

VMware vSAN 8.0 U1 Express Storage
Architecture Deep Dive

Duncan Epping Cormac Hogan
Pete Koehler

Copyrights and disclaimer

VMware vSAN 8.0 Update 1, Express Storage Architecture, Deep Dive

Copyright © 2023 by Cormac Hogan, Duncan Epping, and Pete
Koehler.

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, or otherwise, without written permission from the
publisher and authors. No patent liability is assumed on the use of
the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein. This book contains references to the
word master. We recognize this as an exclusionary word. The word is
used in this book for consistency because it appears, at the time of
writing, in the output of CLI commands, and the log files.

All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. The use of a term
in this book should not be regarded as affecting the validity of any
trademark or service mark.

Cover design by Aaron Epping (AaronEpping.nl).

Dedication

“The average person can only keep 7 (plus or minus 2) items in their
working memory”

“Miller’s Law”

“In a matter of time, you're out in the open You shall prove yourself in
the bitter end But for now, brace yourself”

“Hold on” by Gojira

Preface

Welcome to the latest in our series of vSAN Deep Dive books. In this
book, the focus is solely on the new vSAN Express Storage
Architecture (ESA). The authors debated long and hard on how to
approach this book. The crux of the debate was around whether or
not we should continue to include the traditional vSAN architecture,
now officially referred to as the Original Storage Architecture (OSA).
Considering how many caveats and breakouts we would have to make
to explain if something applies to the ESA, the OSA or both, we
decided to forego the inclusion of references to the vSAN OSA. The
deciding factor was based on the fact that the contents of the
previous vSAN Deep Dive book, which was written for version 7.0U3,
did not change significantly in the 8.0 release. Thus, we made an
“executive decision” to focus on the Express Storage Architecture.
We hope the title of the book reflects that. However, as you might
expect, there are regular comparisons between ESA and OSA
throughout the book, especially when there is a significant change in
behavior.

Now, you might be wondering if the vSAN Express Storage
Architecture is going to provide a completely different User
Experience (UX). This is especially relevant if you are familiar with the
Original Storage Architecture (OSA) and have been operating vSAN

infrastructure for many years. The answer is a resounding NO. One of
the guiding principles in the vSAN ESA design was to keep a similar
if not identical user experience. Therefore, you will notice that many
of the workflows that you already know from vSAN OSA will remain
the same in vSAN ESA. But, of course, there are some significant
changes to allow the vSAN ESA leverage the performance
capabilities of the latest storage and networking technologies. Many
of these enhancements to vSAN ESA are not visible via the User
Interface (UI) but will be noticeable when workloads are deployed.
The authors will be spending a significant amount of time explaining
how the new vSAN ESA has been architected to benefit from these
new device capabilities, while at the same time ensuring that these
devices are used optimally to maximize durability and lifespan.

With that said, many of the traditional storage challenges outlined in
previous vSAN Deep Dive books continue to be relevant today.
Storage continues to be a pain point in many organizations. The
reasons are still varied, ranging from the operational effort, or
complexity, to performance problems, or even availability constraints.
The software-defined datacenter, software-defined networking, and
software-defined storage via vSAN all helped to alleviate many of
these challenges for our customers. In this book, you will see how the
next iteration of vSAN architecture continues to help customers to
overcome the aforementioned storage challenges while leveraging
some of the latest and greatest hardware functionality.

You, the reader

This book is targeted at IT professionals who are involved in the care
and feeding of a VMware vSphere environment. Ideally, you have
been working with VMware vSphere for some time and perhaps you
have attended an authorized course in vSphere, such as the “Install,
Configure, and Manage” class. This book is not a starters guide, it is

a deep dive. However, there should be enough information in the
book for administrators and architects of all levels.

About the authors

Cormac Hogan is a Chief Technologist in the Office of the CTO in
the Cloud Infrastructure Business Group at VMware, focusing
predominantly on Kubernetes platforms running on vSphere. Cormac
has previously held roles in VMware’s Technical Marketing,
Integration Engineering and Support organizations. Cormac is the
owner of CormacHogan.com, a blog site dedicated to storage,
virtualization and container orchestration. He can be followed on
Twitter @CormacJHogan.

Duncan Epping is a Chief Technologist working for VMware in the
Office of CTO of the Cloud Infrastructure Business Group. Duncan is
responsible for ensuring VMware’s future innovations align with
essential customer needs, translating customer problems to
opportunities and functioning as the global lead evangelist for Cloud
Infrastructure. Duncan is the owner of VMware Virtualization blog
Yellow-Bricks.com, the host of the Unexplored Territory Podcast
(UnexploredTerritory.tech), and the author of the “vSphere Clustering
Deep Dive” book series. He can be followed on Twitter @DuncanYB.

Pete Koehler is a Staff Technical Marketing Architect working for
VMware in the Cloud Infrastructure Business Group at VMware. With
a primary focus on vSAN, much of Pete's experience in infrastructure
design and optimization came from hands-on experience as a

https://cormachogan.com/
https://twitter.com/cormacjhogan
http://www.yellow-bricks.com/
https://unexploredterritory.tech/
https://twitter.com/duncanyb

customer, consultant and later as an engineer for a VMware reseller
and VMware partner. You can find all of Pete's latest content related
to vSAN out on https://core.vmware.com/users/pete-koehler. He can
be followed on Twitter @vmpete.

https://core.vmware.com/users/pete-koehler
https://twitter.com/vmpete

Acknowledgements

We would like to thank our VMware Management team for supporting
us on this project. A special thanks goes out to our technical reviewer
Jitender Rohilla, thanks for keeping us honest and for contributing to
this book. We also would like to thank everyone for supporting us by
buying this book, attending our sessions at VMUGs and VMware
Explore, reading our blogs, and listening to our podcasts. We truly
appreciate it.

Foreword

Welcome to the world of VMware vSAN and hyperconverged
infrastructure (HCI)! Since the initial release of vSAN in 2014, we
have made remarkable progress, and I am thrilled to introduce the
next evolution in vSAN architecture. Our pioneering software-based
storage solution has transformed data center modernization,
enabling a new category of deploying infrastructure called HCI.
Traditional purpose-built hardware and specialized appliances were
no longer economically viable options for many of our customers,
leading to the emergence of software-defined services built on
standard x86 servers, significantly reducing operational overhead
and cost of ownership.

Today, VMware HCI is the deployment model of choice for over
30,000 customers, hosting exabytes of data. Over the years, vSAN
has continued to deliver new innovations, such as HCI Mesh, vSAN
File Services, Data Persistence platform, and Cloud Native Storage
control plane. Now, we stand at the precipice of yet another leap in
the evolution of vSAN. With the emergence of NVMe-based flash
devices and newer solid-state devices such as QLC flash, we saw this
shift as an inflection point for the vSAN architecture, providing the
opportunity to evolve the vSAN architecture with these new devices
as the primary design point.

This new architecture, called vSAN Express Storage Architecture
(vSAN ESA), offers a significant leap in terms of performance, scale,
and enterprise features, providing the highest performance and
flexibility required by IT admins and developers. With a brand new
log-structured file system, including built-in snapshots, vSAN ESA
provides the level of resiliency needed for the most demanding
workloads. We believe that vSAN ESA can be a fundamental building
block for your own multi-cloud infrastructure.

In this book, Cormac, Duncan, and Pete provide valuable insights and
guidance on how to leverage these capabilities to get the most out of
vSAN ESA. Their expertise will help you navigate this ever-evolving
technology landscape, unlocking the full potential of vSAN for your
organization. We hope you find this book informative and insightful,
and we look forward to continuing to innovate and serve our
customers in the years to come.

Vijay Ramachandran

VP, Product Leader, Storage, VMware

Contents

1. Introduction to VMware vSAN
Software-Defined Datacenter
Software-Defined Storage
Hyperconverged/Server SAN Solutions
Introducing VMware vSAN
What is vSAN?
What does vSAN look like to an administrator?
Summary

2. vSAN Prerequisites and Requirements
VMware vSphere
ESXi
Capacity devices
ESXi boot considerations
VMware Hardware Compatibility Guide
vSAN ReadyNode
NVMe
Storage Controllers
Storage Pools
Network Requirements
Network Interface Cards
Supported Virtual Switch Types
NSX Interoperability
Layer 2 or Layer 3
VMkernel Network
vSAN ESA Network Traffic
Jumbo Frames
NIC Teaming
NIC Teaming - Performance vs. Availability
Network I/O Control
Firewall Ports
vSAN Stretched Cluster
vSAN 2-Node Remote Office/Branch Office (ROBO)
vSAN Fault Domains
vSAN ESA Requirements
Summary

3. vSAN Installation and Configuration
Cluster Quickstart

Cluster Quickstart Wizard
Networking
VMkernel Network for vSAN
VSS vSAN Network Configuration
VDS vSAN Network Configuration
Port Group Port Allocations
TCP/IP Stack
IPv4 and IPv6
Network Configuration Issues
Network I/O Control Configuration Example
Network I/O Control
Design Considerations: Distributed Switch and Network I/O Control
Scenario 1: Redundant 25GbE Switch Without “Link Aggregation” Capability
Explicit Failover Order
Scenario 2: Redundant 25 GbE Switch with Link Aggregation Capability
vSAN over RDMA
vSphere High Availability
vSphere HA Communication Network
vSphere HA Heartbeat Datastores
vSphere HA Admission Control
vSphere HA Isolation Response
Key Takeaways
Proactive HA support
vSphere HA VM Component Protection (VMCP)
Storage Pool
vSAN Datastore Properties
Summary

4. Architectural Details
Distributed RAID
Objects and Components
Component Limits
Virtual Machine Storage Objects
Namespace Object
Virtual Machine Swap Object
VMDKs
Witnesses and Replicas
Performance Stats DB Object
Object Layout
vSAN Object Formats
vSAN Software Components
Component Management
Data Paths for Objects
Object Ownership and Interaction

Placement and Migration for Objects
Cluster Monitoring, Membership, and Directory Services
Host Roles
Reliable Datagram Transport
On-Disk Formats and Disk Format Changes (DFC)
On-Disk Formats in the vSAN OSA
On-Disk Formats in the vSAN ESA
vSAN I/O Flow
Data Caching and Buffering Concepts
Data Caching and Buffering in the vSAN OSA
Data Caching and Buffering in the vSAN ESA
Anatomy of a vSAN Read on the vSAN ESA
Anatomy of a vSAN Write on the vSAN ESA
Adaptive Write Paths
Data Compression
Data Integrity through Checksum
vSAN Encryption
vSAN Encryption vs vSphere VM Encryption
Encryption Key Providers
Data Locality
Content Based Read Cache
Data Locality in vSAN Stretched Clusters
Data Locality in Shared Nothing Applications
Recovery to Regain Levels of Compliance
Degraded Device Handling (DDH)
vSAN Storage Services
iSCSI Targets and LUNs
vSAN File Service
vSAN HCI Mesh
Summary

5. VM Storage Policies and VM Provisioning
Introducing Storage Policy-Based Management in a vSAN Environment
Storage rules
Failures to tolerate
Recommended Practice for Failures to Tolerate
RAID-5 and RAID-6
Number of Disk Stripes Per Object
RAID-0 used when no Striping is specified in the Policy
Stripe Width Maximum
Stripe Width Configuration Error
IOPS Limit for Object
Flash Read Cache Reservation
Object Space Reservation

Force Provisioning
Disable Object Checksum
VM Home Namespace
VM Swap Revisited
Snapshot Changes
VASA Vendor Provider
An Introduction to VASA
Storage Providers
vSAN Storage Providers: Highly Available
Assigning a VM Storage Policy during VM Provisioning
Virtual Machine Provisioning
Policy Setting: Failures to Tolerate = 1, RAID-1
Policy Setting: RAID-5
Policy Setting: RAID-6
Default Policy
Failure Scenarios
Example 1: Failures to Tolerate = 1, RAID-1
Example 2: Failures to Tolerate = 1 and RAID-5
Changing VM Storage Policy On-the-Fly
Summary

6. vSAN Operations
Skyline Health
Skyline Health Engine
Skyline Health Dashboard
Weighted Health Findings
Cluster Health Score and Health Score Trend
Health Alerting and Remediation
Health History and Data Retention
In-Product versus Online Health Findings
Skyline Health and CEIP
Proactive Tests
Performance Service
Performance Diagnostics
Network Monitoring
vSAN IOInsight
I/O Trip Analyzer
Host Management
Adding Hosts to the Cluster
Removing Hosts from the Cluster
Maintenance Mode and Host Locality
Default Maintenance / Decommission Mode
Maintenance Mode for Updates and Patching
Maintenance Mode and vSphere Lifecycle Manager

Multiple hosts in Maintenance Mode simultaneously
Maintenance Mode Pre-Check
Stretched Cluster Site Maintenance
Shutting down a cluster
Upgrade Considerations
Storage Device Management
Adding Storage Devices for use by vSAN
Removing Storage Devices used by vSAN
Erasing a Storage Device
Turn on the LED on an NVMe device
vSAN Capacity Monitoring and Management
Capacity Overview
Operations reserve and Host rebuild reserve
What If Analysis / Thin Provisioning Considerations
Usage breakdown
Storage Device Full Scenario
UNMAP Support
vCenter Server Management
Running vCenter Server on vSAN
vSAN Storage Services
vSAN iSCSI Target Service
Enable vSAN iSCSI Target Service
Create a vSAN iSCSI Target
Create a vSAN iSCSI LUN
Create a vSAN iSCSI Initiator Group
vSAN iSCSI Target Service and vSAN Stretched Cluster
vSAN File Service
vSAN HCI Mesh / Remote vSAN Datastores
Mount a Remote vSAN Datastore
HCI Mesh and vCLS
HCI Mesh Requirements and Limitations
Failure Scenarios
Storage Device Failure
Storage Device Failure with Erasure Coding
Host Failure
Network Partition
vCenter Server Failure Scenario
Summary

