s try and get the vEdges talking as well, and you will see why I use

the word “try.”

Because we created templates covering both the CSR1000v and the

vEdge Cloud devices, we can reuse them here. Start by editing the t-Vedge

template and setting the OMP template to c-v-OMP (Figure 9-20).

Figure 9-19. Successful configuration

Chapter 9 routing

240

Create another service VPN template (Figure 9-21).

Click Update and fill in the details (Figure 9-22).

Figure 9-21. A new VPN template

Figure 9-22. The OSPF details for the vEdge devices

Figure 9-20. Editing the vEdge template

Chapter 9 routing

241

Click Next. Now, instead of being able to compare the current

configuration to the new template (as we could with the CSR template), we

get an IPv6 error (Figure 9-23).

The reason for this is that the template is shared between the vEdge and

cEdge devices, and we need to disable IPv6 advertisement on the vEdges

if we are not using it. To resolve this, we need to cancel the current task

and return to our feature templates. Click the three dots for the c-v- OMP

template, and click “Copy.” Give the copy a new name (v-OMP), and click

“Copy” (Figure 9-24).

Figure 9-23. IPv6 error!

Figure 9-24. Copying the c-v-OMP template

Chapter 9 routing

242

Edit the new template, and click IPv6 under the “Advertise” section.

Disable all the entries, and click “Update” (Figure 9-25).

Update the t-vEdge template to use the new v-OMP template, and

set up the service VPN 1 again. Run through the process again, and try to

configure the devices.

We get more errors, and this time it is an issue with the loopback

interface as the error states “Invalid interface Loopback1” (Figure 9-26).

Remember when I said that the system is very picky about names?

Well, it will not go easy on you if there are capitalization errors. Using

shared (vEdge and cEdge) templates does lead to issues like this at times.

Figure 9-25. The IPv6 settings

Figure 9-26. Interface naming details

Chapter 9 routing

243

Copy the c-v-Loopback1 template (naming it “v-Loopback1”) and edit

it, changing “Loopback1” to “loopback1.” Copy and edit the OSPF template

as well, changing the interface name to “loopback1” as well (Figure 9-27).

Save the template, and then set up the device template again, this time

using the newly copied and edited templates (Figure 9-28).

Push the configuration to the devices (Figure 9-29).

Figure 9-27. Fixing the interface name

Figure 9-28. The new service VPN

Figure 9-29. Pushing the OSPF configuration to the vEdge
devices

Chapter 9 routing

244

The routes for 172.16.10.0/24, 172.16.20.0/24, and 172.16.30.0/24

should be visible to the vEdge routers. As you can see, they are showing as

OMP routes (Figure 9-30).

Most importantly, we can ping them:

vEdge01# ping vpn 1 172.16.30.1

Ping in VPN 1

PING 172.16.30.1 (172.16.30.1) 56(84) bytes of data.

64 bytes from 172.16.30.1: icmp_seq=1 ttl=255 time=12.1 ms

64 bytes from 172.16.30.1: icmp_seq=2 ttl=255 time=2.60 ms

64 bytes from 172.16.30.1: icmp_seq=3 ttl=255 time=2.80 ms

64 bytes from 172.16.30.1: icmp_seq=4 ttl=255 time=2.78 ms

64 bytes from 172.16.30.1: icmp_seq=5 ttl=255 time=2.35 ms

^C

--- 172.16.30.1 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4005ms

rtt min/avg/max/mdev = 2.351/4.530/12.116/3.796 ms

vEdge01#

vEdge01# traceroute vpn 1 172.16.30.1

Traceroute 172.16.30.1 in VPN 1

traceroute to 172.16.30.1 (172.16.30.1), 30 hops max, 60 byte

packets

 1 172.16.30.1 (172.16.30.1) 4.764 ms * *

vEdge01#

Figure 9-30. Our new OMP routes in vEdge01

Chapter 9 routing

245

We can also see the vEdge routes on the CSR-1 router:

CSR-1#sh sdwan omp routes 172.16.20.0/24

omp route entries for vpn 1 route 172.16.20.0/24

 RECEIVED FROM:

peer 100.100.1.4

path-id 2

label 1004

status C,I,R

loss-reason not set

lost-to-peer not set

lost-to-path-id not set

 Attributes:

 originator 60.100.100.1

 type installed

 tloc 60.100.100.1, default, ipsec

 ultimate-tloc not set

 domain-id not set

 overlay-id 1

 site-id 200

 preference not set

 tag not set

 origin-proto connected

 origin-metric 0

 as-path not set

 unknown-attr-len not set

CSR-1#

Chapter 9 routing

246

It is slightly different to ping from CSR-1 as you have to specify the VRF

(virtual routing and forwarding) number, rather than the VPN:

CSR-1#show vrf

 Name Default RD Protocols Interfaces

 1 1:1 ipv4,ipv6 Lo1

 65528 <not set> ipv4 Lo65528

 Mgmt-intf 1:512 ipv4,ipv6

CSR-1#

The route has a status of “C,I,R”. This means that the paths have

chosen (C), and the route has been installed into the routing table (I) and

resolved (R), as Table 9-1 shows, along with the other statuses.

Table 9-1. Route Status codes

Status Meaning

C Chosen

i installed

red redistributed

rej rejected

L Looped

r resolved

S State

ext extranet

inv invalid

Stg Staged

u tLoC unresolved

Chapter 9 routing

247

CSR-1#ping vrf 1 172.16.20.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.16.20.1:

!!!!!

Success rate is 100 percent (5/5), rt min/avg/max = 1/1/3 ms

CSR-1#

This is a bit of a mic drop moment, and let’s admit, it is cool stuff

happening here. We have broken many of the rules of OSPF here; the areas

are all different, none of the IPs are in the same subnets, and we have no

OSPF adjacencies, but it still works. In fact, it works better than usual, as

the overlay is carrying all our OSPF traffic and handling everything for us.

Let’s try this with BGP.

 BGP
Our BGP network will look like Figure 9-31.

Chapter 9 routing

248

Figure 9-31. The BGP network

Chapter 9 routing

249

We are going to implement three AS (autonomous systems). Along the

way, we will find that we have the same caveats as we did when setting up

OSPF, in that the CSR-1 router can have a capitalized loopback interface,

but the vEdge routers cannot, and the issue with IPv6 being enabled on

OMP (or not as the case was).

The first step is to connect our router’s MPLS interfaces. These will

need to be separated from our existing interfaces, and this is where colors

come into play.

Our first task is to set our existing interfaces to be the same color, which

will be “biz-internet.”

Within the feature templates, edit the v-VPN-Interface we created in

the previous chapter, and set the color to be global and “biz-internet”

(Figure 9-32).

Click Update, and then Next. Confirm that the changes to be made are

correct by checking the config diff screen (Figure 9-33).

Figure 9-32. Editing the VPN 0 interface

Chapter 9 routing

250

If the changes are correct, then configure the devices. Repeat the

process for the t-CSR1000v feature template. The config diff should look

like Figure 9-34.

Figure 9-33. Confirming the color changes

Chapter 9 routing

251

Once all the devices have updated, it’s probably a good idea to check

we didn’t break anything with our OSPF network:

vEdge01# ping vpn 1 172.16.30.1

Ping in VPN 1

PING 172.16.30.1 (172.16.30.1) 56(84) bytes of data.

64 bytes from 172.16.30.1: icmp_seq=1 ttl=255 time=2.58 ms

64 bytes from 172.16.30.1: icmp_seq=2 ttl=255 time=2.31 ms

64 bytes from 172.16.30.1: icmp_seq=3 ttl=255 time=3.26 ms

^C

--- 172.16.30.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2001ms

rtt min/avg/max/mdev = 2.318/2.720/3.264/0.403 ms

vEdge01#

Figure 9-34. The CSR template color changes

Chapter 9 routing

252

So far so good. Now we need to create two new VPN interface

templates.

Create a new VPN Interface Ethernet called MPLS-Int-vEdge; set both

the interface name and IPv4 address to device specific (Figure 9-35).

Enable the tunnel interface, and set the color to “mpls.” Set the restrict

option to On (Figure 9-36).

Figure 9-36. The restrict option

Figure 9-35. The MPLS-Int-vEdge template

Chapter 9 routing

253

The restrict option controls which remote TLOCs the local TLOC can

establish a BFD session with. When we use the “restrict” option, the TLOC

on the local router can only establish BFD sessions with TLOCs of the

same color.

In the main vEdge device template, create an additional VPN interface

under Transport & Management VPN, and select the MPLS-Int-vEdge

template (Figure 9-37).

Update the template, and fill in the details when prompted (Figure 9- 38).

Push the configuration, and check it over (Figure 9-39).

Figure 9-37. The MPLS interface

Figure 9-38. Setting the MPLS interface details

Chapter 9 routing

254

Once the configuration has been pushed to the devices, we can check

the results on the device:

vEdge01# show interface ge0/1

interface vpn 0 interface ge0/1 af-type ipv4

 ip-address 20.1.1.5/24

 if-admin-status Up

 if-oper-status Up

 if-tracker-status NA

 encap-type null

Figure 9-39. The MPLS configuration

Chapter 9 routing

255

 port-type transport

 mtu 1500

 hwaddr 50:00:00:06:00:02

 speed-mbps 1000

 duplex full

 tcp-mss-adjust 1416

 uptime 0:00:03:10

 rx-packets 100

 tx-packets 13

vEdge01#

vEdge01# ping 20.1.1.1 count 3

Ping in VPN 0

PING 20.1.1.1 (20.1.1.1) 56(84) bytes of data.

64 bytes from 20.1.1.1: icmp_seq=1 ttl=255 time=1.37 ms

64 bytes from 20.1.1.1: icmp_seq=2 ttl=255 time=1.66 ms

64 bytes from 20.1.1.1: icmp_seq=3 ttl=255 time=1.43 ms

--- 20.1.1.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2001ms

rtt min/avg/max/mdev = 1.377/1.491/1.664/0.128 ms

vEdge01#

vEdge02# ping 60.22.22.254 count 3

Ping in VPN 0

PING 60.22.22.254 (60.22.22.254) 56(84) bytes of data.

64 bytes from 60.22.22.254: icmp_seq=1 ttl=255 time=0.583 ms

64 bytes from 60.22.22.254: icmp_seq=2 ttl=255 time=0.668 ms

64 bytes from 60.22.22.254: icmp_seq=3 ttl=255 time=0.736 ms

--- 60.22.22.254 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2000ms

rtt min/avg/max/mdev = 0.583/0.662/0.736/0.066 ms

vEdge02#

Chapter 9 routing

256

Looks good, right? We have the connectivity we need. However, when

we look at the vManage dashboard, we can see that now we only have

partial control (Figure 9-40).

This is a routing issue: since we pushed the new interface

configuration, we lost the control because the edge devices cannot reach

the orchestration servers via the new interface. So try to edit the v-VPN0

template, and add a new IPv4 default route, again, with a device-specific

next hop.

Unfortunately, as you will see, we cannot have two default routers

(Figure 9-41).

The workaround is to set the second default route as device specific

(Figure 9-42).

Figure 9-40. Partial control

Figure 9-41. We cannot have two default routes

Chapter 9 routing

257

Update the template, and fill in the details, specifying 0.0.0.0/0 as the

destination and 20.1.1.1 and 60.22.22.254 as the next-hop IP addresses for

vEdge01 and vEdge02, respectively (Figure 9-43).

Once completed, the template will add a second default route:

vEdge02# sh run vpn 0 | incl route

 ip route 0.0.0.0/0 50.11.11.254

 ip route 0.0.0.0/0 60.22.22.254

vEdge02#

vEdge02# sh ip route | inc 0.0.0.0 | display xml

 <prefix>0.0.0.0/0</prefix>

 <prefix>0.0.0.0/0</prefix>

vEdge02#

Now, back on the dashboard, our control is green again (Figure 9-44).

Figure 9-42. A second default route

Figure 9-43. The default route settings

Chapter 9 routing

258

The next step is to advertise BGP into OMP, which we do inside the

OMP template (Figure 9-45).

Create the loopback2 interface by copying the v-Loopback1 template,

renaming it to v-Loopback2 (Figure 9-46).

Figure 9-45. Advertising BGP into OMP

Figure 9-44. Control is green again!

Chapter 9 routing

259

Change the interface name (Figure 9-47), remembering that it is

lowercase on the vEdge routers!

Figure 9-46. Copying the Loopback template

Figure 9-47. The new Loopback template

Chapter 9 routing

260

Click Update. Next, create a template for BGP, making sure that the AS

number and router ID are both device specific (Figure 9-48).

To advertise our second loopback network, on the Unicast Address

Family section, click Network and add a device-specific network prefix

(Figure 9-49).

Figure 9-48. Our BGP template

Chapter 9 routing

261

Click Add to update the template (Figure 9-50).

Save the template, and create another VPN interface template, called

vEdge-VPN2 (Figure 9-51).

Figure 9-49. The device-specific network prefix

Figure 9-50. The updated BGP template

Chapter 9 routing

262

Now edit the t-vEdge device template, and add a new Service

VPN, setting the BGP section to “v-BGP” and the VPN interface to

“v-Loopback2” (Figure 9-52).

Update the template, filling in the device-specific details for the

loopback interface IP address, the BGP AS number (1 for vEdge01 and 2

for vEdge02), the router ID (1.1.1.1 and 2.2.2.2, respectively), and the prefix

to advertise (172.17.10.0/24 for vEdge01 and 172.17.20.0/24 for vedge02),

shown in Figure 9-53.

Figure 9-52. VPN 2 settings

Figure 9-51. vEdge-VPN2

Chapter 9 routing

263

Check the new configuration over before we push it to the devices

(Figure 9-54).

If you are happy with the settings, then push the configuration to the

devices.

Our configuration works. Kind of. We have the advertised route from

vEdge01 showing in vEdge02, and it is reachable (Figure 9-55).

Figure 9-53. The BGP settings

Figure 9-54. The VPN 2 configuration

Chapter 9 routing

264

We can see the new routes and ping them, but the color is wrong; it

should show as “mpls,” not “biz-internet.” If you head over to the vManage

monitoring page and select Network, then select one of the vEdge devices,

and choose WAN ➤ Tunnel, you can see that the mpls tunnel is down

(Figure 9-56).

The issue here is that once we start to differentiate our networks and

traffic using colors, and especially when we separate them into public and

private networks, we introduce issues with the control connections.

Figure 9-55. We have reachability

Figure 9-56. The mpls vpn is down

Chapter 9 routing

265

 Public and Private
The SD-WAN understands two types of networks: public and private.

The public colors are 3g, biz-internet, blue, bronze, custom1, custom2,

custom3, default, gold, green, lte, public-internet, red, and silver. The private

colors are metro-ethernet, mpls, and the private colors 1 through to 6.

There is an expectation, when using private colors, that there is no NAT

involved along the way.

When we use private colors, the edge devices will try to build an

IPSec tunnel to other edge devices using the private IP address, which

makes sense. However, in our case, we are getting issues in bringing up

the tunnels. We can see this by running the command “show control

connections- history” from the edge router; the error is “DCONFAIL.”

If we jump back on the vManage, we can also see the errors (Figure 9- 58).

Figure 9-57. Show control connections-history

Chapter 9 routing

266

There are two reasons we are getting this error. The first reason is that

a route learned on one interface will never be seen on another interface,

even if that route is more specific than an existing one. We have a default

route of 0.0.0.0/0 on Ge0/0 on our vEdge1, and that is the way we will get

to our management and orchestration servers. Never through ge0/1. This

brings us back to the similarity of VRFs, where we gain traffic separation

but introduce complexity.

We can reach it if we specify how we reach the vBond when we use

options in a ping command to specify the interface, but without manually

specifying a VPN, the vEdge will use the default route, naturally.

Figure 9-58. TLOC down

Chapter 9 routing

267

vEdge01# show ip routes vpn 0 10.1.1.3 detail | beg ----

--

 VPN 0 PREFIX 10.1.1.0/24

--

 proto connected

 distance 0

 metric 0

 uptime 0:23:12:20

 nexthop-ifname ge0/0

 status F,S

vEdge01#

So how do we fix this issue? The answer is to tell the edge device that

we do not want to create a control session over the MPLS interface. This

is something we should do on all private interfaces, the reason being

is, as they are private, there is a very good chance that there will be no

Internet breakout on the line (each network is different, granted, but we

are taking the word “private” literally here). The command we use to do

this is “max-control-connections”. Setting this to 0 allows the MPLS TLOC

to be advertised up to the vSmart controller over the biz-internet OMP

connection, and, once again, the edge devices will bring up the IPSec

tunnels to vBond.

We set the Maximum Control Connections to 0 in the Tunnel section of

the MPLS-Int-vEdge template and apply the changes (Figure 9-59).

Chapter 9 routing

268

Now we start to see routes being advertised with the mpls color

(Figure 9-60).

Our tunnels are also up (Figure 9-61).

Figure 9-59. Setting the Maximum Control Connections

Figure 9-60. MPLS routes

Chapter 9 routing

269

Let’s move on to configuring CSR-1. Start by editing the c-VPN0

template, and add another device-specific IPv4 route. If you are finding the

similar variable names a bit confusing, then you can customize them to

make them easier to identify. We can call our new route “secondary_def_

route” and the next hop can be called “secondary_dg” (Figure 9-62).

Add this new route to the template (Figure 9-63).

Figure 9-61. MPLS IPSec tunnels

Figure 9-62. Secondary default gateway on CSR-1

Chapter 9 routing

270

Update the template and update the values with a new default route

(secondary_def_route) to 0.0.0.0/0 using the next-hop address – which

in the template is referred to as Address(secondary_dg) of 60.20.20.254

(Figure 9-64).

We should now have two default routes:

CSR-1#sh run | i ip route

ip route 0.0.0.0 0.0.0.0 50.10.10.254

ip route 0.0.0.0 0.0.0.0 60.20.20.254

CSR-1#

Copy the MPLS-Int-vEdge template as MPLS-Int-cEdge, and change

the device model (by clicking the three dots at the right-hand side)

(Figure 9-65).

Figure 9-63. The new route is added to the template

Figure 9-64. Setting the default route variables

Chapter 9 routing

271

The other new template copies we need are shown in Table 9-2, but

remember to change the device model to CSR1000v on each of the new

templates.

Now edit the t-CSR1000v device template, and set the second VPN

interface under VPN 0 (Figure 9-66).

Figure 9-65. Changing the device model

Table 9-2. The template changes for CSR-1

Template to copy New template name Edits

v-Bgp c-Bgp none

v-Loopback2 c-Loopback2 Capitalize the interface name

vedge-Vpn2 cedge-Vpn2 none

Chapter 9 routing

272

Then create a new service VPN using our new templates (Figure 9-67).

Update the template, and push the new configurations, adding the

device-specific information, similar to how we did for the vEdges.

Once the configuration has been pushed to the CSR-1, we should have

connectivity to it from vEdge01 (Figure 9-68).

Figure 9-67. The new service VPN

Figure 9-68. More routes advertised into OMP

Figure 9-66. Adding the second VPN interface

Chapter 9 routing

273

vEdge01# ping vpn 2 172.17.30.1 count 3

Ping in VPN 2

PING 172.17.30.1 (172.17.30.1) 56(84) bytes of data.

64 bytes from 172.17.30.1: icmp_seq=1 ttl=255 time=2.78 ms

64 bytes from 172.17.30.1: icmp_seq=2 ttl=255 time=2.74 ms

64 bytes from 172.17.30.1: icmp_seq=3 ttl=255 time=2.73 ms

--- 172.17.30.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 2.736/2.754/2.783/0.063 ms

vEdge01#

Now we have two routing protocols routing!

While the routing table shows the biz-internet and mpls colors in the

other VPNs, it is important to show that they are not reachable. We can test

this by pinging vEdge02’s second (BGP) loopback from VPN 1 on vEdge01

and by pinging vEdge02’s first (OSPF) loopback interface from VPN 2 on

vEdge01:

vEdge01# ping vpn 1 172.17.20.1 count 3

Ping in VPN 1

PING 172.17.20.1 (172.17.20.1) 56(84) bytes of data.

From 127.1.0.2 icmp_seq=1 Destination Net Unreachable

From 127.1.0.2 icmp_seq=2 Destination Net Unreachable

From 127.1.0.2 icmp_seq=3 Destination Net Unreachable

--- 172.17.20.1 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss

vEdge01# ping vpn 2 172.16.20.1 count 3

Ping in VPN 2

PING 172.16.20.1 (172.16.20.1) 56(84) bytes of data.

From 127.1.0.2 icmp_seq=1 Destination Net Unreachable

Chapter 9 routing

274

From 127.1.0.2 icmp_seq=2 Destination Net Unreachable

From 127.1.0.2 icmp_seq=3 Destination Net Unreachable

--- 172.16.20.1 ping statistics ---

3 packets transmitted, 0 received, +3 errors, 100% packet loss

vEdge01#

Now that we have completed this routing, let’s go into the mechanics of

SD-WAN routing, by answering the question: “If we receive the same paths

for the same route from different peers, then which route will be chosen?”

 SD-WAN Routing Preference
The order of route preference is as follows:

 1. Check that the OMP route is valid. Invalid routes will

be ignored.

 2. Prefer the route with the lowest administrative

distance (AD).

 3. If the AD values are equal, then prefer the route with

the higher preference.

 4. If the preference values are equal, then the route

with the highest TLOC preference is chosen.

 5. If the TLOC preference values match, then the route

is selected in the following order:

Connected

 a. Static

 b. EBGP

Chapter 9 routing

275

 c. OPSF Intra-area

 d. OSPF inter-area

 e. OSPF external

 f. iBGP

 g. Unknown

 6. If the origins are the same, then the route with the

lower IGP metric is chosen.

 7. Should the origin type an IGP metric, match then

the route that comes from the system with the

higher router ID.

 8. If the router IDs are equal, then the router with the

higher private IP address is chosen.

If all the attributes match, then both the routes are used. By default, we

can have up to four equal routes.

 Configuration to Template Overview
Before we leave this chapter and move on to policies, we are going to go

through one of the vEdge configurations as they are now and match the

configurations to the templates; this is shown in Table 9-3. It will serve as

a handy reference if you have any configuration issues and need to locate

the correct template.

Chapter 9 routing

276

Table 9-3. Configurations matched to template

Configuration Template

vEdge01# show run

system

 host-name vEdge01

 location UK

 system-ip 100.100.1.5

 site-id 100

 admin-tech-on-failure

 no route-consistency-check

Basic information/System

 sp-organization-name

Learning_SD-WAN

 organization-name

Learning_SD-WAN

 vbond 10.1.1.3

these are set during initial device

creation

(continued)

Chapter 9 routing

277

Table 9-3. (continued)

Configuration Template

aaa

 auth-order local radius tacacs

 usergroup basic

 task system read write

 task interface read write

 !

 usergroup netadmin

 !

 usergroup operator

 task system read

 task interface read

 task policy read

 task routing read

 task security read

 !

 user admin

 password <password>

 !

 user net-ops

 password <password>

 group operator

 !

 !

Basic information/aaa

(continued)

Chapter 9 routing

278

Table 9-3. (continued)

Configuration Template

 logging

 disk

 enable

 !

 !

 !

other templates/Logging

omp

 no shutdown

 graceful-restart

 advertise bgp

 advertise ospf external

 advertise connected

 advertise static

!

Basic information/oMp

security

 ipsec

 authentication-type sha1-hmac

ah-sha1-hmac

 !

!

Basic information/Security

banner

 login "Hands off my SD-WAN!"

!

other templates/Banner

vpn 0 Vpn/Vpn

(continued)

Chapter 9 routing

279

Table 9-3. (continued)

Configuration Template

 interface ge0/0

 ip address 10.1.1.5/24

 tunnel-interface

 encapsulation ipsec

 color biz-internet

 no allow-service bgp

 allow-service dhcp

 allow-service dns

 allow-service icmp

 allow-service sshd

 allow-service netconf

 no allow-service ntp

 no allow-service ospf

 no allow-service stun

 allow-service https

 !

 no shutdown

 !

Vpn/Vpn interface ethernet

(continued)

Chapter 9 routing

280

Table 9-3. (continued)

Configuration Template

 interface ge0/1

 description MPLS

 ip address 20.1.1.5/24

 tunnel-interface

 encapsulation ipsec

 color mpls restrict

 max-control-connections 0

 no allow-service bgp

 allow-service dhcp

 allow-service dns

 allow-service icmp

 no allow-service sshd

 no allow-service netconf

 no allow-service ntp

 no allow-service ospf

 no allow-service stun

 allow-service https

 !

 no shutdown

 !

Vpn/Vpn interface ethernet

 ip route 0.0.0.0/0 10.1.1.1

 ip route 0.0.0.0/0 20.1.1.1

!

Vpn/Vpn

vpn 1 Vpn/Vpn

(continued)

Chapter 9 routing

281

Table 9-3. (continued)

Configuration Template

router

 ospf

 router-id 1.1.1.1

 timers spf 200 1000 10000

 area 0

 interface loopback1

 exit

 exit

 !

 !

other templates/oSpF

 interface loopback1

 ip address 172.16.10.1/24

 no shutdown

 !

!

Vpn/Vpn interface ethernet

vpn 2

 name MPLS

Vpn/Vpn

 router

 bgp 1

 router-id 1.1.1.1

 address-family ipv4-unicast

 network 172.17.10.0/24

 !

 !

 !

other templates/Bgp

(continued)

Chapter 9 routing

282

 Summary
In this chapter, we focused on OSPF and BGP routing within our network

and saw how easy it is to leverage OMP to do all the hard work for us. We

looked at the use of “colors” to differentiate our routing domains and the

effects this can have on our network. We then looked at routing preference

and finally at what parts of the different templates we have created so far

correspond to which parts of a router’s configuration.

In the next chapter, we are going to look at policies and quality of

 service.

Table 9-3. (continued)

Configuration Template

 interface loopback2

 ip address 172.17.10.1/24

 no shutdown

 !

 !

Vpn/Vpn interface ethernet

vpn 512 Vpn/Vpn

interface eth0

 ip dhcp-client

 no shutdown

 !

!

Vpn/Vpn interface ethernet

vEdge01#

Chapter 9 routing

283© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_10

CHAPTER 10

Policies and Quality
of Service
In this chapter, we are going to look at how we can implement policies

in our SD-WAN network and use them to change a route metric and

implement a couple of simple quality of service policies.

The Cisco SD-WAN solution provides two types of policies, centralized

and localized (which will be explained later), and we can configure these

policies in two ways, via the vSmart CLI or through vManage. We are going

to use the latter, but to do this, we need to get vSmart in vManage mode,

rather than the CLI mode which it is in now. If we don’t, then we will see

this error when we try to activate our policies (Figure 10-1).

Figure 10-1. vSmart mode error

https://doi.org/10.1007/978-1-4842-7347-0_10#DOI

284

To start, we need to head to Configuration ➤ Devices ➤ Controllers

(Figure 10-2).

Select vSmart01 and then click the Change Mode button (Figure 10-3).

Figure 10-2. The controllers menu

Figure 10-3. Changing modes

Chapter 10 poliCies and Quality of serviCe

285

Select “vManage Mode.” We are told that we need to create a template

first (Figure 10-4).

Navigate to Configuration ➤ Templates ➤ Device, and select the

“Create Template” option, and then click “From Feature Template.”

Whereas our edge device templates have been quite long, the vSmart

template is much shorter. Select vSmart from the drop-down, and give it a

name (such as “t-vSmart01”) and description.

We can create a new system template, taking the default options.

Under AAA, remember that the password will default to “admin,” so

change this to what you want it to be.

We need to create two new interface templates, as well as templates

for VPN0 and VPN512. None of the configurations of our vSmart should

change in the new template (unless you have a burning desire to do so),

but the interface IP addresses should definitely remain the same. Save the

template and attach it to the vSmart01 controller.

Fill in the details when prompted and check the config diff, making

sure all is going to work; if not, then fix the templates, making sure there

are no issues such as the ones in Figure 10-5.

Figure 10-4. Changing vManage mode on vSmart01

Chapter 10 poliCies and Quality of serviCe

286

If your template is good, then push the configuration onto vSmart01.

Once this has been completed, we should see that vSmart is now in

vManage mode (Figure 10-6).

Figure 10-5. Errors to avoid!

Figure 10-6. vSmart is now in vManage mode

Chapter 10 poliCies and Quality of serviCe

287

Now that we have done this, we can use the vManage NMS GUI to

create our policies, and then the vSmart can push them to our edge

devices.

 Configuring Policies Through vManage
The first policy we are going to create is a local one.

 Localized Policies
Localized control policies affect the local site. This means anything behind

the edge device (i.e., the local LAN) and not, for example, routes passed up

and into the overlay network.

To show this, we need to turn off CSR-1, and add a vIOS router called

“R300,” connecting the GigabitEthernet3 interface of CSR-1 to Gi0/0 of the

new router. Turn on both devices once they are created.

The new topology for site 300 should look like Figure 10-7.

Set up R300 with the following configuration:

R300#sh run

!

hostname R300

!

Figure 10-7. Adding R300

Chapter 10 poliCies and Quality of serviCe

288

enable password Test123

!

username sd-admin password 0 Test123

!

interface GigabitEthernet0/0

 ip address 192.168.30.30 255.255.255.0

 no shut

 ip ospf 1 area 3

!

router ospf 1

!

ip http server

ip http secure-server

!

ip route 0.0.0.0 0.0.0.0 192.168.30.1

!

line vty 0 4

 login local

 transport input telnet ssh

!

end

R300#

Next, we need to configure CSR-1, and what we will do here is add

another loopback interface and configure GigabitEthernet3.

Firstly, create a new feature template for a VPN interface, called

c- Internal- LAN which references the physical interface GigabitEthernet3

and has an IP address of 192.168.30.1/24 (Figure 10-8).

Chapter 10 poliCies and Quality of serviCe

289

Create another interface called c-Loopback3, this time referencing

(you guessed it) Loopback3, with an IP address of 172.16.31.1/24

(Figure 10-9).

Figure 10-8. The c-Internal-LAN template

Chapter 10 poliCies and Quality of serviCe

290

Save this, and then edit the c-v-OSPF feature template, adding a new

interface under the Area section. Only add the GigabitEthernet3 interface

at the moment, not the new loopback (Figure 10-10).

Figure 10-9. The new loopback interface on CSR-1

Chapter 10 poliCies and Quality of serviCe

291

Go back up to Redistribute, and click New Redistribute. Select

Connected from the drop-down, and then click Add. Save the template.

Now, edit the CSR device template adding the new templates

(Figure 10- 11).

Figure 10-10. Editing the OSPF template

Figure 10-11. Adding the new interface templates to the CSR template

Chapter 10 poliCies and Quality of serviCe

292

Save and apply the template. Once the changes have been pushed to

the device, we should get a good result when we try pinging CSR-1 from

R300:

R300#ping 192.168.30.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.30.1, timeout is 2

seconds:

.!!!!

Success rate is 80 percent (4/5), round-trip min/avg/max =

1/6/21 ms

R300#

*May 7 11:01:47.812: %OSPF-5-ADJCHG: Process 1, Nbr 3.3.3.3 on

GigabitEthernet0/0 from LOADING to FULL, Loading Done

GigabitEthernet0/0 is up, line protocol is up

R300#

Once OSPF forms an adjacency, we should see CSR-1’s new loopback

interface in the routing table of R300:

R300#sh ip route ospf | b Gateway

Gateway of last resort is not set

 172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks

O 172.16.30.1/32 [110/2] via 192.168.30.1, 01:36:32, Gi0/0

O E2 172.16.31.0/24

 [110/20] via 192.168.30.1, 01:11:07, Gi0/0

R300#

R300#sh ip route 172.16.31.0

Routing entry for 172.16.31.0/24

 Known via "ospf 1", distance 110, metric 20, type extern 2,

forward metric 1

 Last update from 192.168.30.1 on GigabitEthernet0/0,

01:11:45 ago

Chapter 10 poliCies and Quality of serviCe

293

 Routing Descriptor Blocks:

 * 192.168.30.1, from 3.3.3.3, 01:11:45 ago, via GigabitEthernet0/0

 Route metric is 20, traffic share count is 1

R300#

The new 192.168.30.0/24 prefix has also been advertised up to the

other edge routers:

vEdge02# show ip routes 192.168.30.0/24 detail

Codes Proto-sub-type:

 IA -> ospf-intra-area, IE -> ospf-inter-area,

 E1 -> ospf-external1, E2 -> ospf-external2,

 N1 -> ospf-nssa-external1, N2 -> ospf-nssa-external2,

 e -> bgp-external, i -> bgp-internal

Codes Status flags:

 F -> fib, S -> selected, I -> inactive,

 B -> blackhole, R -> recursive

--

 VPN 1 PREFIX 192.168.30.0/24

--

 proto omp

 distance 250

 metric 0

 uptime 0:01:50:32

 tloc-ip 70.100.100.1

 tloc-color mpls

 tloc-encap ipsec

 nexthop-label 1001

 status F,S

Chapter 10 poliCies and Quality of serviCe

294

--

 VPN 1 PREFIX 192.168.30.0/24

--

 proto omp

 distance 250

 metric 0

 uptime 0:01:50:32

 tloc-ip 70.100.100.1

 tloc-color biz-internet

 tloc-encap ipsec

 nexthop-label 1001

 status F,S

vEdge02#

Now, let’s use some policies to tweak this new route. We start by going

to Configuration ➤ Policies and selecting the localized policies option

(Figure 10-12).

Figure 10-12. Localized policies

Chapter 10 poliCies and Quality of serviCe

295

Click Add Policy. With any policy, be it localized or centralized, we

need to create our “Groups of Interest.” These are the building blocks of

any route maps or access lists that we will be creating; these lists allow the

solution to scope policies and can be used through the entire network. We

can match the following information as shown in Table 10-1.

It is important to note that these are not the only Groups of Interest.

They are the only ones applicable for this task, as you can see in Table 10-4

later on.

Within the “Create Groups of Interest” section, click “Prefix” and select

the “New Prefix List” option. Create a prefix list with the name Site300-172-

16- 31, and then add the prefix 172.16.31.0/24 (Figure 10-13).

Table 10-1. The Groups of Interest

List type Purpose

as paths list as paths

Communities list one or more BGp

communities

extended Communities list one or more BGp

extended communities

prefixes list one or more ip prefixes

Chapter 10 poliCies and Quality of serviCe

296

Click Add so that it is added to the template (Figure 10-14).

Click Next. We are not going to do any QoS mapping or policy

rewriting, so click Next past that screen. Likewise, we are not going to

configure any access lists, so click Next again.