7. Stretched Cluster Use Case
What is a Stretched Cluster?
Requirements and Constraints
Networking and Latency Requirements
Witness Traffic Separation and Mixed MTU

vSAN ESA Efficiency
New Concepts in vSAN Stretched Cluster
Witness Failure Resilience
Configuration of a Stretched Cluster
Configure Step 1a: Create a vSAN Stretched Cluster
Configure Step 1b: Create Stretch Cluster
Configure Step 2: Assign Hosts to Sites
Configure Step 3: Select a Witness Host and Claim Disks
Configure Step 5: Skyline Health Stretched Cluster
Failures To Tolerate Policies
Site Disaster Tolerance Failure Scenarios
Single data host failure—Secondary site
Single data host failure—Preferred site
Full Site Failure – Data Site
Witness host failure—Witness site
Network failure—Data Site to Data Site
Impact of multiple failures
Operating a Stretched Cluster
Summary

8. Two Host vSAN Cluster Use Case
Configuration of a two-host cluster
vSAN Direct Connect
Support statements, requirements, and constraints
Nested Fault Domains in a 2-node Cluster
Summary

9. Cloud-Native Applications Use Case
What is a container?
Why Kubernetes?
Kubernetes Storage Constructs
Storage Class
Persistent Volumes
Persistent Volume Claim
Pod
vSphere CSI in action – block volume
Cloud-Native Storage (CNS) for vSphere Administrators – block volume
vSphere CSI in action – file volume
Cloud-Native Storage (CNS) for vSphere Administrators – file volume
vSphere CNS CSI architecture
vsphere-csi-controller pod
csi-snapshotter
csi-attacher
csi-resizer

vsphere-csi-controller
liveness-probe
vsphere-syncer
csi-provisioner
vsphere-csi-node pod
node-driver-registrar
vsphere-csi-node
liveness-probe
Tanzu Kubernetes Considerations
Supervisor Services & Data Persistence platform (DPp)
DPp Requirements
DPp deployment changes
vSAN Stretched Cluster support
Other CSI driver features
Summary

10. Command Line Tools
CLI vSAN Cluster Commands
esxcli vsan cluster
esxcli vsan datastore
esxcli vsan debug
esxcli vsan faultdomain
esxcli vsan health
esxcli vsan iscsi
esxcli vsan maintenancemode
esxcli vsan network
esxcli vsan policy
esxcli vsan resync
esxcli vsan storage
esxcli vsan storagepool
esxcli vsan trace
Additional Non-esxcli Commands for vSAN
vsantop
osfs-ls
cmmds-tool
vdq
Ruby vSphere Console (rvc) Commands
Deleting the Performance Statistics Database
The output of vsan.check_limits
The output of vsan.host_info
Summary

The End

Chapter 1

Introduction to VMware vSAN

This chapter introduces you to the world of the software-defined
datacenter, but with a focus on the storage aspect. The chapter
covers the premise of the software-defined datacenter and then
delves deeper to cover the concept of software-defined storage and
associated solutions such as hyperconverged infrastructure (HCI).

Software-Defined Datacenter

Over 10 years ago, at VMware’s annual conferencing event which was
then called VMworld 2012, VMware’s vision for the software-defined
datacenter (SDDC) was introduced. The SDDC is VMware’s
architecture for the public and private clouds where all pillars of the
datacenter—computing, storage, and networking (and the associated
services)—are virtualized. Virtualizing datacenter components
enables the IT team to be more flexible. If you lower the operational
complexity and cost while increasing availability and agility, you will
lower the time to market for new services.

To achieve all of that, virtualization of components by itself is not
sufficient. The objective is to virtualization the complete
infrastructure platform, end-to-end. The platform must be capable of

being installed and configured in a fully automated fashion. More
importantly, the platform should enable you to manage and monitor
your infrastructure in a smart and less operationally intense manner.
That is what the SDDC is all about! Raghu Raghuram (Chief Executive
Officer, VMware) captured it in a single sentence: The essence of the
software-defined datacenter is “abstract, pool, and automate.”

Abstraction, pooling, and automation are all achieved by introducing
an additional layer on top of the physical resources. This layer is
usually referred to as a virtualization layer. Everyone reading this
book should be familiar with the leading product for compute
virtualization, VMware vSphere. By now, most people are probably
also familiar with network virtualization, sometimes referred to as
software-defined network (SDN) solutions. VMware offers a solution
named NSX to virtualize networking and security functionality. NSX
does for networking what vSphere does for compute. These layers do
not just virtualize the physical resources but also allow you to
abstract resources, pool them, and provide you with an API that
enables you to automate all operational aspects.

Automation is not just about scripting, however. A significant part of
the automation of virtual machine (VM) provisioning is achieved
through policy-based management. Predefined policies allow you to
provision VMs in a quick, easy, consistent, and repeatable manner.
The resource characteristics specified on a resource pool or a vApp
container exemplify a compute policy. These characteristics enable
you to quantify resource policies for compute in terms of reservation,
limit, and priority. Network policies can range from security and
firewall settings to quality of service (QoS). Storage policies enable
you to specify availability, performance, and recoverability
characteristics.

This book examines the storage component of VMware’s SDDC. More
specifically, the book covers how a product called VMware vSAN
(vSAN), fits into this vision. It should be noted, however, that with the

release of vSAN version 8.0, there are now two distinct architectures
for vSAN. There is the Original Storage Architecture (OSA) which has
been the architecture used since the very first vSAN release. And
then there is the newer architecture introduced with version 8.0
which is referred to as the Express Storage Architecture (ESA). This
book will focus on the latter and introduce you to all aspects of vSAN
ESA and how it utilizes newer hardware components with greater
performance capabilities. Just like previous vSAN Deep Dive books,
you will learn how vSAN ESA has been implemented and integrated
within the vSphere platform. This book will teach you how to leverage
its capabilities and will expand on the lower-level implementation
details. Before going further, though, it is important to have a general
understanding of where vSAN fits into the bigger software-defined
storage picture.

Software-Defined Storage

Software-defined storage (SDS) is a term that has been used, and
abused, by many vendors. Because software-defined storage is
currently defined in so many different ways, consider the following
quote from VMware:

“Software-Defined Storage is the automation and pooling of
storage through a software control plane, and the ability to
provide storage from industry-standard servers. This offers a
significant simplification to the way storage is provisioned and
managed, and also paves the way for storage on industry-
standard servers at a fraction of the cost.”

A software-defined storage product is a solution that abstracts the
hardware and allows you to easily pool all resources and provide
them to the consumer using a user-friendly user interface (UI) and

application programming interface (API). A software-defined storage
solution allows you to both scale up and scale out, without increasing
the operational effort.

Many industry experts feel that software-defined storage is about
moving functionality from the traditional storage devices to the host.
This trend was started by virtualized versions of storage solutions
such as HP’s StoreVirtual VSA, often referred to as virtual storage
appliances. These evolved into solutions that were built to run on
many different hardware platforms. An example of such a solution is
Nexenta. These solutions were the start of a new era.

Hyperconverged/Server SAN Solutions

Over the past decade there have been many debates around what
hyperconverged is versus a Server SAN solution. In our opinion, the
big difference between these two is the level of integration with the
platform it is running on, as well as the delivery model. When it
comes to the delivery model there are two distinct flavors:

Appliance based
Software only

An appliance-based solution is one where the hardware (x86 server)
and the software are sold and delivered as a single bundle. The
appliance-based solutions often come preinstalled with a hypervisor
and usually requires little to no effort to configure. A key factor is also
a deep integration with the platform it sits on (or in) typically. This
integration can range from providing storage APIs, to providing
extensive data services, to being a solution that is fully embedded in
the hypervisor.

In all of these cases, local storage devices across multiple
hypervisors are aggregated into a large, shared pool by leveraging a
virtual storage appliance or a kernel-based storage stack. In the early
days of appliance-based solutions, a typical “hyperconverged
appliance” would have been a 2U form factor with four hosts.
However, hyper-convergence is not about a form factor in our
opinion, and most vendors have moved on from this concept. Yes,
some still offer this form factor, but they offer it alongside various
other form factors like 1U, 2U, 1U two hosts, 2U two hosts, and even
blade and composable infrastructure solutions.

But it is not about the form factor of the solution. It is about
combining different components into a single solution. This solution
needs to be easy to install, configure, manage, and monitor.

One might ask, “If these are generic x86 servers with hypervisors
installed and a virtual storage appliance or a kernel-based storage
stack, what are the benefits over a traditional storage system?” The
benefits of a hyperconverged platform can be outlined as follows:

Time to market is short. Typically, less than 1 hour to install
and configure
Ease of management and level of integration
Ability to scale out and scale up, both capacity and
performance
Lower total costs of acquisition compared to traditional
environments
Lower upfront investment required. Start small and grow as
needed

As mentioned, many of these solutions are sold as a single stock
keeping unit (SKU), and typically a single point of contact for support
is provided. This can make support discussions much easier.

It is worth noting that many of these appliance-based solutions are
tied to hardware and specific configurations. The hardware used by
(appliance-based) hyperconverged vendors is often not the same as
the preferred hardware supplier you may already have as a customer.
This can lead to operational challenges when it comes to
updating/patching or even cabling and racking. In addition, a trust
issue exists. Some people swear by server vendor X and would never
want to touch any other brand, whereas others won’t come close to
server vendor X. Fortunately, most hyperconverged vendors these
days offer the ability to buy their solution through different server
hardware vendors. If that does not provide sufficient flexibility, then
this is where the software-based storage solutions come into play.

Software-only storage solutions come in two flavors. The most
common solution today amongst HCI vendors is the virtual storage
appliance (VSA). VSA solutions are deployed as a virtual machine /
virtual appliance on top of a hypervisor, which is itself installed on
physical hardware. VSAs allow you to pool underlying physical
resources into a shared storage device. The advantage of software-
only solutions is that you can typically leverage existing hardware if it
is on the appropriate hardware compatibility list (HCL). In most
cases, the HCL is comparable to what the underlying hypervisor
supports, except for key components like disk controllers and flash
devices.

vSAN is also a software-only solution, but vSAN differs significantly
from a VSA. vSAN sits in a different layer and is not an appliance-
based solution. On top of that, vSAN is typically combined with
hardware from a range of different vendors. Hence, VMware refers to
vSAN as a hyperconverged infrastructure solution.

Introducing VMware vSAN

VMware’s strategy for software-defined storage is to focus on a set of
VMware initiatives related to local storage, shared storage, and
storage/data services. In essence, VMware wants to make vSphere a
platform for storage services.

Historically, storage was configured and deployed at the start of a
project and was not changed during its life cycle. If there was a need
to change some characteristics or features of a LUN or volume that
were being leveraged by VMs, in many cases the original LUN or
volume was deleted and a new volume with the required features or
characteristics was created. This was a very intrusive, risky, and time-
consuming operation due to the requirement to migrate workloads
between LUNs or volumes, which may have taken weeks to
coordinate.

This is one of the most significant advantages of software defined
storage. With software-defined storage, VM storage requirements can
be dynamically instantiated. There is no need to repurpose LUNs or
volumes. It is true to say that virtual machine workloads and
requirements can change over time. Now the underlying storage can
be adapted to the workload at any time. vSAN aims to provide
storage services and service-level agreement (SLA) automation
through a software layer on the hosts that integrates with, abstracts,
and pools the underlying hardware.

A key factor for software-defined storage is, in our opinion, storage
policy-based management (SPBM). SPBM is a critical component of
how VMware is implementing software-defined storage.

Using SPBM and vSphere APIs, the underlying storage technology
surfaces an abstracted pool of storage capacity with various
capabilities. This pool of storage is presented to vSphere
administrators as a datastore that may be used for VM provisioning.
The capabilities that are surfaced up to the vSphere administrator
can relate to performance, availability, or storage services such as
thin provisioning, compression, replication, and more. A vSphere

administrator can then create a VM storage policy using a subset of
the capabilities that are required by the application running in the
VM. At VM provisioning time, the vSphere administrator selects a VM
storage policy. SPBM then ensures that the VM is always instantiated
on the appropriate underlying storage, based on the requirements
placed in the VM storage policy. It also ensures that the VM is
provisioned with the right amount of resources and the required
services from the abstracted pool of storage resources.

Should the VM’s workload, availability requirement, or I/O pattern
change over time, it is simply a matter of applying a new VM storage
policy that meets the new requirements. This new policy includes the
requirements and characteristics that reflect the changed workload
for that specific VM, or even a specific virtual disk of the VM. The
new policy is seamlessly applied without any manual intervention
with the underlying storage system from the administrator. This is in
sharp contrast to many legacy storage systems, where a manual
migration of VMs or virtual disks to a different datastore may be
required. vSAN has been developed to seamlessly integrate with
vSphere and the SPBM functionality it offers.