The type of policy we will be creating is a localized control policy,

which affects the BGP or (in our case) OSPF routing in the local site. The

other type of local policy is called a localized data policy, which uses

access lists applied to an interface (or interfaces) to permit or deny traffic

based on a six-tuple match (source and destination IP addresses, source

and destination ports, DSCP fields, and the protocol number).

Figure 10-13. Creating a prefix list

Figure 10-14. The prefix listc is added to the template

Chapter 10 poliCies and Quality of serviCe

297

Click Add Route Policy ➤ Create New, call it route-pol-172-16-31, and

give it a description.

Each policy starts with a default deny action, so we need to

add sequences that match our traffic and perform actions on them

(Figure 10-15).

We can match the following (Table 10-2).

Figure 10-15. The default policy

Chapter 10 poliCies and Quality of serviCe

298

Click Sequence Type, select Address as the match option, and select

the Site300-172-16-31 prefix list from the list (Figure 10-16).

Table 10-2. Our match options

Option Matches

address ip prefix list

as path list BGp as path list

Community list BGp community list

extended Community list BGp extended community list

BGp local preference BGp local preference

Metric route metric (0 – 4294967295)

next hop ip prefix list

oMp tag oMp tag (0 – 4294967295)

origin BGp origin code (ebgp, igp, incomplete)

ospf tag ospf tag (0 – 4294967295)

peer ip address

Chapter 10 poliCies and Quality of serviCe

299

Select Actions. By default, all the sequences are set to have an action of

Reject. Set the action to Accept (Figure 10-17).

Figure 10-16. Selecting the prefix list

Chapter 10 poliCies and Quality of serviCe

300

The actions we can set are shown in Table 10-3.

Figure 10-17. Set the action to Accept

Table 10-3. The actions we can set

Option Action

aggregator set the as number and ip address of the BGp route aggregator

as path set an as number or series of as numbers to either exclude or

prepend to the as path

atomic

aggregate

set the BGp atomic aggregate

Community set the BGp Community

local

preference

set the BGp local preference

Metric set the metric value

Metric type set the metric type

next hop set the next-hop ip address

oMp tag set the oMp tag that oMp will use

origin set the BGp origin

originator set the ip address from which the route was learned

ospf tag set the ospf tag

Weight set the BGp weight

Chapter 10 poliCies and Quality of serviCe

301

Select Metric and set it to 25 (Figure 10-18).

Click “Save Match and Actions” (Figure 10-19).

Edit the Default Action, and set it to “Accept” (because we want our

other traffic to pass) (Figure 10-20).

Figure 10-18. Setting the Metric

Figure 10-19. Saving the match conditions

Figure 10-20. Setting the Default Action

Chapter 10 poliCies and Quality of serviCe

302

Click “Save Route Policy,” and then click Next. In the final screen, name

the policy “Policy-Site-300” (Figure 10-21).

Click “Save Policy.” We need to now attach this to our templates. Edit

the t-CSR1000v device template and scroll to Additional Templates. From

the Policy drop-down, select the Policy-Site-300 policy (Figure 10-22).

Figure 10-21. Setting the policy name

Figure 10-22. Adding the policy to the device template

Chapter 10 poliCies and Quality of serviCe

303

Update the template and configure the device.

Once this has been completed, go back to the c-v-OSPF template, and

edit the redistribute section we created earlier, this time adding a route

policy of “route-pol-172.16-31” (Figure 10-23).

Click “Save Changes” (Figure 10-24).

Update the template and apply it to the devices.

The result is that R300 now has the same route (172.16.31.0/24), but

with a metric of 25 (instead of 20 as it was before):

R300#sh ip route 172.16.31.0

Routing entry for 172.16.31.0/24

 Known via "ospf 1", distance 110, metric 25, type extern 2,

forward metric 1

 Last update from 192.168.30.1 on GigabitEthernet0/0,

00:02:03 ago

Figure 10-23. Setting the route policy

Figure 10-24. The redistribute settings

Chapter 10 poliCies and Quality of serviCe

304

 Routing Descriptor Blocks:

 * 192.168.30.1, from 3.3.3.3, 00:02:03 ago, via

GigabitEthernet0/0

 Route metric is 25, traffic share count is 1

R300#

While this is a very simplistic example, the control we can leverage

over our local routing is very complex, such as changing the metric on

all routes received for a particular peer, so that our traffic is routed over

higher-speed links.

Let’s see what we can do with a centralized policy.

 Centralized Policies
Centralized policies affect our routing in the overlay network, these are

a compound of data and control policies together. Although they are

configured on the vManage NMS (as everything is), they are handled by

the vSmart controllers (as the vSmart controller is our “routing brain”).

Once we have onboarded the vEdge devices, they begin to advertise

their routes to the vSmart controller. The controller builds up the routing

table and advertises these back out, a little similar to BGP route reflectors.

We can see the routes received using the command “show omp routes

received”; the output is quite lengthy, so I have truncated it just to show

the prefixes received:

vSmart01# show omp routes received | i vpn

omp route entries for vpn 1 route 172.16.10.0/24

omp route entries for vpn 1 route 172.16.20.0/24

omp route entries for vpn 1 route 172.16.30.0/24

omp route entries for vpn 1 route 172.16.31.0/24

Chapter 10 poliCies and Quality of serviCe

305

omp route entries for vpn 1 route 192.168.30.0/24

omp route entries for vpn 2 route 172.17.10.0/24

omp route entries for vpn 2 route 172.17.20.0/24

omp route entries for vpn 2 route 172.17.30.0/24

vSmart01#

We can also see the prefixes that the vSmart controller advertises

back out:

vSmart01# show omp routes advertised | b VPN

VPN PREFIX

1 172.16.10.0/24

1 172.16.20.0/24

1 172.16.30.0/24

1 172.16.31.0/24

1 192.168.30.0/24

2 172.17.10.0/24

2 172.17.20.0/24

2 172.17.30.0/24

vSmart01#

Let’s dig in deeper by looking at a Wireshark capture of a ping between

vEdge01 and R300 (R300-pre-qos.pcapng) (Figure 10-25).

Chapter 10 poliCies and Quality of serviCe

306

As expected, we have no QoS applied. Let’s use a centralized policy to

implement a little quality of service.

The creation of a centralized profile is very similar to a local one; we

head to Configuration ➤ Policies (Figure 10-26).

Click Add Policy. We need to create our Groups of Interest and these

can be as shown in Table 10-4.

Figure 10-25. Our first PCAP

Figure 10-26. Adding a centralized policy

Chapter 10 poliCies and Quality of serviCe

307

Click the Site option, and click “New Site List.” Call it Site-300 and enter

300 in the box below (Figure 10-27).

Figure 10-27. A site list

Table 10-4. Groups of Interest

List type Purpose

application there are inbuilt application lists for Microsoft and Google apps, or you

can create your own list from the applications on the system

Color Create a list of vpn colors

data prefix ip prefix list used in data policies

policer Configure burst and exceed traffic rules

prefix ip prefix list used in control policies

site a list of sites

sla Class used with application-aware routing, defines jitter, latency, and loss

tloC a list of tloCs

vpn a list of vpns

Chapter 10 poliCies and Quality of serviCe

308

Click Add. Repeat this for sites 200 and 100 (Figure 10-28).

Click VPN and then “New VPN List.” Enter 1 in the box below, and click

“Add.” Create another for VPN-2 (Figure 10-29).

Click Next. We then need to configure a topology and VPN

membership. Our options for topology are Hub-and-Spoke, Mesh, Custom

Control (Route & TLOC), or “Import Existing Topology.” Hub-and-Spoke

and Mesh are the typical network designs, and Route and TLOC give us

options for matching OMP routes, or TLOCs.

While the options are listed as “and,” as in “Topology and VPN

membership” or “Route & TLOC,” in reality, they are more of an “and/or.”

So, for the moment, let’s just create a rule based on the VPN membership.

VPN memberships match sites to VPNs; once these are applied, then

interfaces can only be in the VPNs listed. For example, if site 100 only

has VPNs 1 and 2, and we were to add a loopback interface in VPN 100,

then while the edge device may be provisioned with this new loopback

interface, it would be isolated from the rest of the overlay. Without a VPN

Figure 10-28. Three site lists

Figure 10-29. VPN lists

Chapter 10 poliCies and Quality of serviCe

309

Figure 10-30. Creating a VPN membership policy

membership policy, routers can have any VPN deployed without any

restrictions.

Select VPN Membership, and click “Add VPN Membership Policy.”

Create a VPN list matching each site to the two VPNs (Figure 10-30).

Click “Save,” and then click “Next.” Now, we need to create our traffic

rules, which can be based on Application-Aware Routing, Traffic Data, or

Cflowd (which is used for monitoring traffic flows). Select Traffic Data, and

click Add Policy and then Create New.

Give the new policy a name of Site-300-Central-Pol and a description.

Click the button to add a new Sequence Type (Figure 10-31).

Chapter 10 poliCies and Quality of serviCe

310

We have five options. We can send application traffic to a firewall,

implement QoS, or manipulate traffic to send it through a service such as a

firewall or a load balancer, or we can send the traffic along the path of our

choosing. We can also have a custom policy.

QoS is the easiest for us to test, given our environment. We can use

the policies to change the drop probability of our traffic. By default, none

of our traffic will have a differentiated services code point (DSCP) value,

which is used by DiffServ to mark traffic for classification, or any other

marker. These markers are separated into levels of “drop probability,”

where a lower drop probability is better, whereas a higher drop probability

means the traffic is more likely to be dropped. There are different markers,

and these originate from different quality of service implementations

throughout the years. We have the class selector (CS0, CS1, and so

on) which maps to the IP precedence, a field used before DiffServ. We

also have AF values, for Assured Forwarding, an IETF standard for the

Figure 10-31. Creating a data policy

Chapter 10 poliCies and Quality of serviCe

311

assurance of delivery, as long as the traffic does not exceed a subscribed

rate. If it does, then that traffic has a higher probability of being dropped if

there is congestion in the network.

The values possible are as follows (along with EF, or expedited

forwarding, which is DSCP 46).

Drop probability Assured forwarding DSCP Binary Class

low af11 10 001010 1

low af21 18 010010 2

low af31 26 011010 3

low af41 34 100010 4

Medium af12 12 001100 1

Medium af22 20 010100 2

Medium af32 28 011100 3

Medium af42 36 100100 4

high af13 14 001110 1

high af23 22 010110 2

high af33 30 011110 3

high af43 38 100110 4

We are going to use these to make the traffic from vEdge01 have the

highest importance available. Start by selecting QoS, and click the option

to create a new sequence rule. Create a new rule with the following

settings:

Match:

• Source Data Prefix: 172.16.10.0/24

• Protocol: 1

Chapter 10 poliCies and Quality of serviCe

312

• Destination Data Prefix: 192.168.30.0/24

• DSCP: 0

Set:

• DSCP: 10

We are matching any source IP address in the 172.16.10.0/24 network,

sending any ICMP traffic (protocol 1) to any IP in the 192.168.30.0/24

network, with a DSCP value of 0. If the traffic matches, then it will have a

DSCP value of 10 applied (Figure 10-32).

Click “Save Match and Actions,” and set the default action to Accept.

Click “Save Data Policy” once this has been done. On the last page, name

the policy “Site-300-QoS,” and give it a description. Next, create a “New

Site List and VPN List.” Select “From Service” and add all three sites and

VPN-1 (Figure 10-33).

Figure 10-32. Our QoS rule

Chapter 10 poliCies and Quality of serviCe

313

Click Add to save the VPN list. Next, click Preview and look through the

settings. Then click Save Policy. On the next page, click the three dots and

select “Activate.”

Run Wireshark on R300’s Gi0/0 interface (by right-clicking R300,

selecting “Capture,” and then selecting the Gi0/0 interface), and ping from

vEdge01 (ping vpn 1 192.168.30.30) (Figure 10-34). Then do the same

from vEdge02 (Figure 10-35). We can see the difference (R300-post-qos.

pcapng).

Figure 10-33. The site and VPN list

Figure 10-34. Pinging from vEdge01

Chapter 10 poliCies and Quality of serviCe

314

We are matching the traffic and assigning a DSCP value of 10 (AF11)

to the traffic coming from vEdge01, but leaving the traffic from vEdge02

unchanged. So let’s change that.

 Configuring Policies Through the CLI
If you are hankering after some good old-fashioned CLI fun, then fear not,

the vManage NMS will let you do this as well.

Let’s start by looking at and breaking down our existing policy. You can

see the existing policy by clicking the View option when you click the three

dots next to the policy.

We start with a policy declaration:

policy

We then have our VPN membership (which we set up in Figure 10-30):

 vpn-membership vpnMembership_1206778820

 sequence 10

 match

 vpn-list VPN-1

 !

 action accept

 !

Figure 10-35. Pinging from vEdge02

Chapter 10 poliCies and Quality of serviCe

315

 !

 sequence 20

 match

 vpn-list VPN-2

 !

 action accept

 !

 !

 default-action reject

 !

Next, we have our match and set statements, which we created in

Figure 10-32:

 data-policy _VPN-1_Site-300-Central-Pol

 vpn-list VPN-1

 sequence 1

 match

 source-ip 172.16.10.0/24

 protocol 1

 destination-ip 192.168.30.0/24

 dscp 0

 !

 action accept

 set

 dscp 10

 !

 !

 !

 default-action accept

 !

Chapter 10 poliCies and Quality of serviCe

316

We then have the lists we created first, for our sites and VPNs

(Figures 10- 28 and 10-29):

 lists

 site-list Site-100

 site-id 100

 !

 site-list Site-200

 site-id 200

 !

 site-list Site-300

 site-id 300

 !

 vpn-list VPN-1

 vpn 1

 !

 vpn-list VPN-2

 vpn 2

 !

 !

!

The next section is where we apply our policy to the sites:

apply-policy

 site-list Site-100

 data-policy _VPN-1_Site-300-Central-Pol from-service

 vpn-membership vpnMembership_1206778820

 !

 site-list Site-200

 data-policy _VPN-1_Site-300-Central-Pol from-service

 vpn-membership vpnMembership_1206778820

 !

Chapter 10 poliCies and Quality of serviCe

317

 site-list Site-300

 data-policy _VPN-1_Site-300-Central-Pol from-service

 vpn-membership vpnMembership_1206778820

 !

!

We list each site and then apply the data policy (_VPN-1_Site-300-

Central-Pol) and the VPN membership vpnMembership_1206778820.

Let’s use this as a template to add a sequence for vEdge02. Firstly, let’s

see if we can insert a sequence into our existing data policy.

From the Policies page, click the Custom Options menu on the top

right- hand side, and select CLI Policy (Figure 10-36).

Click “Add Policy.” Call the policy Site-200-Policy, give it a description,

and paste in the following:

data-policy _VPN-1_Site-300-Central-Pol

 vpn-list VPN-1

 sequence 2

 match

 source-ip 172.16.20.0/24

Figure 10-36. Creating a CLI policy

Chapter 10 poliCies and Quality of serviCe

318

 protocol 1

 destination-ip 192.168.30.0/24

 dscp 0

 !

 action accept

 set

 dscp 12

 !

 !

 !

 default-action accept

 !

Click “Add.”

When you try to activate the policy, it will fail (Figure 10-37).

We have an “unknown command”; let’s edit the new policy to use

“exit” instead of the exclamation marks:

data-policy _VPN-1_Site-300-Central-Pol

 vpn-list VPN-1

 sequence 2

 match

Figure 10-37. Policy failure

Chapter 10 poliCies and Quality of serviCe

319

 source-ip 172.16.20.0/24

 protocol 1

 destination-ip 192.168.30.0/24

 dscp 0

 exit

 action accept

 set

 dscp 12

 exit

 exit

 exit

 default-action accept

 exit

Click “Update,” and go back into CLI Policy from Custom Options and

activate it (as you cannot activate it from the main page).

It still fails. What if we try removing the “exits”?

data-policy _VPN-1_Site-300-Central-Pol

 vpn-list VPN-1

 sequence 2

 match

 source-ip 172.16.20.0/24

 protocol 1

 destination-ip 192.168.30.0/24

 dscp 0

 action accept

 set

 dscp 12

 default-action accept

It will still fail, again with the same error of “unknown command.”

Chapter 10 poliCies and Quality of serviCe

320

So, what is the answer here? Well, despite the error pointing to an

erroneous word, which seems like a simple enough fix, it turns out that

we can’t use the CLI to insert new rules into existing policies (especially

when one is created in the UI). Instead, we need to enter the entire policy

(including our additions).

To get the full configuration, click the three dots next to our UI-created

policy and choose preview, and then copy them into a notepad document.

Add our new sequence, so that the data-policy section looks like this:

data-policy _VPN-1_Site-300-Central-Pol

 vpn-list VPN-1

 sequence 1

 match

 source-ip 172.16.10.0/24

 destination-ip 192.168.30.0/24

 protocol 1

 dscp 0

 !

 action accept

 set

 dscp 10

 !

 !

 !

 sequence 2

 match

 source-ip 172.16.20.0/24

 destination-ip 192.168.30.0/24

Chapter 10 poliCies and Quality of serviCe

321

 protocol 1

 dscp 0

 !

 action accept

 set

 dscp 12

 !

 !

 !

 default-action accept

 !

 !

Then paste the whole thing back into the CLI policy configuration

(Figure 10-38).

Chapter 10 poliCies and Quality of serviCe

322

Figure 10-38. The completed policy

Chapter 10 poliCies and Quality of serviCe

323

Now, activation should be successful (Figure 10-39).

If we head back to our Policies main page, we will see that our original

(UI-created) policy is no longer active, but our new one is (Figure 10-40).

It is important to plan your policies carefully as adding a new policy

can deactivate an existing one. We can, for instance, have only one

centralized policy active at any one time.

Now, let’s test it. Fire up a Wireshark capture of R300’s Gi0/0, and ping

it from vEdge01 and vEdge02. We should see two different AF values, AF11

(which is decimal 10) and AF12 (which is decimal 12), as you can see in

R300- dual- policy.pcapng.

Firstly, vEdge01 (Figure 10-41).

Figure 10-40. The policies page

Figure 10-39. A successful policy change

Chapter 10 poliCies and Quality of serviCe

324

Then again from vEdge02 (Figure 10-42).

Our policies are successful!

 Summary
While our topology is a little small to test more policies, hopefully, you

can see, in this chapter, how powerful they can be at controlling the data

moving around the network.

In the next chapter, we will look at upgrades.

Figure 10-42. AF12

Figure 10-41. AF11

Chapter 10 poliCies and Quality of serviCe

325© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_11

CHAPTER 11

Upgrades
Before we can set up the security policies in the next chapter, we need

to upgrade our environment. The reason for this is that the 19.2 and 19.3

images do not support some of the features we need, but version 20.1 does.

 Managing Software Images
The vManage NMS handles the software distribution and upgrades for

all of our SD-WAN devices throughout the network; it is our software

repository. In this chapter, we are going to upgrade all of our devices. There

are a couple of best practices that we should follow when performing

upgrades:

• Use vManage to perform upgrades, rather than the CLI.

• The network overlay must be up and operational if you

are upgrading a remote vManage server.

• Upgrades should be performed in the order of

1: vManage servers.

2: vBond orchestrators.

3: Half of the vSmart controllers. Then wait 24 hours

to ensure that the network is stable.

4: The other half of the vSmart controllers.

https://doi.org/10.1007/978-1-4842-7347-0_11#DOI

326

5: Upgrade 10% of the vEdge routers. Then wait 24

hours.

6: Upgrade the remaining vEdge routers.

Now, while these are best practices, real life is sometimes different, as

we will see. But, for the moment, let’s do it “the Cisco way.”

The steps we need to take are to first add the new software to the

repository, upgrade the software image, and then activate the software

image.

 Adding Images to the Repository
To add the new software images, navigate to Maintenance ➤ Software

Repository ➤ Software Images ➤ Add New Software. We can choose from

“vManage” (locally stored images), Remote Server (an FTP or HTTP

server), or “Remote Server – vManage” where, as the name suggests,

images are stored on a remote vManage server.

As we do not have the images locally on our Linux box, we are going

to use the Remote Server option. However, we do not have access to a

remote server. We have hit a bit of a catch-22 in our learning path. In order

to complete the next chapter on security, we need to upgrade our devices,

yet, in order to upgrade our devices, we need to do part of the next chapter.

Jump ahead and complete the first part, which is the NAT configuration.

Once you have done that, come back here.

We add a new repository by setting the controller version, the software

version, and the full path to the upgrade file. In this case, I am running

a very simple web server on my Mac, which you can do by opening a

terminal prompt, cd’ing to the folder containing the upgrade image, and

then typing “python -m SimpleHTTPServer 8000”. Other FTP and HTTP

servers are available. You can then add the new software to the repository

(Figure 11-1).

Chapter 11 Upgrades

327

Our images will appear in the list (Figure 11-2).

Figure 11-1. Adding software to the repository

Figure 11-2. Our software list

Once the image repositories have been selected, we can upgrade the

image.

Chapter 11 Upgrades

328

 Upgrading Images
Navigate to Maintenance ➤ Software Upgrade, and select the devices to be

upgraded. Then click the “Upgrade” button. Select the version you want to

upgrade to from the drop-down menu (Figure 11-3).

You can skip to directly activating the new software image and

rebooting the device using the “Activate and Reboot” option. If you do not

select this option, then you will need to go to the next section. If you select

the Remote Server option, then you will need to select the correct VPN to

use. The final step is to click “Upgrade.”

 Activating Software Images
If you did not select the “Activate and Reboot” option, then navigate to

Maintenance ➤ Software Upgrade, and select the devices that you wish to

activate the new software on. Click the Activate button.

Figure 11-3. Performing an upgrade

Chapter 11 Upgrades

329

Note Make sure that your devices are all upgraded to a minimum
of 20.1.1 (and 17.02.01r0.32 for the Csr device).

Upgrading with vManage sounds simple enough, and yes, when

it works, it is simplicity (such as in the official Cisco documentation1).

However, occasionally, using the CLI is unavoidable.

 Upgrading via the CLI
While best practice says “use the NMS, not the CLI,” sometimes the CLI is

king, such as when I was writing this book.

Attempting to upgrade the vManage servers via vManage resulted in an

error. Every time. While the following output is for a remote server upload,

the same occurred when running the upgrade in vManage mode.

Let’s step through the process. I have truncated the output as each

line starts with the date and “[vManage01]”, so this has been removed for

readability. I have also used initials to replace some items:

DAM = DeviceActionManager

GTMT = Global Task Monitor Thread

DASDAO = DeviceActionStatusDAO

IAP = InstallActionProcessor

TMSI = Task Monitor Software Install

IIDAO = InstallImageDAO

1 https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/
Release_18.3/Maintenance/Software_Upgrade

Chapter 11 Upgrades

https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Maintenance/Software_Upgrade
https://sdwan-docs.cisco.com/Product_Documentation/vManage_Help/Release_18.3/Maintenance/Software_Upgrade

330

SIAP = SoftwareInstallActionProcessor

DDAP = DefaultDeviceActionProcessor

ADAP = AbstractDeviceActionProcessor

We start with the action of install:

[DAM] (software_install Thread) |default| Processing device

action Software Install

[DAM] (software_install Thread) |default|

##*#*#*#*#*#*#*#*#**#*# Message received for processing

deviceAction: software_install

Then we do some checks and the upgrade task starts:

[DAM] (GTMT) |default| Checking any unique device action which

require processing

[DASDAO] (GTMT) |default| Found device action software_install

[DAM] (GTMT) |default| After [1] atttempt to fetch In progress

tasks from DB. Got 1 device actions in 'in_progress' state

[DASDAO] (GTMT) |default| Found device action software_install

[DAM] (GTMT) |default| After [2] atttempt to fetch In progress

tasks from DB. Got 1 device actions in 'in_progress' state

[DASDAO] (GTMT) |default| Found device action software_install

[DAM] (GTMT) |default| After [3] atttempt to fetch In progress

tasks from DB. Got 1 device actions in 'in_progress' state

[DefaultDeviceActionProcessor] (GTMT) |default| Starting Task

Monitor - Software Install

Chapter 11 Upgrades

331

Once this starts, we get our image list and location and our targets

(which are our vManage servers):

[IAP] (TMSI) |default| Software upgrade vmanage thread pool

size 20 Server CPU core 4 VDaemon count 4

[IIDAO] (TMSI) |default| Getting uploaded image info

for {versionType=remote, versionTypeName=software,

networkFunctionType=ROUTER, versionName=20.1.1}

[IIDAO] (TMSI) |default| Found uploaded image info

list: [InstallImageInfo [nfType=ROUTER, vType=remote,

versionTypeName=software, version=20.1.1, softwareUrl=ht

tp://192.168.68.103:8000/vmanage-20.1.1-x86_64.tar.gz]]

[SIAP] (TMSI) |default| Validating input for installImageInfo

InstallImageInfo [nfType=ROUTER, vType=remote,

versionTypeName=software, version=20.1.1, softwareUrl=ht

tp://192.168.68.103:8000/vmanage-20.1.1-x86_64.tar.gz]

[IIDAO] (TMSI) |default| Getting uploaded image info

for {versionType=remote, versionTypeName=software,

networkFunctionType=ROUTER, versionName=20.1.1}

[IIDAO] (TMSI) |default| Found uploaded image info

list: [InstallImageInfo [nfType=ROUTER, vType=remote,

versionTypeName=software, version=20.1.1, softwareUrl=ht

tp://192.168.68.103:8000/vmanage-20.1.1-x86_64.tar.gz]]

[SIAP] (TMSI) |default| Validating input for installImageInfo

InstallImageInfo [nfType=ROUTER, vType=remote,

versionTypeName=software, version=20.1.1, softwareUrl=ht

tp://192.168.68.103:8000/vmanage-20.1.1-x86_64.tar.gz]

[DDAP] (TMSI) |default| Performing Device Action- Software

Install for devices- Vbonds: [],Vsmarts: [],vManages:

[100.100.1.2, 100.100.1.22],vEdges: [],

[ADAP] (TMSI) |default| Processing vmanage list

Chapter 11 Upgrades

332

[ADAP] (TMSI) |default| Start process device action for device list

[ADAP] (TMSI) |default| Adding device 100.100.1.22 for device

action processing

We then try to connect to the second vManage device:

[IAP] (TMSI) |default| Software upgrade timeout - 60

[DDAP] (TMSI) |default| Software activate timeout - 30

[IAP] (TMSI) |default| Software upgrade vmanage thread pool

size 20 Server CPU core 4 VDaemon count 4

[NetConfClient] (device-action-software_install-0) |default|

Failed to connect to device : 100.100.1.22 Port: 830 user :

vmanage-admin error : Authentication failed

[SoftwareInstallActionProcessor] (device-action- software_

install- 0) |default| Failed to process install action: com.

viptela.vmanage.server.device.common.NetConfClientException:

org.apache.sshd.common.RuntimeSshException: Failed to get the

session.

This fails. But why? Well, there were no issues with the cluster.

Everything was green. Both vManage servers could SSH to each other

using the admin account, with the same password, so connectivity and

credentials were fine. Yet we still have an “Authentication failed” error.

Truth be told, I never found the solution. Googling the last line of the

earlier output results in a whopping eight results. I tried, but in the end,

resorted to a more manual method for the vManages (and the vBond and

vSmart).

If we have the software in our repository, then we can pull them from

there. We just need to find them. To do this, we can turn to the REST API

(Representational State Transfer Application Programming Interface) and

call https://<vmanageIP>/dataservice/device/action/software and get a list

of the software in the repository (Figure 11-4).

Chapter 11 Upgrades

333

So, we can access the images using the URL http://10.1.1.2:8080/

software/packages/viptela-20.1.1-x86_64.tar.gz and then use the command

“request software install” along with the path to perform the upgrade:

vManage02# request software install http://10.1.1.2:8080/

software/package/vmanage-20.1.1-x86_64.tar.gz

--2020-06-08 14:42:12-- http://10.1.1.2:8080/software/package/

vmanage-20.1.1-x86_64.tar.gz

Connecting to 10.1.1.2:8080... connected.

HTTP request sent, awaiting response... 206 Partial Content

Length: 1120120144 (1.0G) [application/octet-stream]

Saving to: 'vmanage-20.1.1-x86_64.tar.gz'

Figure 11-4. Using the API to list the software images

Chapter 11 Upgrades

334

vmanage-20.1.1-x86_ 100%[===================>] 1.04G

214KB/s in 93m 46s

2020-06-08 16:15:57 (194 KB/s) - 'vmanage-20.1.1-x86_64.tar.gz'

saved [1120120144/1120120144]

Signature verification Succeeded.

Successfully installed version: 20.1.1

vManage02#

OK, so EVE-NG might not be the fastest for file transfers, but it works.

The next step is to set the new version as the default:

vManage02# request software set-default 20.1.1

This will change the default software version.

Are you sure you want to proceed? [yes,NO] yes

vManage02#

Finally, we activate the software:

vManage02# request software activate 20.1.1

This will reboot the node with the activated version.

Are you sure you want to proceed? [yes,NO] yes

The software will install, and the device will reboot into the new

version.

Another option is to use SCP. I started by copying the files to the

same Linux server used for the certificates, and for this, you can use the

CD- ROM method we used to get the serial file into our network; just make

sure you use the “-joliet” option so that the file names are not truncated.

Once you have the files on the Linux server, you can use SCP or FTP to

copy them to the vManage01 device (Figure 11-5).

Chapter 11 Upgrades

335

We then run through the same set of steps, just replacing the location:

Request software install /home/admin/vmanage-20.1.1_x86-64.tar.gz

Request software set-default 20.1.1

Request software active 20.1.1

After vManage02 rebooted, the application service would not start.

On a hunch, I upgraded vManage01, and once they were both at the same

software version, the cluster started up.

Next, I used the SCP method to upgrade vBond01 and then vSmart01.

Once the “backbone” of the SD-WAN was all on 20.1.1, I was able to

use the vManage NMS to upgrade the edge devices, which went nice and

smoothly (Figure 11-6).

Figure 11-5. Using SCP to copy images to vManage01

Figure 11-6. Upgrading the edge devices using vManage

Chapter 11 Upgrades

336

 Troubleshooting Image Upgrades
We all know that upgrades can be tricky from time to time, especially when

performed remotely, which, as I am sure, can be a bit nerve-wracking

while devices reboot, and we have no eyes on what’s happening. Because

of this, we do have a fixed time window for upgrades to complete, as

upgrades that take longer than 60 minutes to complete will time out. We

cannot extend this value, but we can shorten it if we so desire, such as

setting it to 45 minutes:

vManage01# config

Entering configuration mode terminal

vManage01(config)# system upgrade-confirm ?

Description: Configure software upgrade confirmation timeout

Possible completions:

 <5..60> minutes

vManage01(config)# system upgrade-confirm 45

vManage01(config-system)# commit

Commit complete.

vManage01(config-system)# end

vManage01#

If the control connection to the vManage server takes longer than 15

minutes to come back up, then vManage will automatically revert to the

previous (working) image.

 Summary
We have seen how to add new images to the repository and also how to use

HTTP and SCP to load images onto devices and use both vManage and the

CLI to perform upgrades.

Now that we have our upgrades all done, we can implement some

security rules.

Chapter 11 Upgrades

337© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_12

CHAPTER 12

Security
Now that we are a little more up to date after our upgrades, we can have

some fun with security. I know that sounds like an oxymoron (like “only

choice”), but Security can be fun. I promise.

In this chapter, we are going to implement security rules to permit and

deny traffic. Mainly deny because, well, it is easier to test.

To get the real benefit in this chapter (and so that we can do the

upgrades in the previous chapter), we need to extend the network again,

by adding real Internet access and another Linux node.

 Setting Up Internet Access
Start by shutting down the ISP-R router. Connect a new network object

by right-clicking the EVE-NG canvas and selecting “Network” in the “Add

a new object” options. Make the network a Management(Cloud0) one,

and call it “Internet.” Connect this new object to ISP-R’s Gi0/2 interface by

dragging the orange network icon. Start the router up.

Enter the following settings:

ISP-R#conf t

ISP-R(config)#int gi 0/2

ISP-R(config-if)#ip address dhcp

ISP-R(config-if)#ip nat outside

ISP-R(config-if)#no shut

ISP-R(config-if)#int gi 0/0

https://doi.org/10.1007/978-1-4842-7347-0_12#DOI

338

ISP-R(config-if)#ip nat inside

ISP-R(config-if)#int gi 0/1

ISP-R(config-if)#ip nat inside

ISP-R(config-if)#int gi 0/3

ISP-R(config-if)#ip nat inside

ISP-R(config-if)#exit

ISP-R(config)#access-list 1 permit 50.11.11.0 0.0.0.255

ISP-R(config)#access-list 1 permit 50.10.10.0 0.0.0.255

ISP-R(config)#access-list 1 permit 50.12.12.0 0.0.0.255

ISP-R(config)#access-list 1 permit 10.1.1.0 0.0.0.255

ISP-R(config)#access-list 1 permit 10.2.1.0 0.0.0.255

ISP-R(config)#

ISP-R(config)#ip nat inside source list 1 interface gi0/2

overload

ISP-R(config)#

The preceding configuration sets the Gi0/2 interface for DHCP. It then

sets the same address as the outbound interface for NAT (the interface

we’ll be translating to). The gi0/0, gi0/1, and 0/3 interfaces are set up as

the NAT source interfaces. Then we have an access list to match the traffic

we are going to perform NAT for and, lastly, a NAT command to NAT the

source addresses from the access list to the GI0/2 interface.

The Internet connection should join ISP-R onto your local network

through EVE-NG. The Gi0/2 interface will get an IP address on your local

network (assuming you have DHCP running), and we will also get a default

route.

ISP-R#sh ip int bri | i 0/2

GigabitEthernet0/2 192.168.68.121 YES DHCP up up

ISP-R#

ISP-R#sh ip route | i 0.0.0.0/0

S* 0.0.0.0/0 [254/0] via 192.168.68.1

ISP-R#

Chapter 12 SeCurity

339

The details you will have will differ from the preceding ones, but

hopefully, you get the gist of what we are trying to achieve. We can test our

connectivity:

ISP-R#sh ip cef 8.8.8.8

0.0.0.0/0

 nexthop 192.168.68.1 GigabitEthernet0/2

ISP-R#

ISP-R#ping 8.8.8.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2

seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max =

44/111/266 ms

ISP-R#

The next step is to give ourselves a machine to play with. To do that, we

can add a machine onto CSR-1.

 Linux VM
Adding a new connection to an edge device in vManage should be very

familiar to you now, so without the aid of screenshots, shut down CSR-1

and connect its Gi4 interface to a new Linux node. In vManage, create a

new interface template, giving it an IP address of 192.168.33.1/24. Add the

template onto the main device template, and push it to the router.