What is vSAN?

vSAN is a storage solution from VMware, released as a beta in 2013,
made generally available to the public in March 2014, and reached
version 8.0U1 in April of 2023. vSAN is fully integrated with vSphere.
It is an object-based storage system that aims to simplify VM
storage placement decisions for vSphere administrators by
leveraging storage policy-based management. It fully supports, and is
integrated with, core vSphere features such as vSphere High
Availability (HA), vSphere Distributed Resource Scheduler (DRS), and
vMotion. vSAN and vSphere go hand in hand as illustrated next.

Figure 1: Simple overview of vSAN Cluster

vSAN’s goal is to provide both resilience and scale-out storage
functionality. It can also be thought of in the context of QoS in so far
as VM storage policies can be created that define the level of
performance and availability required on a per-VM, or even virtual
disk, basis.

vSAN is a software-based distributed storage solution that is built
directly into the hypervisor. As mentioned, vSAN is not a virtual
appliance like many of the other solutions out there. vSAN can best
be thought of as a kernel-based solution that is included with the
hypervisor. Technically, however, this is not completely accurate
because components critical for performance and responsiveness
such as the data path and clustering are in the kernel, while other
components that collectively can be considered part of the “control

plane” are implemented as native user-space agents. Nevertheless,
with vSAN, there is no need to install anything other than the
software you are already familiar with: VMware vSphere.

vSAN is about simplicity, and when we say simplicity, we do mean
simplicity. Want to try out vSAN? Within a few easy steps, you can
have your environment up and running. Of course, one of the
decisions that administrators need to make today is whether they
wish to implement vSAN Original Storage Architecture (OSA) or vSAN
Express Storage Architecture (ESA). Various recommendations and
requirements to optimize your experience will be discussed in further
detail in chapter 2.

Figure 2: Enabling vSAN

Now that you know it is easy to use and simple to configure, what are
the benefits of a solution like vSAN? What are the key selling points?

Software-defined: Use industry-standard hardware
Flexible: Scale as needed and when needed, both scale-up
and scale-out
Simple: Easy to configure, manage and operate
Automated: Per-VM or per-disk policy-based management
Hyperconverged: Repeatable building-block

That sounds compelling, doesn’t it? Where does vSAN fit you may
ask, what are the use cases and are there situations where it doesn’t
fit today? Today the use cases are as follows:

Business critical apps: Stable storage platform with all data
services required to run business critical workloads, whether
that is Microsoft Exchange, SQL, Oracle etc.
Virtual desktops: Scale-out model using predictive and
repeatable infrastructure blocks lowers costs and simplifies
operations.
Test and dev: Avoid acquisition of expensive storage (lowers
total cost of ownership [TCO]), fast time to provision.
Cloud-Native Applications: Provides the storage
infrastructure needed for running your cloud-native apps and
persisting your associated data.
Management or DMZ infrastructure: Fully isolated resulting in
increased security and no dependencies on the resources it
is potentially managing.
Disaster recovery target: Inexpensive disaster recovery
solution, enabled through a feature like vSphere replication
that allows you to replicate to any storage platform.
Remote office/branch office (ROBO): With the ability to start
with as little as two hosts, centrally managed, vSAN is the
ideal fit for ROBO environments.

Stretched cluster: Providing very high availability across
remote sites for a wide range of potential workloads.

Now that you know what vSAN is and that it is ready for any type of
workload, let’s have a brief look at what was introduced in terms of
functionality with each release.

vSAN 1.0: March 2014

Initial release

vSAN 6.0: March 2015

All-flash configurations
64 host cluster scalability
2x performance increase for hybrid configurations
New snapshot mechanism
Enhanced cloning mechanism
Fault domain/rack awareness

vSAN 6.1: September 2015

Stretched clustering across a max of 5 ms RTT (milliseconds)
2-node vSAN for remote office, branch office (ROBO)
solutions
vRealize Operations management pack
vSphere replication—5 minutes RPO
Health monitoring

vSAN 6.2: March 2016

RAID 5 and 6 over the network (erasure coding)
Space efficiency (deduplication and compression)
QoS–IOPS limits

Software checksums
IPv6 support
Performance monitoring

vSAN 6.5: November 2016

vSAN iSCSI Service
vSAN 2-node Direct Connect
512e device support
Cloud-Native Application support

vSAN 6.6: April 2017

Local Protection for Stretched Clusters
Removal of Multicast
ESXi Host Client (HTML-5) management and monitoring
functionality
Enhanced rebalancing, repairs, and resyncs
Resync throttling
Maintenance Mode Pre-Check
Stretched Cluster Witness Replacement UI
vSAN Support Insight
vSAN Easy Install
vSAN Config Assist / Firmware Update
Enhanced Performance and Health Monitoring

vSAN 6.6.1: November 2017

Update Manager Integration
Performance Diagnostics added to Cloud Analytics
Storage Device Serviceability
New Licensing for ROBO and VDI

vSAN 6.7: April 2018

HTML-5 User Interface support
Native vRealize Operations dashboards in the HTML-5 client
Support for Microsoft WSFC using vSAN iSCSI
Fast Network Failovers
Optimization: Adaptive Resync
Optimization: Witness Traffic Separation for Stretched
Clusters
Optimization: Preferred Site Override for Stretched Clusters
Optimization: Efficient Resync for Stretched Clusters
Optimization: Enhanced Diagnostic Partition
Optimization: Efficient Decommissioning
Optimization: Efficient and consistent storage policies
4K Native Device Support
FIPS 140-2 Level 1 validation

vSAN 6.7 U1: October 2018

Trim/Unmap
Cluster Quickstart Wizard
Mixed MTU Support
Historical Capacity Reporting
Additional vR Ops Dashboards
Enhanced support experience
Secondary FTT for Racks

vSAN 6.7 U3: August 2019

Cloud-Native Storage
Native SCSI-3 PGR for Windows Server Failover Cluster
(WSFC) support

Improved Capacity Usage views (including block container
volumes)
Improved Resync insights – ability to see queued but not yet
active resyncs
Maintenance Mode/Data Migration pre-checks
Online iSCSI LUN Resize
Improved destage performance with LSOM enhancements
Parallel resync operations
vsantop command line tool for performance monitoring

vSAN 7.0: April 2020

Integrated Native File Services (NFS File Shares)
Read-Write-Many Persistent Volumes via CSI-CNS and vSAN
7
vSAN Memory performance metric now displayed
Shared disks with multi-writer flag no longer need to be Easy
Zero Thick on vSAN 7
Support for larger 1PB Logical capacity when deduplication
and compression enabled
Objects immediately repaired when Witness Appliance
replaced
NVMe hot-plug support

vSAN 7.0 U1: October 2020

vSAN File Services now supports the SMB protocol
vSAN File Services now supports Kerberos and Active
Directory
vSAN File Services Scale Increase from 8 to 32
HCI Mesh introduced for mounting remote vSAN datastore
A new Compression Only Data Service
vSAN “Shared” Witness Appliance

vSAN Data Persistence platform for cloud-native applications
in vSphere with Tanzu
Increased usable capacity with new capacity management
features

vSAN 7.0 U2: March 2021

HCI Mesh now allows remote mounting of vSAN datastore
from non-vSAN clusters
HCI Mesh, vSAN datastores can support up to 128 remote
host mounts
vSAN Stretched Cluster now supports 20+20+1
configurations
vSAN Stretched Cluster has deeper integrations with DRS for
object sync and fail-back
vSAN File Services now supported on vSAN Stretched Cluster
and 2-node vSAN
vSAN File Services Scale increase from 32 to 100 shares
vSAN now supports vSphere Proactive HA
vSAN supports the new vSphere Native Key Provider
vSAN over RDMA
Skyline Health Check History

vSAN 7.0 U3: October 2021

Stretched cluster site/witness failure resiliency
Nested fault domains for two-node deployments
vSAN File Services - Access Based Enumeration
vSAN cluster shutdown and restart
Enhanced network monitoring and anomaly detection
vSAN health check correlation
VM I/O trip analyzer
Stretched Cluster support for vanilla Kubernetes

vSAN Data Persistence Platform now supports asynchronous
installation and upgrades
CNS platform has improved performance, scale, and
resiliency

vSAN 8.0: November 2022

Launch of the vSAN Express Storage Architecture, and
introducing Original Storage Architecture naming convention
for traditional vSAN
vSAN ESA introduces a new Log Structured Filesystem (LFS)
and a new Log Structured Object Manager (LSOM) for fast
data ingestion and efficient metadata storage
vSAN ESA Adaptive RAID-5 mechanism
vSAN ESA leverages a single tier of NVME-based TLC (triple
level cell) flash devices, removing the construct of disk
groups and introducing the construct of storage pools
vSAN OSA support a much larger write buffer of 1.6TB

vSAN 8.0U1: April 2023

vSAN ESA introduces support for HCI Mesh
vSAN OSA introduces support for HCI Mesh with a stretched
cluster
vSAN ESA introduces support for Delta components for
improved durability and resilience
A new dynamic default storage policy is introduced for the
ESA
vSAN ESA introduces enhancements for streaming writes
PowerCLI support for vSAN ESA
Enhancements to the overall vSAN management experience,
including higher resolution monitoring, network diagnostic
enhancements and Skyline health remediation
VM I/O trip analyzer tasks may now be scheduled

Hopefully, that gives a quick overview of most of the capabilities
introduced and available in each of the releases. Even though there
are many items shown in each release, the list is still not complete.
But all these features and capabilities do not mean that vSAN is
complex to configure, manage, and monitor. Let’s take a look from an
administrator’s perspective; what does vSAN look like?

What does vSAN look like to an administrator?

It was already mentioned that one of the design goals of vSAN ESA
was to keep a consistent user experience to the one that the vSAN
OSA offers. This is true for both the initial install experience as well
as the day-2 management experience. When vSAN is enabled,
storage devices across the vSphere cluster are aggregated into a
single shared datastore. This datastore is then presented to all hosts
that are part of the vSAN-enabled cluster. Just like any other storage
solution used in virtualization environments, this datastore can be
used as a destination for VMs and all associated components, such
as virtual disks, swap files, and VM configuration files. When you
deploy a new VM, you will see the familiar interface and a list of
available datastores, including your newly created, vSAN-based
datastore, as shown in the following screenshot.

Figure 3: Selecting vSAN as storage for VM configuration and disk files

This vSAN datastore is formed out of host local storage resources.
Typically, all hosts within a vSAN-enabled cluster will contribute
storage to this shared datastore. In the vSAN ESA, the local storage
resource, i.e., the NVMe-based TLC (Triple Level Cell) device, is used
as a performance cache and as a capacity device for storing data.
This design, based on using local storage, means that as your
vSphere cluster grows with the addition of new ESXi hosts, your
datastore can automatically grow along with it. The NVMe devices in
the newly added hosts will be claimed by vSAN and added to the
vSAN datastore. vSAN is what is called a scale-out storage system

(adding hosts to a cluster), but also allows scaling up (adding devices
to a host).

Each host contributing storage capacity to the vSAN ESA cluster will
require at least four NVMe TLC flash devices. At a minimum, vSAN
ESA typically requires three hosts in a vSphere cluster to contribute
storage. There is also a remote office/branch office (ROBO) solution
that allows two hosts to be configured with a dedicated witness host.
This ROBO configuration is discussed in chapter 8 later in the book.
Returning to the three host configuration, we mentioned that typically
all hosts in the cluster would contribute devices towards the vSAN
datastore. This does not need to be the case, however. Other hosts
within the same vSphere cluster, but which do not contribute storage,
could leverage the resulting vSAN datastore without contributing
storage resources to the cluster itself.

The diagram below shows a cluster that has four hosts, of which three
(esxi-01, esxi-02, and esxi-03) contribute storage and a fourth (esxi-
04) does not contribute but only consumes storage resources.
Although it is technically possible to have a non-uniform cluster and
have a host not contributing storage, VMware highly recommends
creating a uniform cluster and having all hosts contribute storage for
overall better utilization, performance, and availability. Most vSAN
configurations are built with all hosts contributing storage resources
to the vSAN datastore.

Figure 4: non-uniform vSAN cluster example

The boundary for vSAN in terms of both size and connectivity is a
vSphere cluster. This means that vSAN supports single
clusters/datastores of up to 64 hosts, but of course a single vCenter
Server instance can manage many 64-host clusters. It is a common
practice for most customers however to limit their clusters to around
24 hosts. This is for operational considerations such as lifecycle
management, particularly the time it takes to update a full cluster.
Each host can run a supported maximum of 200 VMs, up to a total of
6,400 VMs within a 64-host vSAN cluster. Whilst these numbers are
accurate at the time of going to press, they may increase at some
point in the future. As you can imagine with a storage system at this
scale, performance and responsiveness are of the utmost
importance. vSAN ESA is designed to take advantage of NVMe-based
TLC flash devices to provide the experience users expect in today’s
world. Flash resources are used for all writes and reads by workloads
to the vSAN datastore.

To ensure VMs can be deployed with certain characteristics, vSAN
enables vSphere Administrators to set policies on a per-virtual disk
or a per-VM basis. These policies help meet the defined service level
objectives (SLOs) for workloads. These can be performance-related
characteristics such as disk striping but can also be availability-
related characteristics that ensure strategic replica placement of

your VM’s disks (and other important files) across racks or even
locations.