The Linux node should have an IP of 192.168.33.33/24, and its default

gateway should be the IP address assigned to CSR-1’s Gi4 interface

(192.168.33.1). We should have connectivity between the Linux node and

CSR-1.

Chapter 12 SeCurity

340

The next step is to get CSR-1 to do some network address translation

(NAT) for us, as ISP-R will not NAT for the 192.168.33.0/24 subnet.

 CSR-1 NAT
Edit the t-CSR1000v interface template (the one that controls the Gi1

interface), and select the NAT tab and enable the option. Set the refresh

mode to bidirectional, and enable Respond To Ping (Figure 12-1).

Then edit the service template for VPN1 (c-v-VPN1) and add a default

route, pointing to the VPN (Figure 12-2).

Figure 12-1. Enabling NAT

Chapter 12 SeCurity

341

Once the template is applied, we should get this result in the

configuration on CSR-1:

interface GigabitEthernet1

 ip address 50.10.10.1 255.255.255.0

 no ip redirects

 ip nat outside

 negotiation auto

 arp timeout 1200

 no mop enabled

 no mop sysid

!

ip nat settings central-policy

ip nat route vrf 65528 0.0.0.0 0.0.0.0 global

ip nat route vrf 1 0.0.0.0 0.0.0.0 global

ip nat translation tcp-timeout 3600

ip nat translation udp-timeout 60

!

ip nat inside source list nat-dia-vpn-hop-access-list int

GigEth1 overload

Figure 12-2. Adding a default route for VPN1

Chapter 12 SeCurity

342

I shortened the last line of output for the sake of formatting. If you are

familiar with VRF route leaking, which is common in the world of MPLS,

then this is what is happening here.

If we generate some traffic from the new Linux node, we should start to

see some NAT translations:

CSR-1#sh ip nat trans

Pro Inside global Inside local Outside local

Outside global

tcp 50.10.10.1:5120 192.168.33.33:57242 62.252.60.2:443

62.252.60.2:443

udp 50.10.10.1:5090 192.168.33.33:57764

8.8.8.8:53 8.8.8.8:53

icmp 50.10.10.1:6049 192.168.33.33:6049 14.31.75.1:6049

14.31.75.1:6049

udp 50.10.10.1:5088 192.168.33.33:57682

8.8.8.8:53 8.8.8.8:53

udp 50.10.10.1:5089 192.168.33.33:40085

8.8.8.8:53 8.8.8.8:53

Total number of translations: 5

CSR-1#

Now, to get the best out of this chapter, we need to migrate our CSR

template, but only if you started with version 19.2 and have upgraded to

20.1 as we did in the previous chapter. If you started with version 20.1, then

you are good already.

The reason we need to migrate our template is that we need to use

the CLI feature, which is unavailable on the older template. You may have

already seen this due to the banner displayed in vManage (Figure 12-3).

Figure 12-3. The migration banner

Chapter 12 SeCurity

343

Click the Template Migration link (Figure 12-4).

Click “Migrate All Templates.” In the next window, tick the bottom

option, and then click “Migrate” (Figure 12-5).

The migrated template name prefix can be anything we like, and

during migration, vManage will take our existing template (t-CSR1000v in

this case) and create a new one with the prefix (CSR_t-CSR1000v); all of its

feature templates will also be migrated.

Figure 12-4. Migrating the t_CSR100v template

Figure 12-5. Click to migrate

Chapter 12 SeCurity

344

We can now add a CLI add-on feature template. Create one called CSR-

DNS, and add in “ip dns server” and “ip domain-lookup” (Figure 12-6).

Now, our CSR should act as a DNS server. Save this and add it to

the new CSR_t-CSR1000v template in the Additional Templates section

(Figure 12-7).

Figure 12-6. The CLI Add-On Template

Chapter 12 SeCurity

345

We now need to switch our CSR device to use this new template. We do

this as we have done before, by clicking the three dots next to the template

name and selecting Attach Devices. We then select the device to attach and

click through the dialog boxes (Figure 12-8).

Figure 12-7. Adding the CLI Add-On Template

Chapter 12 SeCurity

346

Pay close attention to the config diff here, as if we carry on now, we will

lose our NAT configuration (Figure 12-9).

The interesting thing is that the templates were (after migration) still

set to perform NAT. Going through the new template, clicking Update

(without making any changes), and attaching the CSR-1 device again

seemed to do the trick, and the second time I tried to apply the template to

the device, the NAT statements were not due to be removed (Figure 12-10).

Figure 12-9. We will lose the NAT configuration

Figure 12-8. Attaching CSR-1 to the new template

Chapter 12 SeCurity

347

Your mileage on this might vary, but you may also see that pushing the

template fails, with an application error. If you remove the CLI Add-On

Template, then pushing the device template works, so clearly, something

is wrong with the CLI Add-On Template. The reason for this is that not all

CLI commands can be pushed into the device this way, as they are not

supported. “ip domain-lookup” is one of these unsupported commands.

So if you hit this issue, then remove the command from the Add-On

Template, and push it to the device again. It is worth keeping an eye on the

Cisco website for the template as the number of supported commands gets

updated with each IOS-XE version. The really long link to follow is www.

cisco.com/c/en/us/td/docs/routers/sdwan/configuration/system-

interface/ios-xe-17/systems-interfaces-book-xe-sdwan/m-cli-add-

on-feat.html. By the time you read this, the command may be supported

on newer versions.

Figure 12-10. We still have NAT

Chapter 12 SeCurity

http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/system-interface/ios-xe-17/systems-interfaces-book-xe-sdwan/m-cli-add-on-feat.html
http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/system-interface/ios-xe-17/systems-interfaces-book-xe-sdwan/m-cli-add-on-feat.html
http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/system-interface/ios-xe-17/systems-interfaces-book-xe-sdwan/m-cli-add-on-feat.html
http://www.cisco.com/c/en/us/td/docs/routers/sdwan/configuration/system-interface/ios-xe-17/systems-interfaces-book-xe-sdwan/m-cli-add-on-feat.html

348

We should, now, have our CSR router acting as a DNS server:

CSR-1# sh run | i dns

no ip igmp ssm-map query dns

no ip nat service dns tcp

no ip nat service dns udp

no ip nat service dns-reset-ttl

ip dns server

CSR-1#

The last step of our basic configuration is to set our external DNS

servers. Edit the CSR_c-VPN0 template, and add the DNS servers

208.67.222.222 and 208.67.220.220 (which are the Cisco Umbrella DNS

servers) (Figure 12-11).

Repeat the process for CSR_c-v-VPN1, and then apply the template.

Those template changes get us the following:

CSR-1#sh run | i name-server

ip name-server 208.67.220.220 208.67.222.222

ip name-server vrf 1 208.67.220.220 208.67.222.222

ip name-server vrf 65528 208.67.220.220 208.67.222.222

CSR-1#

Figure 12-11. Using the Umbrella servers

Chapter 12 SeCurity

349

And, more importantly, the Linux node inside site 300 can access the

Internet (Figure 12-12).

Now that we have the basics in place, we can configure some security

rules.

 Applying Security Rules
Let’s start with something simple. As you know, SSH is good and Telnet is

bad. So, in our first example, we are going to block Telnet access from the

Linux node to R300. Currently, this access is permitted (Figure 12-13).

Figure 12-12. We have Internet access!

Chapter 12 SeCurity

350

Let’s deny it instead. Start by heading to Configuration ➤ Security, and

click “Add Security Policy” (Figure 12-14).

Figure 12-13. Telnet is permitted

Figure 12-14. Adding a security policy

Chapter 12 SeCurity

351

We are going to use Direct Internet Access (DIA), as this gives us all

the cool features, such as application firewall, intrusion prevention, URL

filtering, malware protection, DNS security, and TLS/SSL decryption

(Figure 12-15).

We need to create our VPN zones, the 5-tuple that will do our traffic

matching, and any application behaviors. Click “Add Firewall Policy”

(Figure 12-16).

Figure 12-15. Select Direct Internet Access

Chapter 12 SeCurity

352

The first step is to define our zone pairs, which are our source and

destination VPNs (Figure 12-17). As all our traffic (for the moment) is

within VPN 1 (R300 and the new Linux machine), we are going to create a

zone for this. Click “Apply Zone-Pairs.”

Click in the Source Zone box, and select “New Zone List” from the

drop-down (Figure 12-18).

Figure 12-16. We need to define some targets

Figure 12-17. We need to set our zone pairs

Chapter 12 SeCurity

353

Create a new zone, called “Zone-list,” specifying VPN 1, and click Save

(Figure 12-19).

We can define multiple VPNs within these zones, such as “1,2,3,10-20”,

if we need to. Set both the source and destination zones to the newly

created zone list (Figure 12-20).

Figure 12-19. Setting the source zone

Figure 12-18. Creating the source zone

Chapter 12 SeCurity

354

Click Save. We now have our zone pair set (Figure 12-21).

Name the firewall policy in the next box, calling it “Site-300-FW-Pol.”

The next step is to start adding some rules. Give the rule a name, such as

“Deny-Telnet,” and set the action to “Deny” (Figure 12-22).

Now we need to define our 5-tuple. Click the plus sign next to Source

Data Prefix, and add a new prefix of 192.168.33.0/24 (Figure 12-23).

Figure 12-22. The Deny-Telnet rule

Figure 12-21. The zone pairs are set

Figure 12-20. Our zones are set

Chapter 12 SeCurity

355

Select it and click Save (Figure 12-24).

Figure 12-23. The source prefix

Figure 12-24. The source prefix is set

Chapter 12 SeCurity

356

We are going to leave the source port as Any. For the Destination Data

Prefix, click the plus sign and enter the subnet 192.168.30.0/24 in the

IPv4 field (Figure 12-25). We don’t have to create an object every time; it

depends on how often you are going to reference the same prefixes.

Click Save. Now, for the rest of the details, we could use the destination

port (23), the protocol (6), or we can define an application list. We are

going to use the destination port (Figure 12-26).

Figure 12-25. The destination prefix

Figure 12-26. Setting the destination port

Chapter 12 SeCurity

357

We should end up with the same details as Figure 12-27.

Click Save. Now we need to create an allow rule for all the other traffic;

otherwise, everything will be denied. Click Add Rule and fill in the details,

setting all the fields to “Any” (Figure 12-28).

Save it and we have two rules (Figure 12-29).

Figure 12-27. The completed 5-tuple

Figure 12-28. Our Allow rule

Figure 12-29. Our completed rules

Click Save Firewall Policy, and then click Next. We are not going to add

any intrusion prevention policies, so click Next. We are going to implement

URL filtering, though.

Chapter 12 SeCurity

358

 URL Filtering
Click “Add URL Filtering Policy” (Figure 12-30).

Click “Add New.” The default policy is to block sites with a risk rating of

moderate and to redirect those sites to a block page (Figure 12-31).

Click Target VPNs and add VPNs 0 and 1 (Figure 12-32).

Figure 12-31. The default URL filtering policy behavior

Figure 12-30. Adding a URL policy

Chapter 12 SeCurity

359

Give the policy a name, and set the following web categories:

• adult-and-pornography

• hate-and-racism

• illegal

Leave the block page as it is, and tick Blacklist and Reputation/

Category. We should see this at the top of the page (Figure 12-33).

Click Save and then Next. Click Next past the advanced Malware

Protection screen and again past the DNS security and the TLS/SSL

decryption screens. Finally, give the policy a name of “Sec-pol” and a

description (Figure 12-34).

Figure 12-32. Adding target VPNs

Figure 12-33. Our URL filtering policy

Chapter 12 SeCurity

360

There are a number of options on this page, such as logging. We can

leave these at their defaults (for the moment). If we preview the policy, it

looks like this:

policy

 url-filtering URL-filtering-policy

 web-category-action block

 web-categories adult-and-pornography hate-and-racism illegal

 block-threshold moderate-risk

 block text Access to the requested page has been denied.

Please contact your Network Administrator

 alert categories-reputation blacklist

 target-vpns 0 1

 !

 zone-based-policy Site-300-FW-Pol

 sequence 1

 match

 source-data-prefix-list Site-300-192-168-33-0

 destination-data-prefix-list Site-300-192-168-33-0

 destination-port 23

 !

 action drop

 log

 !

 !

 sequence 11

 action pass

Figure 12-34. Naming our security policy

Chapter 12 SeCurity

361

 !

 !

 default-action drop

 !

 zone Zone-list

 vpn 1

 !

 zone-pair ZP_zone-one_zone-one_-1002302744

 source-zone zone-one

 destination-zone zone-one

 zone-policy Site-300-FW-Pol

 !

 lists

 data-prefix-list Site-300-192-168-30-0

 ip-prefix 192.168.30.0/24

 !

 data-prefix-list Site-300-192-168-33-0

 ip-prefix 192.168.33.0/24

 !

 !

 zone-to-nozone-internet deny

 failure-mode open

!

Save the policy. As per the warning on the URL filtering screen,

we need to upload a file to the router. The file we need is sec-app-

ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.x86_764.tar, and you can get

this from the Cisco.com website and then copy it to the Linux server.

Follow the same steps to create a CD ROM as we have done in previous

chapters, copying the file to a folder called /tmp/sd-avc on the EVE-NG

server and creating an ISO image (using the -J flag to specify Joliet, so we

get the long file name support):

Chapter 12 SeCurity

362

root@eve-ng:~# ls /tmp/sd-avc/

secapp-ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.x86_64.tar

root@eve-ng:~#

root@eve-ng:~# mkisofs -J -l -R -o cdrom.iso /tmp/sd-avc/

 18.73% done, estimate finish Wed May 13 14:58:03 2020

 37.47% done, estimate finish Wed May 13 14:58:03 2020

 56.14% done, estimate finish Wed May 13 14:58:03 2020

 74.88% done, estimate finish Wed May 13 14:58:03 2020

 93.55% done, estimate finish Wed May 13 14:58:03 2020

Total translation table size: 0

Total rockridge attributes bytes: 300

Total directory bytes: 434

Path table size(bytes): 10

Max brk space used 0

26731 extents written (52 MB)

root@eve-ng:~# ls

cdrom.iso

root@eve-ng:~# mv cdrom.iso /opt/unetlab/addons/qemu/linux-

ubuntu-desktop-17.10.1/

root@eve-ng:~#

Stop and start the Linux server so that it picks up the CD-ROM. Back

in vManage, go to Maintenance ➤ Software Repository ➤ Virtual Images,

click Upload Virtual Image, and select the vManage option. Upload the

secapp file (Figure 12-35).

Figure 12-35. Uploading the sec-app file

Chapter 12 SeCurity

363

Now we can add the security policy to our device template. Go to

the template CSR_t-CSR1000v, and select Additional Templates. Under

Security Policy, select “Sec-pol,” and select “UTD-CSR1000v” within the

Container Profile drop-down (Figure 12-36).

Push this configuration to CSR-1. You may get the following error when

it tries to install the new container:

UTC ERROR [vManage01] [LxcInstallActionProcessor] (device-

action-lxc_install-0) |default| On device CSR-0502AB1A-7DED-

13AE-3AB1-776B741BB137-70.100.100.1, Failed to install 1/1

lxc container (app-hosting-UTD-Snort-Feature-x86_64-1.0.10_

SV2.9.13.0_XE16.12).

Pre config validation failed. Device is not configured to

accept new configuration. Available memory insufficient,

required CPU:7 percent, reserved CPU:0 percent, available

CPU:7 percent, required memory:2097152 KB, reserved memory:0

KB, available memory:1048576 KB, required capacity:861 MB,

reserved capacity:0 MB, available harddisk:0 MB, available

bootflash:4867 MB, available logical volume:0 MB

Figure 12-36. Adding the container profile

Chapter 12 SeCurity

364

By default, the CSR devices are set to have 4GB of memory, which is

less than we need to run the UTD application:

CSR-1#sh ver | beg memory

cisco CSR1000V (VXE) processor (revision VXE) with

2080408K/3075K bytes of memory.

Processor board ID 9NVWF6PVA8D

4 Gigabit Ethernet interfaces

32768K bytes of non-volatile configuration memory.

3978448K bytes of physical memory.

6188032K bytes of virtual hard disk at bootflash:.

0K bytes of WebUI ODM Files at webui:.

So shut down CSR-1 and add more memory (8GB is a good number),

by right-clicking the device in the EVE-NG GUI and selecting the

properties. Increase the memory and start it up again.

CSR-1#sh ver | beg memory

cisco CSR1000V (VXE) processor (revision VXE) with

2296472K/3075K bytes of memory.

Processor board ID 9NVWF6PVA8D

4 Gigabit Ethernet interfaces

32768K bytes of non-volatile configuration memory.

8107212K bytes of physical memory.

6188032K bytes of virtual hard disk at bootflash:.

0K bytes of WebUI ODM Files at webui:

Now we can apply the configuration again, click the three dots, and

select “Change Device Values.” Don’t change anything, just next through it,

and vManage will update the CSR router as well as push the UTD file. We

are going to walk through the process, starting with the initial download

request.

Chapter 12 SeCurity

365

%IOSXE-5-PLATFORM: R0/0: VCONFD_NOTIFIER: Install status:

d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 download-start.

Message Downloading http://100.100.1.2:8080/software/package/

lxc/app-hosting_UTD-Snort-Feature-x86_64_1.0.10_SV2.9.13.0_

XE16.12_secapp-ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.

x86_64.tar?deviceId=70.100.100.1

%Cisco-SDWAN-CSR-1-action_notifier-6-INFO-1400002: R0/0:

VCONFD_NOTIFIER: Notification: 5/13/2020 15:8:3 system-

software-install-status severity-level:minor host-name:CSR-1

system-ip:70.100.100.1 status:download-start install-

id:d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 message:Downloading

http://100.100.1.2:8080/software/package/lxc/app-hosting_

UTD-Snort-Feature-x86_64_1.0.10_SV2.9.13.0_XE16.12_

secapp-ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.x86_64.

tar?deviceId=70.100.100.1

CSR-1#

After a while, you should see a long list of messages on the CSR’s

console, starting with vManage logging in:

%DMI-5-AUTH_PASSED: R0/0: dmiauthd: User 'vmanage-admin'

authenticated successfully from 100.100.1.2:59787 and was

authorized for netconf over ssh. External groups:

The NETCONF messages passed from vManage to CSR-1 have

instructed our router to download the app:

%IOSXE-5-PLATFORM: R0/0: VCONFD_NOTIFIER: Install status:

d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 download-complete. Message

Downloaded app image to /bootflash/.UTD_IMAGES/app-hosting_

UTD-Snort-Feature-x86_64_1.0.10_SV2.9.13.0_XE16.12_secapp-

ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.x86_64.tar

Chapter 12 SeCurity

366

The download finishes and we install the app:

%Cisco-SDWAN-CSR-1-action_notifier-6-INFO-1400002: R0/0:

VCONFD_NOTIFIER: Notification: 5/13/2020 15:13:16 system-

software-install-status severity-level:minor host-name:CSR-1

system-ip:70.100.100.1 status:download-complete install-

id:d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 message:Downloaded

app image to /bootflash/.UTD_IMAGES/app-hosting_UTD-

Snort-Feature-x86_64_1.0.10_SV2.9.13.0_XE16.12_secapp-

ucmk9.16.12.02r.1.0.10_SV2.9.13.0_XE16.12.x86_64.tar

%IOSXE-5-PLATFORM: R0/0: VCONFD_NOTIFIER: Install status:

d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 verification-complete.

Message NOOP

The installation finishes:

%Cisco-SDWAN-CSR-1-action_notifier-6-INFO-1400002: R0/0:

VCONFD_NOTIFIER: Notification: 5/13/2020 15:13:18 system-

software-install-status severity-level:minor host-name:CSR-1

system-ip:70.100.100.1 status:verification-complete install-

id:d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 message:NOOP

%VMAN-5-PACKAGE_SIGNING_LEVEL_ON_INSTALL: R0/0: vman: Package

'iox-utd_1.0.10_SV2.9.13.0_XE16.12.tar' for service container

'utd' is 'Cisco signed', signing level cached on original

install is 'Cisco signed'

%VMAN-2-MEMORY_LIMIT_WARN: R0/0: vman: Virtual service (utd)

profile (urlf-medium) defines 4096 MB of Memory exceeding the

maximum 3072 MB.

%VIRT_SERVICE-5-INSTALL_STATE: Successfully installed virtual

service utd

%IOSXE-5-PLATFORM: R0/0: VCONFD_NOTIFIER: Install status:

d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 install-start. Message

Success, App state: DEPLOYED

Chapter 12 SeCurity

367

%Cisco-SDWAN-CSR-1-action_notifier-6-INFO-1400002: R0/0:

VCONFD_NOTIFIER: Notification: 5/13/2020 15:14:6 system-

software-install-status severity-level:minor host-name:CSR-1

system-ip:70.100.100.1 status:install-start install-

id:d5ba3356-b49d-4ff3-834a-15f4b2b4cae2 message:Success, App

state: DEPLOYED

%IM-6-INSTALL_MSG: R0/0: ioxman: app-hosting: Install

succeeded: utd installed successfully Current state is deployed

vManage logs in again, pushing through the new configuration:

%DMI-5-AUTH_PASSED: R0/0: dmiauthd: User 'vmanage-admin'

authenticated successfully from 100.100.1.2:59849 and was

authorized for netconf over ssh. External groups:

%SYS-5-CONFIG_P: Configured programmatically by process iosp_

vty_100001_dmi_nesd from console as NETCONF on vty32131

%DMI-5-CONFIG_I: R0/0: nesd: Configured from NETCONF/RESTCONF

by vmanage-admin, transaction-id 321

Now we start to see some virtual port groups coming up:

%LINEPROTO-5-UPDOWN: Line protocol on Interface

VirtualPortGroup0, changed state to up

%LINEPROTO-5-UPDOWN: Line protocol on Interface

VirtualPortGroup1, changed state to up

We have another login from vManage and we see some Snort action.

Snort is where we will get the application detection abilities:

%DMI-5-AUTH_PASSED: R0/0: dmiauthd: User 'vmanage-admin'

authenticated successfully from 100.100.1.2:59873 and was

authorized for netconf over ssh. External groups:

%ONEP_BASE-6-SS_ENABLED: ONEP: Service set Vty was enabled by

Platform

Chapter 12 SeCurity

368

%ONEP_BASE-6-CONNECT: [Element]: ONEP session Application:utd_

snort Host:CSR-1 ID:3818 User: has connected.

%ONEP_BASE-6-DISCONNECT: [Element]: ONEP session

Application:utd_snort Host:CSR-1 ID:3818 User: has disconnected.

%ONEP_BASE-6-CONNECT: [Element]: ONEP session Application:utd_

snort Host:CSR-1 ID:8443 User: has connected.

%ONEP_BASE-6-DISCONNECT: [Element]: ONEP session

Application:utd_snort Host:CSR-1 ID:8443 User: has disconnected.

%ONEP_BASE-6-CONNECT: [Element]: ONEP session Application:utd_

snort Host:CSR-1 ID:7470 User: has connected.

%ONEP_BASE-6-DISCONNECT: [Element]: ONEP session

Application:utd_snort Host:CSR-1 ID:7470 User: has disconnected.

UTD is now installed and activated:

%VIRT_SERVICE-5-ACTIVATION_STATE: Successfully activated

virtual service utd

%IM-6-START_MSG: R0/0: ioxman: app-hosting: Start succeeded:

utd started successfully Current state is running

We get a little Snort update:

%ONEP_BASE-6-CONNECT: [Element]: ONEP session Application:utd_

snort Host:CSR-1 ID:4577 User: has connected.

%IOSXE_UTD-4-MT_CONFIG_DOWNLOAD: UTD MT configuration download

has started% UTD: Received appnav notification from LXC

for (src 192.0.2.1, dst 192.0.2.2)

% UTD successfully registered with Appnav (src 192.0.2.1, dst

192.0.2.2)

% UTD redirect interface set to VirtualPortGroup1 internally

%IOSXE_UTD-4-MT_CONFIG_DOWNLOAD: UTD MT configuration download

has completed

Chapter 12 SeCurity

369

A quick bounce of the service and everything is green again:

%IOSXE-1-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:000

TS:00000000865384064983 %UTD-1-UTD_HEALTH_CHANGE: Service node

changed state Down => Green (3)

%LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel6000001,

changed state to up

%IOSXE-1-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:000

TS:00000000866135564670 %UTD-1-UTD_HEALTH_CHANGE: Service node

changed state Green => Down (0)

%IOSXE-1-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:000

TS:00000000876327852984 %UTD-1-UTD_HEALTH_CHANGE: Service node

changed state Down => Green (3)

Now, if we test our Telnet again, we can see that our security policies

are in place and working (Figure 12-37).

If we look at the console output on the CSR router, we can see that the

Telnet traffic is being dropped and that this is due to the Site-300-FW-Pol:

%IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:000

TS:00000141275333373800 %FW-6-LOG_SUMMARY: 7 tcp packets

were dropped from GigabitEthernet4 192.168.33.33:34490 =>

192.168.30.30:23 (target:class)-(ZP_zone-one_zone-one_-

1002302744:Site-300-FW-Pol-seq-1-cm_) (srcvrf:dstvrf)-(1:1)

Figure 12-37. Telnet is denied

Chapter 12 SeCurity

370

However, other traffic is also being dropped:

%IOSXE-6-PLATFORM: R0/0: cpp_cp: QFP:0.0 Thread:000

TS:00000141335337138264 %FW-6-LOG_SUMMARY: 5 tcp packets

were dropped from GigabitEthernet4 192.168.33.33:41877 =>

35.232.111.17:80 (target:class)-(none:none) (srcvrf:dstvrf)-

(1:global)

The reason for this is because we have no rule to permit traffic from

VPN 1 to the global VRF. Before we go and fix that, let’s have a little look at

some verification commands we can use to confirm what the firewall on

CSR-1 is doing. To get an idea of all the drops, we can use the following

command:

CSR-1#show platform hardware qfp active feature firewall drop

--

Drop Reason Packets

--

Zone-pair without policy 12066

Policy drop:classify result 7

Firewall invalid zone 4749

CSR-1#

To see the amount of traffic dropped due to policy, we can use this

command:

CSR-1#show sdwan zbfw drop-statistics policy-action-drop

zbfw drop-statistics policy-action-drop 7

CSR-1#

And to get a long list of all the statistics, we can use “show sdwan zbfw

zonepair-statistics”. I have removed the connection statistics to make it

easier to read (and also as they were all zero):

Chapter 12 SeCurity

371

CSR-1#show sdwan zbfw zonepair-statistics

zbfw zonepair-statistics ZP_zone-one_zone-one_-1002302744

 src-zone-name zone-one

 dst-zone-name zone-one

 policy-name Site-300-FW-Pol

 fw-traffic-class-entry Site-300-FW-Pol-seq-1-cm_

 zonepair-name ZP_zone-one_zone-one_-1002302744

 class-action "Inspect Drop"

 pkts-counter 7

 bytes-counter 518

 fw-tc-match-entry Site-300-FW-Pol-seq-1-acl_ 3

 match-type "access-group name"

 l7-policy-name NONE

 fw-traffic-class-entry Site-300-FW-Pol-seq-11-cm_

 zonepair-name ZP_zone-one_zone-one_-1002302744

 class-action "Inspect Pass"

 pkts-counter 95

 bytes-counter 8551

 fw-tc-match-entry Site-300-FW-Pol-seq-11-acl_ 3

 match-type "access-group name"

 l7-policy-name NONE

 fw-traffic-class-entry class-default

 zonepair-name ZP_zone-one_zone-one_-1002302744

 class-action "Inspect Pass"

 pkts-counter 403

 bytes-counter 42977

 l7-policy-name NONE

CSR-1#

Let’s just check that other traffic within VPN still passes, therefore

showing that the zone one to zone one allow rule is working (Figure 12-38).

Chapter 12 SeCurity

372

Good. So, how do we fix the outbound traffic? Thankfully, it is a super

simple fix. Head back to Security, and edit the Sec-pol policy. Under the

Policy Summary is a little tick box for “Bypass firewall policy and allow all

Internet traffic to/from VPN 0” (Figure 12-39). Tick it and then click “Save

Policy Changes.”

Once this is pushed out again, we have Internet access (Figure 12-40).

Figure 12-38. SSH is permitted

Figure 12-39. Bypass the firewall for VPN 0

Chapter 12 SeCurity

373

More importantly, our URL filtering is also working. We can check this

by trying to get to 4Chan as this appears on several of our blocked categories

(adult themes, nudity, pornography, and tasteless) (Figure 12-41).

Caution Only try this website if it is safe to do so. it is probably
best not to try if it’s going to get you flagged by your employer’s DNS
history. i don’t want to get you in trouble.

Figure 12-40. Internet is still working

Chapter 12 SeCurity

374

From a monitoring perspective, we can see the amount of traffic being

prevented by our filters from the Monitoring page. Go to Monitoring ➤

Network, and select the CSR-1 device (Figure 12-42).

Clicking URL filtering shows us the number of sessions that have been

blocked (Figure 12-43).

Figure 12-41. 4Chan is blocked

Figure 12-42. The network monitoring page

Figure 12-43. Blocked session information

Chapter 12 SeCurity

375

While we cannot, from this page, drill down into the data to see what

sites have been blocked, or for whom they have been blocked, it does give

us a little insight into what is happening within our network.

 Summary
In this chapter, we implemented some simple firewall rules to block

traffic and used the application plugin to block a website based on what

categories it is in.

In our next chapter, we will be looking at management and operations

of the SD-WAN.

Chapter 12 SeCurity

377© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_13

CHAPTER 13

Management and
Operations
In our penultimate chapter, we are going to look at monitoring through the

use of email alerts, logging, SNMP, and setting up maintenance windows,

and we will finish by exploring the REST API. We will start with the basic

requirements of any good network: alerting and logging.

 Email Alerts
To set up email alerts, navigate to Administration ➤ Settings. Scroll down

to Email Notifications, and click Edit on the right-hand side.

Set email notifications to be enabled, and enter the details of the

SMTP server (either the name or IP address and the port) and the from

and reply- to email addresses. Remember to set any authentication if it is

required (Figure 13-1).

https://doi.org/10.1007/978-1-4842-7347-0_13#DOI

378

Save the settings. Next, we have to set what we would like to receive

emails about. Go to Monitor ➤ Alarms, and click Email Notifications on

the top right-hand corner. Click “Add Email Notification.” Enter a name

for the notification, and select the severity levels to alert on as well as the

alarms we want to alert on (Figure 13-2).

Figure 13-1. Setting up email notifications

Chapter 13 ManageMent and OperatiOns

379

Add in the email addresses to send to (Figure 13-3).

Figure 13-2. Selecting severity and alarms

Figure 13-3. Setting the recipient email address

Chapter 13 ManageMent and OperatiOns

380

This can also invoke a webhook (such as posting to a custom Microsoft

Teams channel), or be tailored to only include certain devices, so you

could, for example, set up a particular alert for just the edge devices

(Figure 13-4). This would be useful if you had particular people looking

after the edge routers and another set of people looking after the control

plane (vManage, vSmart, and vBond), for instance.

Click Save once completed.

 Audit Logs
If you head over to the Monitor section and select “Audit Log,” you will see

a list of all of the configurations that have occurred over the selected time

period, by all users (Figure 13-5).

Figure 13-4. Device selection

Figure 13-5. The audit log

Chapter 13 ManageMent and OperatiOns

381

You can click the green arrow above the entries to download the events

in a CSV format.

 Syslog
Another essential aspect of proper network caretaking is to have

centralized logging. To do this, we return to our templates. Add a new

Logging feature template called “CSR-logging” (Figure 13-6).

By default, logging to disk is enabled, we can log a maximum of 10MB

to each log file, and we can have ten log files. These will be rotated, and the

oldest will be deleted once a new one is created (Figure 13-7).

Figure 13-6. A logging template

Chapter 13 ManageMent and OperatiOns

382

We can add a new syslog server in the next section, by clicking “New

Server.” Enter the IP address or hostname of the syslog server, along with

the ID of the VPN used to reach it. We can also set a source interface

(which if you follow the CIS security templates, having a source interface

for logging is recommended) and a priority if required (Figure 13-8).

Figure 13-8. Setting a Syslog server

Figure 13-7. Logging to disk

Chapter 13 ManageMent and OperatiOns

383

Once you have saved the template, edit the device template and set it

to use the new logging template (Figure 13-9).

Save and apply the template to your devices.

 SNMP
SNMP (Simple Network Management Protocol) allows us to query the

devices for certain metrics, or for the devices to send data, such as event

notifications, which are known as traps.

Create a new SNMP feature template for CSR1000v routers, name it

“CSR_CSR-SNMP”, and set a description (I am using this name as originally

I called it CSR-SNMP, and that template was migrated as we saw in the

previous chapter, but I wanted the screenshot to match). Set the SNMP

feature to not be shutdown. We can use a mixture of device-specific

values (device name and location) and global variables (contact person)

(Figure 13-10).

Figure 13-9. Adding the logging template

Chapter 13 ManageMent and OperatiOns

384

Create a new trap group, called SDWAN-Trap-Group (Figure 13-11).

Add a new trap module (Figure 13-12).

Figure 13-10. An SNMP template

Figure 13-11. Creating a trap group

Chapter 13 ManageMent and OperatiOns

385

Set the module name and security level you need (Figure 13-13).

Figure 13-12. Adding a trap module

Figure 13-13. Setting the module security level

Chapter 13 ManageMent and OperatiOns

386

Save the changes and click “Add” (Figure 13-14).

We can have different SNMP rights, and these can query different

aspects of the environment, based on the object identifier (OID), which is

a dotted numerical reference to the MIB (Management Information Base),

or “tree” of SNMP data. Create a new view, called “Read-Only,” and click

“Add Object Identifiers” (Figure 13-15).

Click “Add Object Identifier” (Figure 13-16).

Figure 13-15. Creating a read-only view

Figure 13-14. The finished trap group

Chapter 13 ManageMent and OperatiOns

387

Enter the Object Identifier (OID). Here, we are using 1.3.6.1, which is

the Internet portion of the SNMP MIB (Figure 13-17).

Click “Add” (Figure 13-18).

Figure 13-16. Adding an OID

Figure 13-17. The Internet OID

Chapter 13 ManageMent and OperatiOns

388

SNMP (version 1 and 2) queries reference a “Community,” which is the

credentials shared between the device and the management station doing the

querying. SMNPv3 uses users instead of communities. Click the Community

tab, and then click “Add Community.” Give the community a name, and select

the authorization level, and then select the view to use (Figure 13-19).

Click “Add” (Figure 13-20).