If you have worked with VM storage policies in the past, you might
now wonder whether all VMs stored on the same vSAN datastore will
need to have the same VM storage policy assigned. The answer is no.
vSAN allows you to have different policies for VMs provisioned to the
same datastore. It even allows different policies to be placed on the
different virtual disks belonging to the same VM.

As stated earlier, by leveraging policies, the level of resilience can be
configured on a per-virtual disk granular level. How many hosts and
disks a mirror copy will reside on depends on the selected policy.
Because vSAN can use mirror copies (RAID-1) or erasure coding
(RAID-5/6) defined by policy to provide resiliency, it does not require
a host local RAID configuration (RAID stands for Redundant Array of
Inexpensive Disks). In other words, hosts contributing to vSAN
storage capacity should simply provide a set of NVMe-based TLC
devices as part of a construct called a Storage Pool to vSAN. vSAN
will take care of configuring protection levels for workloads in
software; you as an administrator do not need to worry about doing
this at the hardware level.

Whether you have defined a policy to tolerate a single host failure or
a policy that will tolerate up to three hosts failing, vSAN will ensure
that enough replicas of your storage objects are created. The
following example illustrates how this is an important aspect of vSAN
and one of the major differentiators between vSAN and most other
virtual storage solutions out there.

In this example, we have configured a policy that can tolerate one
failure and created a new virtual disk using that policy. We have
chosen to go with failures to tolerate = 1, which in this case results in
a RAID-1 configuration. To make things simple, we can assume that
this means that vSAN will create two identical storage objects. Now
there is a significant difference here for administrators who are

familiar with the vSAN OSA. With the OSA, an additional witness
component would also be created. The witness component allows
vSAN OSA to determine which replica copy of the data is active and
valid in the case of a failure. If you are familiar with clustering
technologies, think of the witness component as a quorum object
that will arbitrate ownership in the event of a failure. However, since
we are now using a single-tiered storage architecture in vSAN ESA,
some additional components get created when we build an object.
Each object now gets a protected set of performance components
(P-LEG) as well as capacity components (C-LEG) which match the
storage policy. What that means and how this works will be explained
in the chapters to come but suffice to say that there is no witness
component created as part of the object on a standard vSAN ESA
deployment as shown below.

Figure 5: vSAN Failures to tolerate

The diagram shown here is a simplified example, and you may see a
slightly different layout on your vSAN ESA, depending on the size of
your cluster, the number of devices, the use of fault domains, the size
of the object being created, or advanced capabilities like stretched
clustering. The reason for this new object layout will be discussed in
much greater detail in later chapters. There is no witness component
associated with these objects since there are more than enough
components to allow for ownership arbitration to take place in the
event of a failure. This figure illustrates what it would look like at a
high level for a VM with a virtual disk that can tolerate one failure.
This could be the complete failure of a host, or even the failure of a
NIC or a flash device. On the diagram above, the VM’s compute
resides on the first host and its virtual disk components reside
across all hosts in the cluster. In this scenario, the vSAN network is
used for storage I/O, allowing for the VM to freely move around the
cluster without the need for storage components to be migrated
along with the compute.

This might still sound complex, but vSAN masks away all the
complexity as you will learn as you progress through the various
chapters in this book.

Summary

To conclude, VMware vSAN is a market-leading, hypervisor-based
distributed storage platform that enables the convergence of
compute and storage resources, typically referred to as
hyperconverged infrastructure. It enables you to define VM-level
granular service level objectives through policy-based management.
It allows you to control availability and performance in a way never
seen before, simple, and efficient.

In the 8.0 release, vSAN introduces a new Express Storage
Architecture for vSAN. While VMware continues to support the
Original Storage Architecture (OSA) design of vSAN, the new ESA
design is the focus of this book.

This chapter just scratched the surface. Now it’s time to take it to the
next level. Chapter 2 describes the requirements for installing and
configuring vSAN.

Chapter 2

vSAN Prerequisites and
Requirements

Before delving into the installation and configuration of vSAN, let’s
begin by first of all discussing the requirements and the
prerequisites. VMware vSphere is the foundation of every vSAN-
based virtual infrastructure, whether it is the original storage
architecture (OSA) or the express storage architecture (ESA).

VMware vSphere

vSAN was first officially released with VMware vSphere 5.5 U1 way
back in 2014. Many additional versions of vSAN have since been
released, the most recent release being vSphere 8.0U1 which was
released in 2023. Each release of vSAN includes additional features.
Since this book is focused on the new vSAN Express Storage
Architecture (ESA), the ESA features will be discussed at various
stages of this book. The different features included in each vSAN
release are listed in Chapter 1, “Introduction to VMware vSAN.”

VMware vSphere consists of two major components: the vCenter
Server management tool and the ESXi hypervisor. To install and
configure vSAN, both vCenter Server and ESXi are required.

VMware vCenter Server provides a centralized management platform
for VMware vSphere environments. It is the solution used to provision
new VMs, configure hosts, and perform many other operational tasks
associated with managing a virtualized infrastructure. vSAN ESA has
a requirement on vCenter Server 8.0. However, VMware strongly
recommends using the latest version of vSphere where possible.
vSAN is configured and monitored via the vSphere Client, a web-
based client which allows administrators to access the vCenter
Server. vSAN can also be fully configured and managed through the
command-line interface (CLI) and the vSphere API for those wanting
to automate some (or all) of the aspects of vSAN configuration,
monitoring, or management. Although a single cluster can contain
only one “local” vSAN datastore, a vCenter Server can manage
multiple vSAN and compute clusters.

ESXi

VMware vSphere ESXi is an enterprise-grade virtualization hypervisor
product that allows you to run multiple instances of an operating
system in a fully isolated fashion on a single server. It is a bare-metal
solution, meaning that it does not require a guest-OS and has an
extremely thin footprint. ESXi is the foundation for the large majority
of virtualized environments worldwide.

For standard datacenter deployments, vSAN ESA requires a minimum
of three ESXi hosts (where each host has local storage and is
contributing this storage to the vSAN datastore) to form a supported
vSAN ESA cluster. A three-node configuration allows the cluster to
meet the minimum availability requirements of tolerating at least one
host failure. There is of course the option of deploying a 2-node
vSAN ESA configuration along with a witness appliance, but this is
aimed primarily are remote office/branch office type environments
and not datacenters. There are some additional considerations

around the use of a two-node vSAN ESA cluster which will be
discussed in more detail in Chapter 8, “Two Host vSAN Cluster Use
Case.” The role of the witness appliance, and indeed the witness
components will be discussed in detail later in this book, so don’t
worry about those for the moment.

As of vSAN ESA, which was released with vSAN version 8.0, a
maximum of 64 ESXi hosts in a cluster continues to be supported.

From a CPU usage perspective, the important factor to keep in mind
is that the ESXi CPU is now performing storage tasks, alongside
virtualization tasks, when vSAN ESA is configured. As storage device
density increases, the more VMs we may be able to provision to a
vSAN ESA cluster. This in turn means increased CPU consumption as
vSAN is running more and more workloads. All this needs to be
considered when sizing a vSAN ESA cluster. One helpful fact is that
the latest generations of CPUs are much more efficient when it
comes to offloading certain operations, for example Advanced
Encryption Standard – New Instructions (AES-NI) for encryption and
Intel CRC32/CRC32C for checksum calculations which makes the
processing extremely fast and efficient.

Each vSAN ESA ESXi host must be configured with at least 512GB
per host to ensure that the workloads, vSAN and the hypervisor have
sufficient resources to ensure an optimal user experience. vSAN
does not consume all this memory, but it is required to implement
the correct configuration.

One last point on memory – vSAN allocates 0.4% of memory per
host, up to a maximum of 1GB, for its client cache. Client cache is a
low latency host local read cache. This is an in-memory cache that
caches the data of a VM on the same host where the VM is located.
This local client-side cache will be discussed in further detail in the
vSAN Architecture chapter.

Capacity devices

Unlike the vSAN OSA which supports two models (the all-flash model
and the hybrid model), vSAN ESA supports a single all-NVMe tier
only. This is possibly the most noticeable customer-facing difference
when comparing the OSA with the ESA. Whilst the OSA has the
concept of a caching tier and a capacity tier, the ESA is a single tier
platform. The NVMe devices handle caching for performance, and
also persist the data. To add some clarification, vSAN ESA does not
dedicate some NVMe devices for caching and other for capacity;
vSAN ESA utilizes a single tier architecture where all devices
contribute toward performance and capacity.

The vSAN ESA hardware guidance gives some requirements around
storage devices. These are listed here for completeness and are
accurate at the time of going to press. However, these will likely
change over time, so always check the official VMware
documentation for the latest and greatest information.

Only NVMe based TLC (Triple Level Cell) flash devices are
supported.
Devices must be for ‘Mixed Use’.
Devices must have a Write Endurance of Class D or higher -
three full drive writes per day, over a five year period.
A minimum of 15TB and 4 devices per vSAN ESA node is
required.
A maximum of 24 devices per vSAN ESA node.
Each device must have a minimum capacity of 1.6TB.
Devices must have a Performance of Class F or higher. At a
minimum, this entails 100,000 writes per second.

ESXi boot considerations

When installing an ESXi host for vSAN-based infrastructure, various
options are available regarding where to place the ESXi image. ESXi
can be installed on a local magnetic disk or hard disk drive (HDD),
USB flash drive, SD card or SATADOM devices. At the time of writing
(vSAN 8.0U1), stateless booting of ESXi (auto-deploy) is not
supported, as documented in the official vSAN Design Guide.

Historically, the preferred method of deploying ESXi was to a USB
flash device or SD card. This provided the advantage of not
consuming a persistent disk on the ESXi host for the boot image.
However, there were some drawbacks to this approach, such as a
lack of space for storing log files and vSAN trace files, as well as
endurance considerations of the device itself. This led to VMware
changing their guidance on using USB/SD cards as boot devices.
Note that VMware continues to support USB/SD card as a boot
device through vSphere 8.0 but recommends an additional persistent
device to store the OSData partition. The OSData contains the
VMTools and scratch areas. The scratch areas are critical regions
which could incur considerable I/O, and in the past has led to ‘burn-
out’ of the USB/SD card. This is why VMware no longer recommends
their use. Further details regarding ESXi boot considerations can be
found in VMware KB 85685 which is revised regularly.

The authors of this book also highly recommend using local
persistent devices for the installation of ESXi. This will provide the
ability to not only store log files and trace files locally, but it will also
provide the added benefit that memory dumps can be stored
persistently in the case of a host failure.

There are a large variety of devices supported for the installation of
ESXi, and we have seen customers using solutions ranging from
HDDs in a RAID-1 configuration, to an M.2 flash device or a

https://kb.vmware.com/s/article/85685

SATADOM device. VMware has outlined in the aforementioned
VMware KB article that it will no longer certify servers that carry
SD/USB devices as boot devices.

VMware Hardware Compatibility Guide

Before installing and configuring ESXi, please validate that your
configuration is on the official VMware compatibility guide for vSAN
ESA, which you can find at the following website for ready node
configurations https://vmwa.re/vsanesahcl or the following website if
you want to validate individual components:
https://vmwa.re/vsanesahclc. Please note, vSAN Skyline Health has a
health finding which will validate your hardware configuration in
combination with the firmware and drivers regularly. Supported
configurations and combinations may change over time because of
discovered issues or introduced enhancements.

vSAN has always had strict requirements around driver and firmware
versions when it comes to server components. With all the various
options, configuring the perfect vSAN host using a Do-It-Yourself
(DIY) approach can be a complex exercise. But there is an
alternative: vSAN ReadyNode Configurations. In fact, with the initial
launch of vSAN ESA, the only option available to customers are vSAN
ReadyNode configurations. The reason for this is simple. VMware
wanted their customers to have the best possible experience with
vSAN ESA. Any misconfiguration resulting in a poor performing vSAN
ESA would reflect negatively on both the product and on VMware.
Thus, the decision was made to release vSAN ESA with ReadyNodes
only. A supported DIY approach may appear at a later date, but at
present, customers need to select a ReadyNode if they wish to deploy
an ESA configuration. Of course, it is possible to customize the
configuration, but we will get to that later.

https://vmwa.re/vsanesahcl
https://vmwa.re/vsanesahclc

Another advantage is that the boot device concerns outlined
previously should not be an issue for the vSAN ESA ReadyNodes.
However, if and when a Do-It-Yourself (DIY) approach to building
vSAN ESA nodes becomes available, customers will need to be
diligent when ordering new server hardware. Customers will need to
verify that the server is not using USB/SD for a boot device.

vSAN ReadyNode

ReadyNodes were always the preferred way of building a vSAN OSA
configurations. In the case of vSAN ESA, it has already been
highlighted that this is the only way to create a supported
configuration at the time of going to press. Many vendors have
already gone through the exercise of building vSAN ReadyNode
configurations. These ReadyNodes consist of tested and certified
hardware for the vSAN ESA. In the authors opinion, ReadyNodes
provide an additional guarantee that the hardware components,
along with the driver and firmware versions, have been validated for
use with vSAN ESA. It is important to note that even with vSAN ESA
ReadyNodes, the configurations can be modified and tweaked to use
different hardware components, and your configuration will still be
fully supported. Refer to VMware KB 90343 for supported
configuration details and allowable changes. Further information is
available in the compatibility guide which provides a list of supported
ReadyNodes, as shown in the figure below. Note, at the time of
writing the list of supported configurations was still limited, but new
configurations, and vendors, are being added on a regular basis.

https://kb.vmware.com/s/article/90343

Figure 6: vSAN ESA ReadyNode compatibility guide

NVMe

NVM Express (NVMe) is a protocol that provides high-bandwidth and
low-latency. It has focused on optimizing NAND-based flash storage
devices. NVMe devices are most commonly connected with
Peripheral Component Interconnect Express (PCIe) as the transport
medium, although other connectors are available. NVMe devices have
been supported by vSAN OSA since 2015 for both the caching tier
and the capacity tier. NVMe provides various benefits to vSAN OSA,
with performance and endurance being the most important
characteristics. In recent years, NVMe devices have become more
and more prevalent, as more and more customers have begun to
adopt the technology.

vSAN ESA is an NVMe-only solution. Historically, many vSAN OSA
customers leveraged SAS (Serial-Attached SCSI) and SATA (Serial
Advanced Technology Attachment) based flash devices.

NVMe based devices have many characteristics that makes them
superior over SAS and SATA devices. NVMe can connect directly to
the CPU, resulting in much lower latency when compared to devices
that need to connect via a storage I/O controller. There is also a
significant bus speed difference. SATA, originally introduced as a
protocol for hard drives, could achieve a throughput of up 6Gbps.
SAS was an improvement over SATA, being able to reach a
throughput rate of up to 12Gbps. In comparison, NVMe can achieve
up to 32Gbps. SAS also had a larger queue depth in comparison to
SATA, being able to support up to 256 commands compared to a
SAS queue depth of 32. By contrast, NVMe is able to support up the
64,000 commands per queue.

These impressive performance characteristics are some of the main
reasons why NVMe based devices are the only devices supported on
the vSAN ESA.

Storage Controllers

Storage Controllers are a significant consideration when configuring
vSAN OSA. However, since vSAN ESA is an NVMe-only platform, and
modern processors have implemented NVMe PCIe 3.0 directly on the
CPU, there is no need for a host bus adapter or storage I/O
controller. The NVMe flash devices are inserted directly onto the
PCIe bus. As previously highlighted, this has the benefit of a much
lower I/O latency. Removing the need for a storage controller also
reduces another possible failure point, leading to decreased total
cost of ownership (TCO) for vSAN ESA.

Storage Pools

The introduction of storage pools is possibly the most noticeable
administrator-visible change when comparing the vSAN ESA with the
vSAN OSA. The vSAN OSA architecture includes a caching tier and a
capacity tier. To build a relationship between the capacity tier and its
cache device, vSAN OSA has the concept of disk groups. Any I/O
destined to the capacity tier of that disk group will have its I/O
cached on the flash devices in the cache tier that are part of the
same disk group.

With the vSAN OSA disk group feature, the failure domain is at the
disk group level. Thus, certain device failures could impact the whole
of a disk group. Device failures were also a consideration when
certain space efficiency features such as deduplication and
compression were enabled.

In essence, vSAN ESA removes the need for separate cache and
capacity tiers. A new single tier storage pool architecture in the vSAN
ESA means that each NVMe NAND flash device contributes to both
performance and capacity. With this new architecture, the failure
domain is much reduced. vSAN ESA now has improved availability in
the event of a single device failure. A single device failure has no
impact on the other devices in the same storage pool.

At most, a vSAN host can have one storage pool, each containing a
minimum of 15TB of capacity, and a minimum of 4 devices, although
this is dependent on the vSAN ReadyNode configuration. Some
configurations may require more. The configuration of this is
extremely simple, and we will go through the exact steps in chapter
3. Nevertheless, the below screenshot shows the section of the UI
that is used to claim all available devices into storage pools in a
single step. The warning about the lack of certification of the devices
for vSAN ESA is expected in this case, since we are building the
environment using nested, or virtual ESXi hosts. Thus, the devices are
not compatible for an actual vSAN ESA deployment. However, it
should allow you to appreciate the simplicity of the setup.

Figure 7: Configuring Storage Pools

Network Requirements

This section covers the requirements and prerequisites from a
networking perspective for vSAN ESA. vSAN is a distributed storage
solution and therefore heavily depends on the network for intra-host
communication. Consistency and reliability are key. Therefore, it is
critical that the network interconnect between the hosts is of a high
quality and has no underlying issues. It is strongly recommended that
the network health is monitored just as closely as the vSAN health.

Network Interface Cards

The vSAN ESA network requirements are determined by the specific
class of ReadyNode. Each ESXi host that is participating in a vSAN
ESA cluster must have at least one 25GbE network interface card

(NIC). vSAN ESA ReadyNode profiles will contain 25Gb or 100Gb
NICs. vSAN ESA AF6, and AF High Density nodes require 50Gbps of
vSAN networking throughput, and ESA AF8 requires 100Gbps of
networking throughput to deliver maximum performance. For
redundancy, customers can configure a team of NICs on a per-host
basis. We consider this a best practice, but it is not necessary to
build a fully functional vSAN ESA cluster. However, while this
approach may provide availability, it may not necessarily provide an
increase in bandwidth, so the rule is not to rely on a teaming
methodology to meet the bandwidth requirements.

You might ask why the network requirement is so high. These network
requirements relate to the performance of the NVMe-based flash
devices used in the vSAN ESA storage pools. Specifying such a high
network requirement ensures that vSAN ESA is able to exploit the full
performance capabilities of the storage devices.

Another advantage of the vSAN ReadyNode approach for the vSAN
ESA configurations is that customers do not need to worry about
validating the NIC model, its driver, and its firmware versions. This
was a consideration with the DIY approach on the vSAN OSA and
required customers to use the VMware Compatibility Guide – IO
Devices section to verify that their NIC is indeed supported and at
the correct versions. There were numerous vSAN OSA support issues
caused by misbehaving networks cards, which are a critical
component of distributed systems like vSAN. Again, if and when the
DIY approach is added to vSAN ESA configurations, customers will
need to take great care to ensure that the network device they
choose is supported.

Supported Virtual Switch Types

vSAN ESA is supported on both VMware vSphere distributed
switches (VDS) and VMware vSphere standard switches (VSS). There
are some advantages to using a Distributed Switch that will be
covered in Chapter 3, “vSAN Installation and Configuration.” No
other virtual switch types have been explicitly tested with vSAN. A
license for the use of VDS is included with vSAN, irrespective of the
vSphere edition used.

NSX Interoperability

NSX is VMware's network virtualization platform. Whilst it is possible
to run both vSAN and NSX on the same physical infrastructure,
VMware does not support running vSAN traffic on NSX, or as is
stated more specifically in the vSAN Network Design Guide: “NSX-T
does not support the configuration of the vSAN data network over an
NSX-managed VXLAN or Geneve overlay.”

VMware strongly recommends simplifying the network path of all
VMkernel traffic (including vSAN-ESA traffic) as much as possible.
The reason for this recommendation is that firewalls and IDS/IPS
systems (Intrusion detection systems and intrusion prevention
systems which constantly monitor the network) can inadvertently
block this mission critical storage I/O. This could result in some
substantial impacts on the performance or availability of data.

Layer 2 or Layer 3

vSAN ESA is supported over layer 2 (L2/switched) or layer 3
(L3/routed) networks. All vSAN ESA traffic is unicast. There has been
no multicast vSAN traffic since vSAN OSA version 6.6.

VMkernel Network

On each ESXi host that wants to participate in a vSAN ESA cluster, a
VMkernel port for vSAN communication must be created. The
VMkernel port is labeled vSAN traffic and is used for intra-cluster
node communication. It is also used for reads and writes when one
of the ESXi hosts in the cluster runs a particular VM but the actual
data blocks making up the VM components are located on a different
ESXi host in the cluster. In this case, I/O will need to traverse the
network configured between the hosts in the cluster. As depicted in
the diagram below, VMkernel interface vmk2 is used for vSAN traffic
by all the hosts in the vSAN cluster. The VM residing on the first host
does all of its reads and writes leveraging the vSAN network as most
of the components of that VM are stored elsewhere. After an initial
glance at the diagram below, you may be wondering what the Perf
Leg (Performance Leg) and Cap Leg (Capacity Leg) are used for. If
you are familiar with the vSAN OSA, you may also be wondering what
has happened to the witness component for this object. Rest assured
all of this will be explained in the upcoming chapters. For the
moment, it suffices to say that under the covers, certain parts of
vSAN have been redesigned to address the single tier architecture,
and to ensure vSAN optimally utilizes the new class of flash devices.
Part of this involves a new layout of the objects that make up a virtual
machine, represented by components in the Performance Leg and
components in the Capacity Leg, as show below.

Figure 8: vSAN traffic

vSAN ESA Network Traffic

For inter-cluster host communication, vSAN uses a proprietary
protocol called RDT, the Reliable Datagram Transport. VMware has
not published a specification of the protocol. This is similar to the
approach taken for other VMware products and features such as
vMotion, Fault Tolerance, and vSphere Replication. The vSAN network
may be used for two different traffic types.

Clustering service (CMMDS): This traffic does metadata
updates like object placement and statistics. These generate
a very small percentage of overall network traffic.
Storage traffic (e.g., reads, writes): This is most of the network
traffic. All host to host communication within the cluster is
unicast.

Jumbo Frames

Jumbo frames are supported on the vSAN network. We believe that
every vSAN deployment is different, both from a server hardware
perspective and from a network hardware perspective. Therefore, it is
difficult to recommend for or against the use of jumbo frames. In
addition, there is an operational impact in implementing jumbo
frames on non-greenfield sites. When jumbo frames are not
consistently configured end to end, network problems may occur.

Most of the improvements observed with jumbo frames relates to
CPU usage. Data can fit in a smaller number of packets (sometimes
into a single frame when the packet is 8KB or less in size) when
jumbo frames are enabled, and thus no
fragmentation/defragmentation operations are needed to send and
receive these packets.

In an operationally mature environment where a consistent
implementation can be guaranteed, the use of jumbo frames is left to
the administrator’s discretion.

NIC Teaming

Another potential way of optimizing network performance is teaming
of NICs. NIC teaming in ESXi is transparent to vSAN. You can use
any of the NIC teaming options available in vSphere on the vSAN
network. For the most part, NIC teaming offers availability rather than
any performance gain. The only drawback with NIC teaming is that it
adds complexity to the networking configuration of vSAN. Chapter 3
covers the teaming configuration options, and their various
parameters, in more detail.

NIC Teaming - Performance vs. Availability

There is no guarantee that NIC Teaming will give you a performance
improvement. This is because most of the NIC teaming algorithms
are not able to utilize the full bandwidth of multiple physical NICs at
the same time. Various factors play a part, including the size of the
vSAN cluster, the number of NICs, and the number of different IP
addresses used. In our testing, Link Aggregation Control Protocol
(LACP) offers the best chance of balancing vSAN traffic across
multiple vSAN networks using Link Aggregation Groups (LAG). Thus,
if performance is your key goal, then LACP is the best option for
network configuration. This comes with the downside of added
complexity as you will also need to make configuration changes on
the physical network switch. If availability is your key goal, then any of
the other supported NIC teaming policies should suffice. Be aware
that VMware does not support multiple VMkernel adapters (vmknics)
on the same subnet for either vSphere or vSAN. See VMware KB
2010877 for further details.

Network I/O Control

Although it is a requirement to use NICs that provide 25GbE
minimum for vSAN ESA, there is no requirement to solely dedicate
these cards to the vSAN network. NICs can be shared with other
traffic types. However, you should consider using Network I/O Control
(NIOC) to ensure that the vSAN traffic is guaranteed a certain
amount of bandwidth over the network in the case where contention
for bandwidth of the network arises. This is especially true if a NIC is
shared with (for instance) vMotion traffic, which is infamous for
utilizing all available bandwidth when possible. NIOC requires the
creation of a distributed switch because NIOC is not available with

https://kb.vmware.com/s/article/2010877

standard switches. Luckily, the distributed switch is included with the
vSAN license.

Having said that, high-performance environments with dedicated
interfaces for uniform traffic types have gained in popularity. vSAN
ESA and tier 1 applications can benefit from not having to rely on
NIOC and from not sharing bandwidth with other traffic types. This is
once again at the discretion of the customer, and it is not possible to
make a recommendation. In many cases, it becomes a cost vs
performance conversation, although dedicated NICs for specific
traffic types could also make troubleshooting easier by being able to
monitor and isolate certain traffic types via the physical switch ports.
Chapter 3 provides various examples of how NIOC can be configured
for the various types of network configurations.