Figure 13-18. The read-only view

Figure 13-19. Setting up the Community

Figure 13-20. The completed Community

Chapter 13 ManageMent and OperatiOns

389

Now that we have everything else set up, we can create a trap target

server. Click the tab and create a new trap target, entering the VPN ID,

IP address, port, trap group name, and community name. Enter a source

interface if required (Figure 13-21).

Click “Add” (Figure 13-22).

Figure 13-21. The Trap target settings

Figure 13-22. The completed Trap target

Chapter 13 ManageMent and OperatiOns

390

Lastly, go into the CSR1000v device template, and set the SNMP

template (under “Additional Templates”) to use the new CSR_CSR-SNMP

template (Figure 13-23).

Now your SNMP monitoring software should start to receive

SNMP traps.

 Maintenance Windows
Now that we have set up alerting and logging, we need to look at how to

suppress these alerts during a maintenance window.

Navigate to Administration ➤ Settings, and then scroll down to

Maintenance Window, and click the edit button. Select the start date and

time (Figure 13-24).

Figure 13-23. Adding the SNMP feature template

Chapter 13 ManageMent and OperatiOns

391

Set the end date and time (Figure 13-25).

Figure 13-24. The maintenance window start time

Figure 13-25. The maintenance window end time

Chapter 13 ManageMent and OperatiOns

392

Click Save (Figure 13-26).

Maintenance windows are displayed on the vManage NMS dashboard

starting two days before the maintenance window.

 REST API
The vManage server provides an extensive REST API (Representational

State Transfer Application Programming Interface). Through this API, we

can control, configure, and monitor the entire network programmatically,

kind of like a software-defined-software-defined WAN. Using REST, we can

make the following type of calls:

Call Action

get retrieve or read information

pUt Update an object

pOst Create an object

deLete remove and object

Figure 13-26. The maintenance window

Chapter 13 ManageMent and OperatiOns

393

Figure 13-27. The API docs

We can also use the REST API to perform bulk actions to retrieve state

and statistical information, and this uses RESTful bulk API calls.

The easiest way to get started with the REST API is to visit https://

vmanage- ip- address:port/apidocs (Figure 13-27).

Clicking one of the options drops down a smaller box that will show

you the model schema and response codes (Figure 13-28) and will allow

you to test it out in your environment.

Figure 13-28. An example of the REST API

Chapter 13 ManageMent and OperatiOns

394

Create a new user by going to Administration ➤ Manage Users and call

it “api,” and set a password of Test123. Make it a member of the operators

group.

Start a terminal prompt on one of the Linux boxes. We need to start

by authenticating to vManage by specifying the username and password;

these need to match the fields on the login page.

curl -k -d "j_username=api&j_password=Test123 -X POST

https://10.1.1.2:8443/j_security_check --cookie-jar api-cookie.txt

The -k option allows us to make insecure curl commands (we bypass

certificate checking, which is useful as we do not have a “proper” CA- signed

certificate). The -d flag is the data we are sending. We specify that we are

posting this data (the -X flag). We should now have a cookie stored in a text

file as we are using the --cookie-jar option to save the result in a file called

cookie.txt. We can see this in Figure 13-29.

We have a session life span of 24 hours, but the API session will time

out after 30 minutes of inactivity.

From here, we can make a simple GET request, such as to see the

banner configured (Figure 13-30).

Figure 13-29. Authenticating to the API

Chapter 13 ManageMent and OperatiOns

395

Figure 13-30. Retrieving the banner through the API

So far so good. Let’s use the API to create a new user. As the commands

get a little long, we can use some tricks to make life easier, such as using

files to hold the data we want to use in the command.

Create a file called tester.json, and enter the details as shown in the

following:

{

 "group": [

 "operator"

],

 "description": "An API test user",

 "userName": "tester",

 "password": "Test123"

}

Now let’s try using this in a command to create a new user. Enter the

following:

curl -k -H "Content-Type: application/json" -X POST –-data

@tester.json –-cookie api-cookie.txt https://10.1.1.2:443/

dataservice/admin/user

The command will fail with the following error: “SessionTokenFilter:

Token provided via HTTP Header does not match the token generated by

the server” (Figure 13-31).

Chapter 13 ManageMent and OperatiOns

396

The reason for this error is that since version 19.2, the API requires

a token in any POST, PUT, or DELETE commands. So, how do we get

this token? We just need to make a GET command (curl -k -X GET

https://10.1.1.2:443/dataservice/client/token - - cookie api-

cookie.txt). The result is a long alphanumeric string (Figure 13-32).

From now on (at least for anything more exciting than a GET request),

we need to specify this session token. This does make the command rather

long though, so I have truncated it in the following, but check Figure 13-33

for the full command. Now our command to create the user becomes

curl -k -H "Content-Type: application/json" -X POST –-data

@tester.json –-cookie api-cookie.txt https://10.1.1.2:443/

dataservice/admin/user -H "X-XSRF-TOKEN:0497CD"

Figure 13-32. The session token

Figure 13-33. Using the session token

Figure 13-31. Session error

Chapter 13 ManageMent and OperatiOns

https://10.1.1.2/dataservice/client/token --cookie api-cookie.txt
https://10.1.1.2/dataservice/client/token --cookie api-cookie.txt

397

Our command works, but we are denied. Our API user does not

have the correct permissions to perform creations, updates, or deletions

in vManage as the operator group that it belongs to only has read

permissions.

Head back to the GUI, and go into User Groups (you should already be

there, but if you have navigated away, it’s under Administration ➤ Manage

Users). Create a new group called “api-user-admin” with write permissions

on the Manage Users feature (Figure 13-34).

Create a new user, called “api2,” with a password of Test123, and make

them a member of this new group (Figure 13-35).

Figure 13-34. The api-user-admin group

Chapter 13 ManageMent and OperatiOns

398

We need to run through the authentication again with this new user

and create the session cookie (Figure 13-36).

Figure 13-35. The new api2 user

Figure 13-36. Authenticating with the api2 user

Chapter 13 ManageMent and OperatiOns

399

Now, we can create our user (Figure 13-37).

Nothing is returned, so we could either use the API to list all the users

or return to the GUI (Figure 13-38).

 Summary
In this chapter, we set up email alerts, looked at audit logs, and configured

SYSLOG, SNMP, and maintenance windows, before we finished with how

we can use the REST API to retrieve data and perform creative tasks, such

as managing users.

In the final chapter, we will look at troubleshooting.

Figure 13-37. Creating a user via the API

Figure 13-38. The new user

Chapter 13 ManageMent and OperatiOns

401© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0_14

CHAPTER 14

Troubleshooting
This chapter is a collection of basic troubleshooting steps, as well as

looking at some of the issues I came across while writing this book.

 Basic Troubleshooting Techniques
 Pinging
Ping is a great way to confirm basic connectivity. The gotcha is that when

pinging, we must specify the VPN to use:

vManage01# ping 100.1.1.3 ?

Possible completions:

 count Number of ping packets

 fragment do(prohibit fragmentation, even local

one), dont(do not set DF flag)

 rapid Rapid ping

 size Size of packets, in bytes

 source Source interface or IP address

 vpn VPN ID

 wait Time to wait for a response, in seconds

 | Output modifiers

 <cr>

vManage01# ping 100.1.1.3 vpn 512

Ping in VPN 512

PING 100.1.1.3 (100.1.1.3) 56(84) bytes of data.

https://doi.org/10.1007/978-1-4842-7347-0_14#DOI

402

64 bytes from 100.1.1.3: icmp_seq=1 ttl=64 time=0.872 ms

64 bytes from 100.1.1.3: icmp_seq=2 ttl=64 time=0.366 ms

^C

--- 100.1.1.3 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1000ms

rtt min/avg/max/mdev = 0.366/0.619/0.872/0.253 ms

vManage01#

 Traceroute
Similar to ping, we need to specify which VPN to use when performing

traceroutes:

Edge01# traceroute vpn 1 172.16.20.1

Traceroute 172.16.20.1 in VPN 1

traceroute to 172.16.20.1 (172.16.20.1), 30 hops max, 60 byte

packets

 1 172.16.20.1 (172.16.20.1) 2.615 ms 3.195 ms 3.252 ms

vEdge01#

 Troubleshooting vManage
vManage is fairly easy to set up; however, it is easy to run into issues when

setting up clustering.

One such issue is where the second vManage server’s application

server stays in a waiting state. We can check the status of all of our running

processes using the command “request nms all status”.

vManage02# request nms all status

NMS application server

 Enabled: true

 Status: waiting

Chapter 14 troubleshooting

403

NMS configuration database

 Enabled: true

 Status: running PID:5617 for 55s

NMS coordination server

 Enabled: true

 Status: running PID:5629 for 55s

NMS messaging server

 Enabled: true

 Status: running PID:7558 for 39s

NMS statistics database

 Enabled: true

 Status: running PID:3090 for 68s

NMS data collection agent

 Enabled: true

 Status: not running

NMS cloud agent

 Enabled: true

 Status: running PID:474 for 84s

NMS container manager

 Enabled: false

 Status: not running

NMS SDAVC proxy

 Enabled: true

 Status: running PID:556 for 84s

vManage02#

Or we can check the status of an individual service:

vManage02# request nms application-server status

NMS application server

 Enabled: true

 Status: waiting

vManage02#

Chapter 14 troubleshooting

404

To resolve this issue, make sure you allow the Netconf under VPN 0:

vManage02# config

Entering configuration mode terminal

vManage02(config)# vpn 0

vManage02(config-vpn-0)# interface eth1

vManage02(config-interface-eth1)# tunnel-interface

vManage02(config-tunnel-interface)# allow-service netconf

vManage02(config-tunnel-interface)#

Also check, if you are running in a cluster environment, that both

devices can reach each other. While this may seem obvious, assumption

is, as they say, the mother of all mistakes. I ran into this when the switch in

VPN 0 was turned off and neither cluster member could fully start.

To aid us in our troubleshooting, vManage provides many logs in /var/

log/nms, which we can access by dropping into the vshell and reading the

logs as we would on any normal Linux machine:

vManage01# vshell

vManage01:~$ cd /var/log/nms

vManage01:/var/log/nms$ tail vmanage-elastic-cluster.log

 [2020-05-11T11:43:26,463][WARN][o.e.d.z.ZenDiscovery]

[vManageNode0] not enough master nodes discovered

during pinging (found [[Candidate{node={vManageNode0}

{o0B6ogMoStawKKPsV28zcg}{GiFx8gIBRxC9ryTVCpacFg}{10.1.1.2}

{10.1.1.2:9300}, clusterStateVersion=-1}]], but needed [2]),

pinging again

[2020-05-11T11:43:31,046][INFO][o.e.c.s.ClusterService]

[vManageNode0] detected_master {vManageNode1}

{NHvIaYDGSOK4AmGyVjHgeQ}{LVpacoUwTFmioNM8R6oq9Q}{10.1.1.22}

{10.1.1.22:9300}, added

vManage01:/var/log/nms$

Chapter 14 troubleshooting

405

We need both members of the cluster to be up and running when the

vManage servers are started together.

Once the two vManage servers could talk to each other, the application

server started:

vManage01# request nms application-server status

NMS application server

 Enabled: true

 Status: running PID:32725 for 137s

vManage01#

 Troubleshooting vBond
As I stated, way back in Chapter 5, if you have the tunnel interface running

on the VPN 0 interface, you will get an error when adding vBond to

vManage (Figure 14-1).

Figure 14-1. vBond Java error

Chapter 14 troubleshooting

406

In the original configuration, the tunnel interface was declared:

vBond01# sh run vpn 0

vpn 0

 interface ge0/0

 ip address 10.1.1.3/24

 ipv6 dhcp-client

 tunnel-interface

 encapsulation ipsec

 no allow-service bgp

 allow-service dhcp

 allow-service dns

 allow-service icmp

 allow-service sshd

 no allow-service netconf

 no allow-service ntp

 no allow-service ospf

 no allow-service stun

 allow-service https

 !

 no shutdown

 !

!

vBond01#

We need to remove it:

vBond01# config

Entering configuration mode terminal

vBond01(config)# vpn 0

vBond01(config-vpn-0)# interface ge0/0

vBond01(config-interface-ge0/0)# no tunnel-interface

vBond01(config-interface-ge0/0)# end

Chapter 14 troubleshooting

407

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vBond01#

Another error I faced was that when adding vBond (to vManage), I was

informed that we “Cannot add vEdge as controller” (Figure 14-2).

The reason for this is that we have missed out the vBond command, so

it is defaulting to ZTP mode:

vBond01# sh run

system

 host-name vBond01

 system-ip 100.1.1.3

 site-id 100

 admin-tech-on-failure

Figure 14-2. Cannot add vEdge as a controller

Chapter 14 troubleshooting

408

 no route-consistency-check

 organization-name Learning_SD-WAN

 vbond ztp.viptela.com

To fix this, we just need to add the “vBond x.x.x.x local” command

(the “vbond-only” is optional):

vBond01(config)# system

vBond01(config-system)# vbond 10.1.1.3 local vbond-only

vBond01(config-system)# end

Uncommitted changes found, commit them? [yes/no/CANCEL] yes

Commit complete.

vBond01# sh run system

system

 host-name vBond01

 system-ip 100.1.1.3

 site-id 100

 admin-tech-on-failure

 no route-consistency-check

 organization-name Learning_SD-WAN

 vbond 10.1.1.3 local vbond-only

 aaa

 auth-order local radius tacacs

 usergroup basic

 task system read write

 task interface read write

 !

 usergroup netadmin

 !

 usergroup operator

 task system read

 task interface read

Chapter 14 troubleshooting

409

 task policy read

 task routing read

 task security read

 !

Aborted: by user

vBond01#

During the writing of this book, I spent two or three days going over

the same issue. I had added the vBond controller, completed the certificate

enrolment and assignment. Still, the vBond was not showing the hostname

nor the system IP in vManage. I repeated the process, several times, with

the same result (Figure 14-3).

I had full connectivity (as shown by a ping) and even ran Wireshark,

where I could see the SSH traffic when removing and adding the vBond

controller. All looked fine.

Eventually, I went onto the CLI and added the vBond IP onto the

vManage server:

vManage01(config)# system vbond ?

Description: IP address/DNS name

Possible completions:

 <DNS name>

 <IP address>

 port vBond server port

vManage01(config)# system vbond 10.1.1.3 ?

Figure 14-3. No vBond. I expect you to populate

Chapter 14 troubleshooting

410

Possible completions:

 port vBond server port

 <cr>

vManage01(config)# system vbond 10.1.1.3

vManage01(config-system)# commit

Commit complete.

vManage01(config-system)#

It is important to note that this had already been performed in

Chapter 5 and even showed in the CLI configuration on vManage01;

hence, it was not the first thing I tried.

So, it just goes to show that although it is shown in the GUI and CLI, it’s

worth adding it again, just to make sure!

 Troubleshooting vSmart
Similar to the previous vBond issue, you may find that vSmart is not

updating with its details in vManage (Figure 14-4).

This was due to the system IP missing not being entered:

vSmart01(config-system)# system-ip 100.100.1.4

Figure 14-4. vSmart details missing in vManage

Chapter 14 troubleshooting

411

 Troubleshooting Edge Devices
If the vEdge device does not have the same root CA certificate as the one

used by vBond, then it will not be able to authenticate. We can see this

traffic in Wireshark (Figure 14-5).

If we do not have Wireshark handy to help us diagnose such issues,

then we have to remember the steps taken in authentication and check

that we have the same certificate (I have truncated the output for

formatting):

CSR-1#show sdwan certificate root-ca-cert | i Issuer

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: OU=Arcturus, O=Cisco

 Issuer: OU=Arcturus, O=Cisco

 Issuer: C=US, O=Symantec Corporation

 Issuer: C=US, O=Symantec Corporation

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=DigiCert Inc

CSR-1#

Figure 14-5. Certificate issues

Chapter 14 troubleshooting

412

As we can see, we do not have the proper root CA. Once we have

copied that over, check that it is there:

CSR-1#show sdwan certificate root-ca-cert | i Issuer

 Issuer: C=UK, ST=London, L=London, O=Learning_SD-WAN,

OU=Learning_SD-WAN, CN=vManage01

 Issuer: C=US, O=DigiCert Inc

 Issuer: OU=Arcturus, O=Cisco

 Issuer: OU=Arcturus, O=Cisco

 Issuer: C=US, O=Symantec Corporation

 Issuer: C=US, O=Symantec Corporation

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=VeriSign, Inc.

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=DigiCert Inc

 Issuer: C=US, O=DigiCert Inc

CSR-1#

This troubleshooting step was brought to you as I missed the “Failed”

message when SCP’ing the CA.crt across to the CSR1000v using the same

syntax as the vEdge routers. Always check the output!