Firewall Ports

When you are enabling vSAN ESA, several ESXi firewall ports are
automatically opened (both ingoing and outgoing) on each ESXi host
that participates in the vSAN cluster. The ports are used for inter-
cluster host communication and communication with the storage
provider on the ESXi hosts. The table below provides a list of the
most used vSAN-specific network ports. Most of the traffic in a vSAN
cluster (98% or more) will be RDT traffic on port 2233. More
extensive details can be found in VMware KB 52959.

https://kb.vmware.com/s/article/52959

Table 1: ESXi ports and protocols Opened by vSAN

vSAN Stretched Cluster

vSAN stretched cluster allows VMs to be deployed across sites in
different datacenters, and if one site or datacenter fails, VMs can be
restarted on the surviving site, utilizing vSphere High Availability
(HA). There are several items to consider for vSAN Stretched Cluster
configurations, including latency and bandwidth requirements, not
only between the datacenter sites but also to the witness site. These
will be covered in greater detail in the vSAN Stretched Cluster
section, later in this book (Chapter 7), but we will list some of the
basic guidelines here for your convenience:

Maximum 5ms Round Trip Time (RTT) latency between data
sites (requirement)
RTT between data sites and the witness site depends on the
number of hosts
Less than 200 ms latency RTT for up to 10 hosts per site
Less than 100 ms latency RTT for 11-15 hosts per site
25Gbps between data sites for vSAN ESA
2Mbps per 1000 vSAN components from data sites to
witness site

vSAN 2-Node Remote Office/Branch Office
(ROBO)

In much the same way as there are specific network requirements for
vSAN stretched cluster, there are also network requirements around
latency and bandwidth for 2-node ROBO deployments. For 2-node
configurations the following general guidelines apply:

Maximum 500ms RTT between 2-node/ROBO location and
central witness (requirement)
2Mbps per 1000 vSAN components from 2-node/ROBO
location to central witness

VMware vSAN ESA supports back-to-back cabling of the network
between the 2-nodes at a remote office/branch office. This provides
the added benefit that at a relatively low cost, 25GbE can be
introduced in a 2-node configuration without the need for a 25GbE
physical switch infrastructure.

vSAN Fault Domains

The concept of fault domains has been mentioned a few times now.
Throughout the book, various vSAN topologies which leverage fault
domains will be discussed. These will include vSAN stretched cluster
deployments, 2-node vSAN deployments and what might be termed
“rack awareness” deployments. In each case, fault domains simply
represent a way of grouping one, but usually multiple, ESXi hosts
together so that they act as a destination for a capacity leg and
performance leg of an object.

All ESXi hosts continue to participate in the vSAN cluster, but now
rather than having the fault domain set to a single host, you can set a
fault domain to be a group of hosts. An example could be to group
hosts in a vSAN cluster by rack, giving what is termed “rack
awareness”. This means that components of a capacity leg or
performance leg object can be placed on ESXi hosts across different
racks in the datacenter. vSAN will continue to place objects and
components to meet the policy requirements so that in the case of a
failure, only a subset of the object is impacted. However, now if there
is a complete rack failure, or even in the case of a stretched cluster, a
complete site failure, the workloads remain online and available. This
behaviour, and use of fault domains, will become much clearer as we
delve into the inner workings of vSAN stretched clusters in chapter 7
and vSAN 2-node configurations in chapter 8.

vSAN ESA Requirements

Before enabling vSAN ESA, it is highly recommended that the
vSphere administrator validate that the environment meets all the
prerequisites and requirements. To enhance resilience, this list also
includes recommendations from an infrastructure perspective:

Minimum of three ESXi hosts for standard datacenter
deployments of vSAN ESA. Minimum of two ESXi hosts and a
witness host for the smallest deployment, for example,
remote office/branch office.
Minimum memory per ESXi host is 512GB.
VMware vCenter Server. Recommended is 8.0U1 at the time
of writing, but the latest is preferred. vCenter Server version
needs to be equal to, or newer than, the ESXi version.
Remember that vCenter Server contains a great deal of
management and monitoring functionality for vSAN ESA.

At least 15TB capacity and 4 NVMe TLC flash devices for the
storage pool.
One boot device to install ESXi. Boot device should meet the
requirements outlined in VMware KB article 85685.
Dedicated network port for vSAN – VMkernel interface. A dual
25GbE configuration is preferred, but a single 25GbE is also
supported. Higher density vSAN ESA ReadyNodes will require
higher bandwidth NICs, up to 100GbE. The NIC does not
need to be dedicated to vSAN traffic, but can be shared with
other traffic types, such as management traffic, vMotion
traffic, etc. Network I/O Control can be used to ensure
fairness.

Summary

Although configuring vSAN takes a couple of clicks, it is important to
take the time to ensure that all requirements are met and to ensure
that all prerequisites are in place. A stable storage platform starts at
the foundation, which is of course the infrastructure on which it is
enabled. Before moving on to Chapter 3, you should run through the
requirements above.

We have also discussed additional recommendations, which are not
requirements for a fully functional vSAN ESA, but which might be
desirable from a production standpoint such as networking
redundancy, jumbo frames, and Network IO Control.

Chapter 3

vSAN Installation and
Configuration

This chapter describes in detail the installation and configuration
process, as well as all initial preparation steps that you might need to
consider before proceeding with a vSAN cluster deployment. You will
find information on how to correctly set up network and storage
devices, as well as some helpful tips and tricks on how to deploy the
most optimal vSAN configuration.

Cluster Quickstart

In the early versions of vSAN, there were various steps and workflows
involved to get a vSAN cluster fully configured. These steps involved
adding ESXi hosts to a vCenter Server instance. Next, administrators
would normally configure these hosts manually, unless of course, you
had fully automated the installation and configuration. Manual
configuration, for the most part, means setting up all the required
VMkernel interfaces (vSAN, Management, and vMotion networks) and
vSwitch port groups (or distributed port groups for that matter). After
the configuration of the network, a cluster could be created, and the
hosts could be added to a cluster to enable vSphere services such as
vSphere HA, vSphere DRS, and of course vSAN.

Although not overly complicated, it would require the administrator to
go from one UI workflow to the other, some of which were in a
completely different section of the vSphere Client. In later releases of
vSphere, a dedicated UI was developed for the creation of a vSAN
cluster. This workflow, named the Cluster Quickstart wizard,
combines all the different workflows and steps needed to form a
vSAN cluster into a single workflow.

Cluster Quickstart Wizard

When creating a vSAN cluster in a greenfield deployment the steps
that you need to go through are all part of the Cluster Quickstart
wizard. When vCenter Server has been deployed the first thing you
will need to do is create a cluster. When you create a cluster, you
have the option to enable vSphere HA, vSphere DRS, and vSAN.
When the cluster is created, the vSphere Client will automatically
continue with the Cluster Quickstart workflow, regardless of whether
vSAN is enabled or not.

Let’s look at this process a bit more in-depth. The first step in the
vSphere Client UI is to create a cluster. You can do this by right-
clicking in the vSphere Client on the virtual datacenter object. Next
you select “New Cluster”. You provide the cluster with a name, and
then select the cluster services you would like to have enabled. In our
case, this will be vSphere HA, vSphere DRS, and vSAN ESA.

Figure 9: Creation of a cluster

After you have clicked “Next” and “Finish” you are taken to the
section in the UI called Cluster Quickstart. The next step will be to
click “ADD”, and add hosts into your newly created vSAN cluster.

Figure 10: Cluster Quickstart wizard

In our case, we add twelve existing hosts to Cluster. These hosts are
already part of the vCenter Server inventory. Before the hosts are
added to the cluster, a host summary is provided with relevant
information. For instance, it is highlighted if any of the hosts that you
are adding have powered-on VMs.

Figure 11: Select the hosts to be added to the cluster

When you finish the “Add hosts” workflow, the hosts will be added to
the cluster and all cluster services will be configured. What is useful
to know is that the hosts are added to the cluster in “maintenance
mode”. This is to prevent any workloads from using a host which may
not be fully configured yet. Another feature as part of this workflow is
the fact that after adding the host to the cluster the hosts are
validated against various Skyline Health findings. This is to ensure
that the hosts are healthy and compatible with the VMware
compatibility guide. If an NVMe device is not certified, for instance,
then this will be called out. Unsupported driver and firmware versions
are also highlighted. This allows the administrator to install the
correct driver, or firmware, before enabling vSAN and deploying

workloads. Note that in the next screenshot you will notice some of
the Skyline Health findings have failed. This is the result of running
our lab in a virtual environment. In your (production) environment, all
checks should pass.

Figure 12: Health validation during cluster creation

After verifying the health of the hosts, and potentially correcting
issues, the last step can be taken. In this final step, required
networking settings for vMotion and vSAN traffic will be configured,
as well as clustering services.

The Quickstart wizard assumes that a distributed switch is used. It
will configure the distributed switch as recommended by the VMware
Validated Designs (VVD). You can, if preferred, configure the network
settings after this workflow has been completed. We would, however,
recommend doing it as part of the workflow. As mentioned in
previous chapters, vSAN includes the vSphere Distributed Switch
feature irrespective of the vSphere Edition being used.

In our case, we are going to add two physical adapters to the
distributed switch as shown in the next screenshot.

Figure 13: Configuration of the Distributed Switch

After the configuration of the distributed switch, the VMkernel
interfaces for both vMotion and vSAN traffic will need to be
configured. The interface allows you to specify static IP addresses or
use DHCP. Note that in a single window you can provide all the
needed IP details for all hosts in the cluster.

Figure 14: Configuration of the VMkernel interfaces

Next, it is possible to configure various advanced configuration
aspects of vSphere HA and vSphere DRS. Configuration options
continue with advanced vSAN functionality like Data-At-Rest and In-
Transit encryption, Fault Domains, Stretched Clusters, etc. We will
discuss each of these features and their functionality in later
chapters.

Figure 15: Configuration of cluster level services

In the next step, all the host local NVMe devices that need to be part
of the vSAN Datastore can be claimed. Note that vSAN will group the
devices based on their model, and that all devices will become part
of what is now called a storage pool. Note that in the screenshot the
devices appear as incompatible. This is once again due to the fact
that our devices are virtual devices. In your environment they should
be physical devices and always show up as compatible!

Figure 16: Claim vSAN devices

After claiming disks and enabling services, there is now the ability to
configure either fault domains or configure a stretched cluster. If you
are unfamiliar with these concepts, do not worry. They will be covered
in detail in upcoming chapters. However, if you are configuring a
stretched cluster then two additional steps are presented, namely the
selection of the witness host and claiming the disks of the witness
host. The function of the witness components and witness host will
also be covered in greater detail in the architecture chapter. For the
moment it is enough to understand that it plays a role in the
configuration of stretched clusters.

Another configuration option at this point is to configure fault
domains. This is a configuration option when you wish to deploy a
single vSAN cluster across three racks, for example. In that case, you
would create three fault domains and then add the ESXi hosts from
the different racks to each fault domain according to the physical
placement of the host, i.e., hosts in the same rack are placed in the

same fault domain. Fault domains and how they work is something
we will discuss in-depth at a later time. For now, it is sufficient to
know that these can be configured from the same Quickstart
workflow end-to-end, but they can also be configured afterwards. We
will show later in the book how you can configure Fault Domains
when the cluster has fully formed, especially for vSAN stretched
cluster and 2-node configurations.

This completes the configuration of the cluster with a summary of all
settings that have been configured. Note that if anything is
misconfigured, you can step back through the wizard and make the
required changes.

Figure 17: Summary

Now when you click finish the cluster will be fully configured end-to-
end. This will, depending on which services are enabled, take several
minutes.

After the configuration of the hosts has been completed, each of
them will be taken out of maintenance mode and will be ready to
host workloads. Of course, there are a couple of other things to
consider when it comes to installing and configuring a vSAN
infrastructure end to end. Let’s look at those next.

Networking

Network connectivity is the heart of any vSAN cluster. vSAN cluster
hosts use the network for virtual machine (VM) I/O to disk, but also
use the network to communicate their state with one another. As
previously mentioned, vSAN ESA requires 25Gbps networking at a
minimum. However, for higher density configurations, higher
bandwidth is required. The vSAN ESA AF6 ReadyNode has a
requirement for 50Gbps and the vSAN ESA AF8 ReadyNode requires
100Gbps. Consistent and correct network configuration is key to a
successful vSAN deployment.

As mentioned in the previous chapter, VMware vSphere provides two
different types of virtual switches, both of which are fully supported
with vSAN. These are the vSphere Distributed Switch (VDS) and the
VMware Virtual Standard Switch (VSS). Although the authors
recommend using the vSphere Distributed Switch (VDS), it is fully
supported to use the VMware Virtual Standard Switch (VSS). Note
that when using the Cluster Quickstart wizard, the vSphere
Distributed Switch is chosen by default. A VDS provides
administrators with the ability to enable a feature called Network I/O
Control (NIOC). This allows administrators to prioritize traffic streams
when the environment is under contention. Before we dive into NIOC,
let’s discuss some of the basic aspects of vSAN networking, and
some of the design decisions around it.

VMkernel Network for vSAN

All ESXi hosts participating in a vSAN network need to communicate
with one another. As such, a vSAN cluster will not successfully form
until a vSAN VMkernel port is available on the ESXi hosts
participating in the vSAN cluster. The vSphere administrator can
create a vSAN VMkernel port manually on each ESXi host in the
cluster before the vSAN cluster forms, or alternatively can have the
VMkernel ports created as part of the Cluster Quickstart wizard.

Figure 18: VMkernel interfaces used for intra-vSAN cluster traffic

Without a VMkernel network for vSAN, the cluster will not form
successfully. If communication is not possible between the ESXi
hosts in the vSAN cluster, only one ESXi host will join the vSAN
cluster. Other ESXi hosts will not be able to join. This will still result
in a single vSAN datastore, but each host can only see itself as part
of that datastore. A warning message will display when there are
communication difficulties between ESXi hosts in the cluster. If the
cluster is created before the VMkernel ports are created, a warning
message is also displayed regarding communication difficulties
between the ESXi hosts. Once the VMkernel ports are created and
communication is established, the cluster will form successfully.