Another issue I faced was that I lost communications with the vEdge

devices, as all the interfaces lost their static IP addresses:

interface GigabitEthernet1

 no shutdown

 arp timeout 1200

 ip address dhcp client-id GigabitEthernet1

 ip redirects

 ip dhcp client default-router distance 1

Chapter 14 troubleshooting

413

 ip mtu 1500

 mtu 1500

 negotiation auto

exit

This was due to a badly configured template, which reverted all the

interfaces to use DHCP. Trying to troubleshoot this, I could see that the

vEdges had lost their connection to the vSmart controller, which we can

see from the CSR router:

CSR-1#show sdwan omp summary

oper-state UP

admin-state UP

personality vedge

omp-uptime 0:00:28:47

routes-received 0

routes-installed 0

routes-sent 0

tlocs-received 2

tlocs-installed 2

tlocs-sent 0

services-received 0

services-installed 0

services-sent 0

mcast-routes-received 0

mcast-routes-installed 0

mcast-routes-sent 0

hello-sent 4

hello-received 1

handshake-sent 1

handshake-received 1

alert-sent 1

Chapter 14 troubleshooting

414

alert-received 0

inform-sent 3

inform-received 3

update-sent 0

update-received 2

policy-sent 0

policy-received 0

total-packets-sent 9

total-packets-received 7

vsmart-peers 0

CSR-1#

CSR-1#show sdwan omp peers

R -> routes received

I -> routes installed

S -> routes sent

 DOMAIN OVERLAY SITE

PEER TYPE ID ID ID STATE UPTIME R/I/S

--

100.100.1.4 vsmart 1 1 100 init-in-gr 0/0/0

CSR-1#

We can also see this reflected in the dashboard (Figure 14-6).

Clearly, we cannot apply a new template, as we have no control plane

connectivity to the vEdges with which to push a new template. We could

manually input the IP address again, but this may cause vManage to push

Figure 14-6. No vSmarts

Chapter 14 troubleshooting

415

the same badly configured template to the devices. Changing the template

before setting the IP address has issues, as making template changes tends

to not work if vManage cannot complete the process and push the changes

to the attached devices. The answer, in this case, was to delete the edge

devices from the devices list; this will detach it from any templates allowing

you to make the manual changes and then add it back in again. You can

also detach them from the device template to achieve the same goal.

 Troubleshooting Certificate Issues
Issues with certificates can be your worst enemy. Guard your certificates

carefully, love them, nurture them, and make sure that if they are due to

expire, you give yourself plenty of time to replace them!

The CA certificate expired during the writing of this book, so I had to

go through the process of updating the CA on the vManage server, then

invalidate the vBond and vSmart, and re-add them.

Thankfully, updating the edge devices is not hard; once you update

the CA certificates on the edge devices, they will sync up to the rest of the

network.

However, once you then send the device list to vBond (which was done

for us automatically in Chapter 5 when we added the vBond device), you

will need to remove and re-add the edge devices.

Properly managed though, renewing certificates should only result in a

short blip in communications while the new certificate takes over from the

old certificate. You just need to regenerate the CSRs, sign them, and upload

the new certificate before the old one expires!

To put it bluntly, certificate expiration can bring down the entire

network. It’s scary but true.

Chapter 14 troubleshooting

416

 vManage Troubleshooting Tools
vManage comes with some inbuilt tools to make our life a little easier.

To access them, head to Monitor ➤ Network and select a device, and

then scroll down to Troubleshooting, where you will see options for

troubleshooting Connectivity or Traffic (Figure 14-7).

If we select the Ping option, we can specify the destination IP, the VPN

to use, and the source interface (Figure 14-8).

Figure 14-7. Troubleshooting options

Chapter 14 troubleshooting

417

Once we press “Ping,” the results are shown in the lower half of the

page (Figure 14-9).

On the traffic side of the page, we can look at our tunnel health, which

shows us (by default) the traffic loss between the selected router and

another router (Figure 14-10). Clicking the Chart Options link allows us to

select Latency/Jitter or the Octets (the amount of traffic sent).

Figure 14-8. Ping!

Figure 14-9. Pong!

Chapter 14 troubleshooting

418

We can also simulate traffic flows within our network by setting the

5-tuple details (source IP address, destination IP address, source port,

destination port, and protocol), along with the application and DSCP

value, and clicking “Simulate” (Figure 14-11).

Figure 14-10. The traffic loss

Figure 14-11. The 5-tuple combination needed for simulating
traffic

Chapter 14 troubleshooting

419

In the following box will be the results, showing which VPN will be

used, the remote system that it will end up on, and the encapsulation

(Figure 14-12).

There are some hidden troubleshooting options though, which can

be revealed if we go to Administration ➤ Settings and then scroll down

to “Data Stream.” Set the option to be enabled, and then enter the VPN

and IP address of the vManage server that the data stream will be sent

to (Figure 14- 13). Click Save. This allows extra features, such as packet

capture, speed tests, and debug logs.

Figure 14-12. Simulation complete

Figure 14-13. The data stream options

Chapter 14 troubleshooting

420

We now have more troubleshooting options, such as packet capture

(Figure 14-14).

We will finish the chapter by performing a packet capture, because as

the saying goes “PCAP, or it never happened.” Click Packet Capture, and

then select the VPN and interface (Figure 14-15). We can use additional

traffic filters to set a 5-tuple if we want to be very specific about the traffic

we are capturing.

Figure 14-14. More troubleshooting options

Figure 14-15. The packet capture settings

Chapter 14 troubleshooting

421

Once the capture starts, it will run for either five minutes, or once

the capture file reaches a size of 5MB. You can also stop it manually

(Figure 14- 16).

Once the capture stops, vManage will prepare the file for downloading,

and then you can download it. The filenames are very long, so you may

want to rename them. The capture is saved as a PCAP file, so will be

readable in Wireshark, or TCPDump. Using the latter, we can read the file

using the command “sudo tcpdump -ttttnnr <filename>” (Figure 14-17).

Figure 14-16. The capture in progress

Chapter 14 troubleshooting

422

As you can see from Figure 14-17, the majority of our traffic is the

SD- WAN background traffic, with a ping at the bottom, so unless you

want to wade through this “noise” during your troubleshooting, then

using the traffic filters is strongly recommended!

 Summary
In this final chapter, we looked at troubleshooting options, starting with the

basic tools of ping and traceroute. We then moved on to common issues

with vManage, vBond, and vSmart, before moving on to troubleshooting

edge devices. We looked at certificate issues and then finished by playing

with the troubleshooting tools that vManage gives us.

I hope you have enjoyed the book.

—Stuart

Figure 14-17. The nicely readable PCAP

Chapter 14 troubleshooting

423© Stuart Fordham 2021
S. Fordham, Learning SD-WAN with Cisco, https://doi.org/10.1007/978-1-4842-7347-0

Index

A
Accept, action to, 300
Access control lists (ACLs), 7
Administrative distance (AD), 274
Amazon Web Services (AWS), 2
api-user-admin, 397
Application Visibility and

Control (AVC), 6
Audit log, 380
Autonomous systems (AS), 249

B
BGP network, 247, 248

color change, 250, 251
Loopback template, 259
template, 260
updated, 261

Bidirectional Forwarding
Detection (BFD), 116, 117

biz-internet, 249, 264, 273
biz-internet OMP connection, 267
Blocked session information, 374

C
Capitalization errors, 242
CA-signed certificate, 394

cEdge devices, 241
cEdge templates

c-AAA, 198
configuration, 207, 208
configuring device, 207
CSR, 217, 218
CSR-1, 204, 205, 219
CSV file, 202, 203, 206
c-v-Banner, 199
c-VPN0 template, 215
default route, 210
feature, 197, 198, 211
hop, 214
IPv4 routes, 213
NETCONF/SSH, 212
SD-WAN configuration, 209
t-CSR1000v, 198
VPN, 213, 216
VPN interface, 200, 201

Centralized policies, 304, 306
Certificate authority (CA), 57, 58, 99
Cisco IOU, 17
CLI Add-On Template, 344, 347
CLI Policy, 317, 318, 320, 321, 323
c-Loopback3, 289
Constraint-Based

Routing (CBR), 2
CSR-1 NAT, 341, 342, 344

https://doi.org/10.1007/978-1-4842-7347-0#DOI

424

CSR_c-VPN0 template, 348
CSR router, 364
CSR_t-CSR1000v template, 344
c-v-OSPF feature template, 290

D
Datagram Transport Layer

Security (DTLS), 13, 105
Data policy, 296, 310, 312
Data stream options, 419
Destination Data

Prefix, 312, 356, 360
Device model, 187, 221, 271
Device-specific information, 272
Differentiated services code point

(DSCP), 5, 310–312, 314
Direct Internet Access (DIA), 351
Dynamic Multipoint

VPN (DVPN), 5

E, F
Edge device

authentication, 171–173
bootstrap configuration, 151, 152
cloud, 173–180
CSR1000v, 164–167, 169–171
Linux device, 153
list, 154
network monitor

window, 161, 162, 164

OTP, 153
pining ISP-R, 160
SSH, 153
vBond/vSmart

devices, 150
vEdge01 device, 158, 159
vEdge router, 149, 150
vManage, 154
VPNs, 156
vSmart controller, 155–157
WAN, 161
ZTP, 180–182

Email notifications, 377–379
Emulated Virtual Environment

Next Generation
(EVE-NG), 15

configurations, 44–46
definition, 17
DNS domain name, 24
ESXi/KVM, 47
hardware resource

requirements, 18
hostname, 21
importing lab file, 44
install screen, 19
login screen, 27
logon screen, 22
proxy configuration, 26
proxy information, 22
topology, 42, 43
UNetLab, 17
versions, 17

INDEX

425

G, H
GigabitEthernet3, 287, 288, 290
Groups of Interest, 295, 306, 307

I, J, K
Internet access

direct, 351
join ISP-R, 338
settings, 337
test connectivity, 339
zone pairs, 352, 354

L
Linux node, 337, 339
Localized control policies, 287
Localized data policy, 296
Localized policies, 119, 287, 294
Logging template, 381, 383

M
Maintenance window, 390, 391
Management Information

Base (MIB), 386
Match options, 298
MPLS configuration, 254
MPLS interface, 253
MPLS-Int-vEdge

template, 252, 267, 270
Multiprotocol Label Switching

Traffic Engineering
(MPLS-TE), 2

N
NAT configuration, 326, 346
Network Configuration Protocol

(NETCONF), 101, 118, 119
Network Management

System (NMS), 14

O
Object identifier (OID), 386
Orchestration servers, 256, 266
OSPF network

adding interface, 233
adding service VPN, 236
advertising, 234
advertising into OMP, 237
area, 232
cEdge devices, 241
CSR-1, 236
loopback interface, 230
new service VPN, 243
OMP template, 229, 230, 235
routing declarations, 238
service VPN settings, 236
template, 232
t-vEdge template, 242
vEdge devices, 240, 243
VPN interface, 231

Overlay Management
Protocol (OMP), 13

definition, 106
functions, 106, 107
routes/vroutes, 108
service routes, 110–112

INDEX

426

P
Packet capture, 419, 420
Performance Routing Version 3

(PfRv3), 5
Policy-based routing (PBR), 2
Prefix list, 295, 296, 298, 299
Private colors, 114, 265
Public colors, 265

Q
qemu-img command, 94
Quality of service (QoS), 2, 282,

283, 310

R
Readable PCAP, 422
Representational State Transfer

Application Programming
Interface (REST API), 332,
392, 393, 395

api2 user, 398
create user, 399
session error, 396
session token, 396

Resource Reservation
Protocol (RSVP), 2

Route policy, 302, 303

S
Software-defined networking in a

wide area network
(SD-WAN)

adding CSR devices, 36, 37
application versions, 40
Cisco, 5–7
components

vBond, 14
vEdge/cEdge, 11, 12
vManage, 14
vSmart, 12, 13

connect portal, 29
controller profile, 4, 31, 32, 34
definition, 3
directory, 42
disruption, 1
edge device, 4
Email confirmation, 35
experience latency, 1
MEF, 3
network, 283
provisioning file, 38
requirements, 3
routing preference, 274, 275
software devices, 33
Ubuntu image, 40
vBond, 30
vEdge, 34, 35
version, 39
Viptela, 8–10
virtual account, 28
vManage, 41

Security policy, 350, 360, 363
“show omp routes” command, 158
“show omp routes received”, 162
“show orchestrator connections”,

130

INDEX

427

Simple Network Management
Protocol (SNMP), 383, 384

community, 388
module security level, 385
OID, 387
read-only view, 386, 388
trap group, 386
trap module, 385
trap target, 389

Site list, 307, 308, 312
Subsequent Address Family

Identifier (SAFI), 112
Syslog server, 382

T
Telnet, 350, 369
Templates

AAA authentication, 193
admin user, 191
creating, 187
CSR-1, 184
CSR1000v, 188
CSR router, 189
defaults, 186
location/baud rate, setting, 196
login banner template, 193, 194
router console, 185
select device, 187
system, 195
types, 186
v-AAA, 190
vEdge

add devices, 224

cloud, 188, 221
configuration push, 225, 226
list, 221
screenshots, 219
setting banner, 223
t-vEdge, 221
user, 192
VPN, 222

vEdge02, 183
Three-letter acronyms (TLAs), 4
Traceroutes, 402
Transport Location (TLOC), 103,

112–116
t-vEdge device, 262

U
Umbrella servers, 348
Underlay Connectivity

Service (UCS), 4
Upgrades, 325

activate images, 328, 329
add images, 326, 327
CLI, 329, 330, 332–334
images, 328
SCP, 335

URL filtering policy, 358, 359, 374

V
“validate” command, 52
vBond, 405

configuration
adding to vManage, 123–131

INDEX

428

hostname, 121
network, 122

controller, 409
deployments

KVM, 136
VMWare, 131–134

vEdge, 407
Cloud devices, 239, 240
configurations, 275
device, 240, 253, 411–413, 415
vEdge-VPN2, 261

Verification commands, 370
Viptela, 8, 11, 38, 173
Virtual port groups, 367
Virtual routing and forwarding

(VRF), 238, 246
vManage, 416, 417

certificates
API, 64
CA, 57–59
controllers, 61
CSR, 62
synchronize, 63
VPN 0 tunnel

interface, 57
clustering

editing server, 68
EVE-NG, 71
IP address, 69
localhost, 68
node, 72
rebooting, 69, 76

servers, 77
telnet connection, 74, 75

datastore, 82
dashboard, 256
definition, 49
disk formats, 82
disk size, 89
ESXi host, 81
ethernet adapter, 92
hard disk, 87
hardware, 86
hardware changes, 94
IDE, 90
installation, 49, 50, 52–57
KVM, 94, 95
mode, 286
OVF templates, 79, 80
selecting network, 93
server, 84, 336, 402, 404, 405
single-and multi-tenancy

options, 78
users, 64, 66
Vipetela serial file, 95–99
virtual machine name, 81
VM settings, 85
VMWare, 79

VPN connections
0, 102–104
512, 101, 102
DTLS, 105
lists, 308
membership

policy, 309, 314

vBond (cont.)

INDEX

429

vSmart, 410
authentication/validation,

145, 146
CA certificates, 139–142, 144, 145
configuration, 137, 138
controller, 305
deployments, 147
mode error, 283
template, 285

W, X, Y
Wide Area Application

Services (WAAS), 6

Z
Zero-touch provisioning (ZTP),

180–182

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to SD-WAN
	The Traditional Network
	SD-WAN
	Cisco and SD-WAN
	Viptela
	Components of a Cisco SD-WAN
	vEdge and cEdge
	vSmart
	vManage
	vBond

	Summary

	Chapter 2: Deployment Overview
	EVE-NG
	Getting the SD-WAN Software
	Topology
	Importing the Lab File
	Initial Configurations
	R1
	ISP-R
	MPLS-R

	ESXi and KVM Configuration
	Summary

	Chapter 3: Deploying vManage
	Installing vManage
	Certificates
	Users
	vManage Clustering
	Single- and Multi-tenancy Options
	Alternative vManage Deployments
	VMWare
	KVM

	The Viptela Serial File
	Summary

	Chapter 4: Understanding the Overlay
	VPN 512
	VPN 0
	DTLS
	OMP
	OMP Routes/vRoutes
	Service Routes

	TLOC
	BFD
	NETCONF
	Summary

	Chapter 5: Deploying vBond
	Basic vBond Configuration
	vBond Network Configuration
	Adding vBond to vManage

	Alternative vBond Deployments
	VMWare
	KVM

	Summary

	Chapter 6: Deploying vSmart
	vSmart Basic Config
	vSmart Certificates
	vSmart Authentication and Validation
	Alternative vSmart Deployments
	VMWare
	KVM

	Summary

	Chapter 7: Edge Devices
	CSR1000v
	vEdge Authentication
	Alternative vEdge Deployments
	vEdge in the Cloud

	Preparing vEdge for ZTP
	Summary

	Chapter 8: Templates
	Creating Templates
	cEdge Templates
	vEdge Templates
	Summary

	Chapter 9: Routing
	OSPF
	BGP
	Public and Private
	SD-WAN Routing Preference
	Configuration to Template Overview
	Summary

	Chapter 10: Policies and Quality of Service
	Configuring Policies Through vManage
	Localized Policies
	Centralized Policies

	Configuring Policies Through the CLI
	Summary

	Chapter 11: Upgrades
	Managing Software Images
	Adding Images to the Repository
	Upgrading Images
	Activating Software Images
	Upgrading via the CLI

	Troubleshooting Image Upgrades
	Summary

	Chapter 12: Security
	Setting Up Internet Access
	Linux VM
	CSR-1 NAT
	Applying Security Rules
	URL Filtering
	Summary

	Chapter 13: Management and Operations
	Email Alerts
	Audit Logs
	Syslog
	SNMP
	Maintenance Windows
	REST API
	Summary

	Chapter 14: Troubleshooting
	Basic Troubleshooting Techniques
	Pinging

	Traceroute
	Troubleshooting vManage
	Troubleshooting vBond
	Troubleshooting vSmart
	Troubleshooting Edge Devices
	Troubleshooting Certificate Issues
	vManage Troubleshooting Tools
	Summary

	Index