VSS vSAN Network Configuration

With a VSS, creating a port group for vSAN network traffic is
straightforward. By virtue of installing an ESXi host, a VSS is
automatically created to carry ESXi network management traffic and
VM traffic. Administrators can use an already-existing standard
switch and its associated uplinks to external networks to create a
new VMkernel port for vSAN traffic. Alternatively, administrators may
choose to create a new standard switch for the vSAN network traffic
VMkernel port by selecting unused uplinks for the new standard
switch. Of course, the steps to create a VMkernel interface will have
to be repeated for every ESXi host in the vSAN cluster. Each time
vSAN is scaled out and a new host gets added to the cluster,
administrators must ensure that the VSS configuration is identical on
the new host. This leads to additional operational overhead and
unnecessary complexity. This is the big advantage of the vSphere
Distributed Switch.

VDS vSAN Network Configuration

In the case of a VDS, distributed portgroups become available to all
hosts sharing the switch automatically. A distributed port group can
be used to carry the vSAN traffic. Once the distributed port group is
created, VMkernel interfaces on the individual ESXi hosts can then be
created to use that distributed port group. This ensures that all
VMkernel interfaces across the different ESXi hosts have the same
characteristics, e.g., port binding, port allocation, VLAN ID, security
settings, traffic shaping as well as teaming and failover settings.

Although the official VMware documentation makes no distinction
regarding which versions of Distributed Switch you should be using,
the authors recommend using the latest version of the Distributed
Switch with vSAN. Note that all ESXi hosts attaching to this
Distributed Switch must be running the same version of ESXi when a
given Distributed Switch version has been selected. Preferably, the
version of the selected Distributed Switch should be the same as the
ESXi/vSphere version. Earlier versions of ESXi are not able to utilize
newer versions of the Distributed Switch when added to the cluster.
Since vSAN ESA was launched with vSphere 8.0, the
recommendation is to choose a Distributed Switch version which is
compatible with ESXi 8.0 or later.

One of the steps when creating a Distributed Switch is to select
whether Network I/O Control is enabled or disabled. We recommend
leaving this at the default option of enabled. Later, we discuss the
value of NIOC in a vSAN environment.

Port Group Port Allocations

One important consideration with the creation of port groups is the
port allocation settings and the number of ports associated with the
port group. Note that the default number of ports is eight and that
the allocation setting is elastic by default. This means that when all
ports are assigned, a new set of eight ports is created. A port group
with an allocation type of elastic can automatically increase the
number of ports as more devices are allocated. With the port binding
set to static, a port is assigned to the VMkernel port when it connects
to the distributed port group. If you plan to have a 16-host or larger
vSAN cluster, you could consider configuring a greater number of
ports for the port group instead of the default of eight. This means
that in times of maintenance and outages, the ports always stay
available for the host until it is ready to rejoin the cluster, and it
means that the switch doesn’t incur any overhead by having to delete
and re-add the ports.

When creating a distributed switch and distributed port groups, there
are a lot of additional options to choose from, such as port binding
type. These options are well documented in the official VMware
vSphere documentation, and although we discussed port allocation
in a little detail here, most of the settings are beyond the scope of
this book. Readers who are unfamiliar with these options can find
explanations for each of the advanced portgroup settings in the
official VMware vSphere documentation. However, you can simply
leave these Distributed Switch and port groups at the default settings
and vSAN will deploy just fine with those settings.

TCP/IP Stack

One thing we would like to discuss is the TCP/IP stack. The authors
often get questions about this. The common question is whether
vSAN can use a custom TCP/IP stack, or does vSAN have its own
TCP/IP stack? Neither is the case, unfortunately. At the time of

writing, vSAN only supports the use of the default TCP/IP stack for
the vSAN network. The TCP/IP provisioning stack can only be used
for Provisioning traffic and the vMotion TCP/IP stack can only be
used for vMotion traffic. You will not be able to select these stacks for
vSAN traffic. Options for configuring different network stacks may be
found in official VMware documentation and are beyond the scope of
this book. Suffice to say that different network stacks can be
configured on the ESXi host and can have unique properties such as
specific default gateways associated with each network stack.
However, these different network stacks are not available to vSAN.

In normal vSAN configurations, not having a custom TCP/IP stack is
not an issue. However, when a stretched cluster is implemented
additional network configuration steps may need to be considered
for each of the hosts in the cluster. This is also a consideration in the
case of an L3 (routed network) implementation for the vSAN network.
There is of course the ability to override the default gateway when
creating the vSAN VMkernel interface and the administrator chooses
to use static IP settings in the Add Networking wizard. An alternative
to using the “override default gateway” option would be to configure
static routes using the CLI. We will talk about these network
considerations and configuration in more detail, and how ESXi hosts
in a stretched vSAN cluster can communicate over L3 networks in
Chapter 7.

IPv4 and IPv6

Other decisions that need to be made when manually configuring the
vSAN network stack is whether to use of IPv4 or IPv6, and of course
whether to use of DHCP or static IP addresses. VMware vSAN
supports both the use of IPv4 and IPv6, so the choice is up to the
administrator as an administrator or the network administrator.

Note: While vSAN supports IPv4 or IPv6 for the vSAN network, vSAN
File Services currently only supports IPv4. At the time of going to
press, vSAN ESA did not support the vSAN File Service. It is currently
only available with vSAN OSA. However, it is only a matter of time
before vSAN File Service is also supported on vSAN ESA, so it is an
important infrastructure consideration. If you do want to use vSAN
File Service on vSAN ESA when it becomes available, it is the
author’s understanding that administrators will need still require IPv4
networking to implement it.

When it comes to the allocation of IP addresses we prefer statically
assigned. Although DHCP is fully supported it will make
troubleshooting more complex. One definite recommendation around
the use of DHCP-allocated IP addresses is to make sure that the
range of IP addresses is reserved for vSAN use on the DHCP server.
This will prevent other devices from consuming them should a host
be offline for an extended period.

Network Configuration Issues

If the vSAN VMkernel is not properly configured, a warning will be
displayed in the Skyline Health section on the monitor tab of your
vSAN cluster object. If you click the warning for the particular tests
that have failed, further details related to the network status of all
hosts in the cluster will display. In this scenario none of the hosts in
a twelve-host cluster are correctly configured, leading to network
connectivity issues as expected. You can also see all hosts in the
cluster are in their own partition.

Figure 19: Health Check warning

The Disk Management section of the UI also shows the network
partition groups. This issue is also displayed in the Disk Management
section of the UI, as lack of network connectivity will impact vSAN
capacity. Once the networking issue is addressed, the network
partition issue is resolved and all hosts appear in the same network
partition group, Group 1, as show next.

Figure 20: Disk Management

Network I/O Control Configuration Example

As previously mentioned, Network I/O Control (NIOC) can be used to
guarantee bandwidth for vSAN cluster communication and I/O. NIOC
is available only on VDS, not on the standard switch, VSS. Indeed, for
non-vSAN deployments, VDS is only available with some of the higher
vSphere editions. However, as mentioned earlier, vSAN includes VDS
irrespective of the vSphere edition used.

If you are using an earlier version of a Distributed Switch which is
earlier than your vSphere version, although not explicitly called out in
the vSphere documentation, the authors recommend upgrading to
the most recent version of the Distributed Switch (8.0 or later) if you
plan to use it with vSAN ESA.

Network I/O Control

VMware does not require dedicated NICs for vSAN traffic, but
dedicated interfaces have become common in high-performance
environments. However, to offset the cost of purchasing high speed
NICs, NIOC may be used to ensure fairness of bandwidth to the
different traffic types sharing the same adapter. NIOC has a traffic
type called vSAN traffic, and thus provides QoS on vSAN traffic.
Although this QoS configuration might not be necessary for most
vSAN cluster environments, it is a good feature to have available if
vSAN traffic appears to be impacted by other traffic types sharing the
same network interface card.

An example of a traffic type that could impact vSAN is vMotion. By its
very nature, vMotion traffic is “bursty” and might claim the full
available bandwidth on a NIC port, impacting other traffic types
sharing the NIC, including vSAN traffic. Leveraging NIOC in those
situations will avoid a self-imposed denial-of-service (DoS) attack
which might be observed during a maintenance mode operation for
instance, where many VMs are migrated concurrently.

Setting up NIOC is quite straightforward, and once configured it will
guarantee a certain bandwidth for the vSAN traffic between all hosts.
NIOC is enabled by default when a VDS is created. If the feature was
disabled during the initial creation of the Distributed Switch, it may
be enabled once again by editing the Distributed Switch properties
via the vSphere Client. To begin with, use the vSphere Client to select
the VDS in the network section. From there, select the VDS and
navigate to the configure tab and select the resource allocation view.
This displays the NIOC configuration options.

Figure 21: NIOC resource allocation

To change the resource allocation for the vSAN traffic in NIOC,
simply click on the three vertical dots next to the vSAN traffic type
and select Edit. The next screenshot shows the modifiable
configuration options for each traffic stream.

Figure 22: NIOC configuration

By default, the limit is set to unlimited, physical adapter shares are
set to 100 (High), and there is no reservation. The unlimited value
means that vSAN network traffic is allowed to consume all the
network bandwidth when there is no congestion. We do not
recommend setting a limit on the vSAN traffic. The reason for this is
because a limit is a “hard” setting. In other words, if a 10Gbps limit
is configured on vSAN traffic, the traffic will be limited even when
additional bandwidth is available. Therefore, you should not use limits
because of this behavior.

With a reservation, you can configure the minimum bandwidth that
needs to be available for a particular traffic stream. This must not
exceed 75% of available bandwidth. The reason for not using

reservations is because unused reserved bandwidth cannot be
allocated to other traffic like, for instance, VM traffic. We recommend
leaving this at the default setting and instead using the shares
mechanism.

With the share mechanism, if network contention arises, the shares
setting will be used by NIOC for traffic management. These shares
are compared with the share values assigned to other traffic types to
determine which traffic type gets priority. You can use shares to
“artificially limit” your traffic types based on actual resource usage
and demand.

With vSAN deployments, VMware is recommending a 25GbE network
infrastructure at a minimum. In these deployments, two 25GbE
network ports are usually used and are connected to two physical
25GbE capable switches to provide availability. The various types of
traffic will need to share this network capacity, and this is where
NIOC can prove invaluable.

Design Considerations: Distributed Switch and
Network I/O Control

To provide QoS and performance predictability, vSAN and NIOC
should go hand in hand. Before discussing the configuration options,
the following types of networks are being considered:

Management Network
vMotion Network
vSAN Network
VM Network

This design consideration assumes 25GbE redundant networking
links and a redundant switch pair for availability. Two scenarios will

be described. These scenarios are based on the type of network
switch used:

�. Redundant 25GbE switch setup without “link aggregation”
capability

�. Redundant 25GbE switch setup with “link aggregation”
capability

Note: Link aggregation (IEEE 802.3ad) allows users to use more than
one connection between network devices. It combines multiple
physical connections into one logical connection and provides a level
of redundancy and bandwidth improvement.

In both configurations, recommended practice dictates that you
create the following port groups and VMkernel interfaces:

1 × Management VMkernel interface
1 × vMotion VMkernel interface
1 × vSAN VMkernel interface
1 × VM port group

To simplify the configuration, you should have a single vSAN and
vMotion VMkernel interface per host.

To ensure traffic types are separated on different physical ports, we
will leverage standard Distributed Switch capabilities. We will also
show how to use shares to avoid noisy neighbor scenarios.

Scenario 1: Redundant 25GbE Switch Without
“Link Aggregation” Capability

In this configuration, two individual 25GbE uplinks are available. It is
recommended to separate traffic and designate a single 25GbE

uplink to vSAN for simplicity reasons. We often are asked how much
bandwidth each traffic type requires; we recommend monitoring
current bandwidth consumption and making design decisions based
on facts. However, for this exercise, we will make assumptions based
on our experience and commonly used configurations by our
customers. The recommended minimum amount of bandwidth to
dynamically keep available per traffic type is as follows:

Management VMkernel interface: 5 GbE
vMotion VMkernel interface: 10 GbE
VM Port Group: 10 GbE
vSAN VMkernel interface: 25 GbE

Again, it is important to highlight that these are not applicable if
there is no contention for network resources. These bandwidth
throttling mechanisms only kick-in when there is network contention.

Note that various traffic types will share the same uplink. The
management network, VM network, and vMotion network traffic are
configured to share uplink 1, and vSAN traffic is configured to use
uplink 2. With the network configuration done this way, sufficient
bandwidth exists for all the various types of traffic when the vSAN
cluster is in a normal operating state.

To make sure that no single traffic type can impact other traffic types
during times of contention, NIOC is configured, and the shares
mechanism is deployed. When defining traffic type network shares,
this scenario works under the assumption that there is only one
physical port available and that all traffic types share that same
physical port for this exercise.

This scenario also considers a worst-case scenario approach. This
will guarantee performance even when a failure has occurred. By
taking this approach, we can ensure that vSAN always has 50% of
the bandwidth at its disposal while leaving the remaining traffic types

with sufficient bandwidth to avoid a potential self-inflicted Denial of
Service (DoS).

The following table outlines the recommendations for configuring
shares for the different traffic types. Note that in the table we have
only outlined the most used traffic types. In our scenario, we have
divided the total amount of shares across the different traffic types
based on the expected minimum bandwidth requirements per traffic
type.

Table 2: Recommended share configuration per traffic type

Explicit Failover Order

When selecting the uplinks used for the various types of traffic, you
should separate traffic types to provide predictability and avoid noisy
neighbor scenarios. The configuration listed in the next table is our
recommendation.

Table 3: Recommended explicit failover order per traffic type

Setting an explicit failover order in the teaming and failover section
of the port groups is recommended for predictability. The explicit
failover order always uses the highest-order uplink from the list of
active adapters that passes failover detection criteria.

Figure 23: Using Explicit Failover Order

Separating traffic types allows for optimal storage performance while
also providing sufficient bandwidth for the vMotion and VM traffic.
This could also be achieved by using the load-based teaming (LBT)
mechanism. However, the LBT load balancing period is 30 seconds,
potentially causing a short period of contention when “bursty” traffic
share the same uplinks. Also note that when troubleshooting network
issues, it might be difficult to keep track of the relationship between
the physical NIC port and VMkernel interface when using LBT.

While this configuration provides a level of availability, it doesn’t offer
any sort of balancing for the vSAN traffic. It Is either using one uplink
or the other uplink. Thus, one disadvantage of this approach is that
the vSAN traffic will never be able to use more than the bandwidth of
a single NIC port. In the next section, we will discuss a network
configuration that provides availability as well as load-balancing
across uplinks, allowing vSAN to consume available bandwidth on
multiple uplinks.

Figure 24: Using Explicit Failover Order

Scenario 2: Redundant 25 GbE Switch with Link
Aggregation Capability

In this next scenario, there are two 25 GbE uplinks set up in a
teamed configuration (often referred to as EtherChannel or Link
Aggregation - LAG). Because of the physical switch capabilities, the
configuration of the virtual layer will be extremely simple. We will
consider the previous recommended minimum bandwidth
requirements for the design:

Management Network interface: 5 GbE
vMotion VMkernel interface: 10 GbE
VM Port Group: 10 GbE
vSAN VMkernel interface: 25 GbE

When the physical uplinks are teamed (link aggregation), the
Distributed Switch load-balancing mechanism is required to be
configured with one of the following configuration options:

IP-Hash
Link Aggregation Control Protocol (LACP)

IP-Hash is a load-balancing option available to VMkernel interfaces
that are connected to multiple uplinks on an ESXi host. An uplink is
chosen based on a hash of the source and destination IP addresses
of each packet. For non-IP packets, whatever is located at those IP
address offsets in the packet is used to compute the hash. Again,
this may not work well with vSAN since there may be only a single
vSAN IP address per host.

LACP allows you to connect ESXi hosts to physical switches by
employing dynamic link aggregation. LAGs (link aggregation groups)
are created on the Distributed Switch to aggregate the bandwidth of

the physical NICs on the ESXi hosts that are in turn connected to
LACP port channels.

The official vSphere networking guide has much more detail on IP-
hash and LACP support and should be referenced for additional
details. Also, the vSAN Network Design documentation discusses
LACP extensively. (https://vmwa.re/vsannetwork)

Although IP-Hash and LACP aggregate physical NICs (and/or ports),
the algorithm used selects which physical NIC port to use for a
particular data stream. A data stream with the same source and
destination address will, as a result, only use a single physical NIC
port and thus not use the aggregate bandwidth.

It is recommended to configure all port groups and VMkernel
interfaces to use either LACP or IP-Hash depending on the type of
physical switch being used:

Management VMkernel interface = LACP/IP-Hash
vMotion VMkernel interface = LACP/IP-Hash
VM Port Group = LACP/IP-Hash
vSAN VMkernel interface = LACP/IP-Hash

Because various traffic types will share the same uplinks, you also
want to make sure that no traffic type can affect other types of traffic
during times of contention. For that, the NIOC shared mechanism is
once again used.

Working under the same assumptions as before that there is only one
physical port available and that all traffic types share the same
physical port, we once again take a worst-case scenario approach
into consideration. This approach will guarantee performance even in
a failure scenario. By taking this approach, we can ensure that vSAN
always has 50% of the bandwidth at its disposal while giving the
other network traffic types sufficient bandwidth to avoid a potential
self-inflicted DoS situation arising.

https://vmwa.re/vsannetwork

When both uplinks are available, this will equate to 25GbE for vSAN
traffic. When only one uplink is available (due to NIC failure or
maintenance reasons), the bandwidth is also cut in half, giving a
12.5GbE bandwidth. Once more, this is only applicable in times of
network contention. During normal operations, the network is given
as much bandwidth as it wants. Table 2 in the previous example
outlines the recommendations for configuring shares for the traffic
types.

The next diagram depicts this configuration scenario.

Figure 25: Distributed switch configuration for link aggregation

Either of the scenarios discussed here should provide an optimal
network configuration for your vSAN cluster. However, once again we
do want to highlight that whilst all these configurations provide
availability, the one that we have found to provide the best load-
balancing across uplinks, and thus the best-aggregated performance
is the LACP configuration. This has to be weighed up against the
added complexity of configuring Link Aggregation on the physical
switch.

vSAN over RDMA

vSAN OSA began supporting Remote Direct Memory Access (RDMA)
with release 7.0 U2. vSAN ESA also supports RDMA. RDMA is an
alternative network communication protocol to TCP. The advantages
of RDMA are that it typically lowers CPU utilization and has lower I/O
latency. There are a number of requirements before RDMA can be
enabled on a vSAN deployment. The Network Interface Cards must
be RDMA capable, listed on the VMware Hardware Compatibility
Guide and must be the same NIC on all vSAN hosts in the cluster. If
for some reason one of the hosts cannot use RDMA, the entire vSAN
cluster will switch back to communicating over TCP. RDMA over
Converged Ethernet (RoCE) is the network protocol which allows
RDMA over an ethernet network. To enable RDMA support on a vSAN
cluster, the hosts must support RoCE v2.

Note that vSAN clusters which use RDMA are limited to 32 hosts.
Also note that vSAN hosts which use RDMA cannot implement LACP
or IP-hash-based NIC teaming as discussed in the previous sections.
However, vSAN hosts using RDMA do support NIC failover. The vSAN
cluster must also use RDMA over Layer 2. Using RDMA over Layer 3
is not supported.

RDMA makes extensive use of the DCB, the Data Center Bridging
protocol. VMware recommends that the network interface cards that
support RDMA are configured with DCBx mode set to IEEE. It also
requires that the network switches are configured to use DCB with
Priority Flow Control. vSAN traffic must be configured as lossless and
have a priority level of 3.

vSphere High Availability

vSphere High Availability (HA) is fully supported on a vSAN cluster to
provide additional availability to VMs deployed in the cluster;
however, several significant changes have been made to vSphere HA
to ensure correct interoperability with vSAN. These changes are
important to understand as they will impact the way you configure
vSphere HA.

vSphere HA Communication Network

In non-vSAN deployments, communication of vSphere HA agents
takes place over the management network. In a vSAN environment,
vSphere HA agents communicate over the vSAN network. The
reasoning behind this is that in the event of a network failure we want
vSphere HA and vSAN to be part of the same network partition. This
avoids possible conflicts when vSphere HA and vSAN observe
different partitions when a failure occurs, with different partitions
holding subsets of the storage components and objects. As such
vSAN always needs to be configured before vSphere HA is enabled. If
vSAN is configured after vSphere HA is configured, then a warning
will inform you to temporarily disable HA first before continuing with
the configuration of vSAN.

vSAN always needs to be configured before vSphere HA is enabled. If
vSphere HA is already enabled, it needs to be disabled temporarily!

vSphere HA in vSAN environments, by default, continues to use the
management network’s default gateway for isolation detection. We
suspect that most vSAN environments will have the management
network and the vSAN network sharing the same physical
infrastructure, but logically separate them using VLANs. If the vSAN
and management networks are on a different physical or logical
network, it is required to change the default vSphere HA isolation
address from the management network to the vSAN network. The

reason for this is that in the event of a vSAN network issue that leads
to a host being isolated from a vSAN perspective, vSphere HA won’t
take any action. This is because the isolation response IP address is
set on the management network, implying that it might still be
possible to ping the isolated host.

By default, the isolation address is the default gateway of the
management network as previously mentioned. VMware’s
recommendation when using vSphere HA with vSAN is to use an IP
address on the vSAN network as an isolation address. To prevent
vSphere HA from using the default gateway, and to use an IP address
on the vSAN network, the following settings must be changed in the
advanced options for vSphere HA.

das.usedefaultisolationaddress=false
das.isolationaddress0=<IP address on vSAN network>

In some cases, there may not be a suitable isolation address on the
vSAN network. However, most network switches can create a so-
called Switch Virtual Interface. Discuss this with your network
administrator as this may be a viable alternative. We have seen
customers who configured the isolation address to use one, or
multiple, IP addresses of their vSAN VMkernel interfaces. This
however is not recommended. In a scenario where the host is
isolated, and it is the IP address of that host which is used as the
isolation address, it will be impossible to declare the host isolated as
the host will always be able to ping its own interface.

vSphere HA Heartbeat Datastores

Another noticeable difference with vSphere HA on vSAN is that the
vSAN datastore cannot be used for datastore heartbeats. These
heartbeats play a significant role in determining VM ownership in the

event of a vSphere HA cluster partition with traditional Storage Area
Networks (SAN) or Network Attached Storage (NAS) datastores.
vSphere HA does not use the vSAN datastore for heart-beating and
won’t let a user designate it as a heartbeat datastore. If no heartbeat
datastores can be configured, vSphere HA will display a warning. This
warning can be disabled by configuring the following advanced
setting.

das.ignoreInsufficientHbDatastore = true

Note: If ESXi hosts participating in a vSAN cluster also have access
to shared storage, either VMFS (Virtual Machine File System) or NFS
(Network File System), these traditional datastores may be used for
vSphere HA heartbeats.

vSphere HA Admission Control

There is another consideration to discuss regarding vSphere HA and
vSAN interoperability. When configuring vSphere HA, one of the
decisions that should be made is about admission control.
Admission control ensures that vSphere HA has sufficient resources
at its disposal to restart VMs after a failure, e.g., an ESXi host has
failed, and the CPU and memory resources on that failed host are no
longer available to run virtual machine workloads. vSphere HA does
this by setting aside resources which can be used when a failure has
occurred.

vSAN has a mechanism which automatically sets aside storage
capacity resources. This is to ensure that objects which are impacted
by a failure can be rebuilt. This functionality is called “Host rebuild
reserve” and can be enabled under the Reservation and Alerts
configuration options for vSAN on the Configure > vSAN > Services
view in the vSphere client. Although it provides similar functionality

as vSphere HA Admission Control does, it is not the same. If a failure
occurs, vSAN will try to use the reserved capacity on the remaining
nodes in the cluster to bring the VMs to a compliant state by
rebuilding any missing or failed components. The next screenshot
shows our environment where we have both Host rebuild reserve, as
well as Operations reserve enabled. These reserves will be discussed
in greater detail in chapter 6, vSAN Operations.

Figure 26: vSAN Host rebuild reserve

vSphere HA Isolation Response

When a host isolation event occurs in a vSAN cluster with vSphere
HA enabled, vSphere HA will apply the configured isolation response.
With vSphere HA, you can select a number of different types of
responses to an isolation event to specify what action to take on
virtual machines that are on the isolated host:

Disabled (Default)

Power off and restart VMs (vSAN Recommended)
Shut down and restart VMs

The recommendation is to have vSphere HA automatically power off
the VMs running on that host when a host isolation event occurs.
Therefore, the “isolation response” should be set to “power off and
restart VMs” and not the default setting that is “Disabled”.

Figure 27: vSphere HA Host Isolation response

Note that “Power off and restart VMs” is like pulling the power cable
from a physical host. The VM process is killed. This is not a clean
shutdown! In the case of an isolation event, however, it is unlikely

that vSAN can write to the disks on the isolated host and, as such,
powering off is recommended. If the ESXi host is partitioned, it is
also unlikely that any VM on the isolated host will be able to access a
quorum of components of the storage object.

The question then remains, would it be beneficial to configure
heartbeat datastores when available in a vSAN environment. The
following table describes the different failure scenarios we have
tested with a logically separated vSAN and Management network,
with and without the availability of heartbeat datastores and a
correctly and incorrectly configured isolation address.

Table 4: Recommended share configuration per traffic type

Key Takeaways

Always use an isolation address that is in the same network
as vSAN when the management network and the vSAN
network is logically or physically separated. By doing so,
during an isolation, the isolation is validated using the vSAN
VMkernel interface.

Always set the isolation response to power-off, this would
avoid the scenario of a duplicate MAC address or IP address
on the network when VMs are restarted when you have a
single network being isolated for a specific host.
Last but not least, if you have traditional storage, then you
can enable heartbeat datastores. It doesn’t add much in
terms of availability, but still, it will allow vSphere HA to
communicate state through the datastore.

Proactive HA support

Proactive HA is a feature which monitors the state of a host and
enables vSphere to decide on whether to proactively migrate VMs
from a degraded host before it has a complete failure.

Figure 28: Configure Proactive HA

When Proactive HA is configured, vSphere client plugins from server
vendors are required to configure it. These plugins are known as
Providers. vSAN will now consider the state of a host when placing
data and will also proactively move data from a host when a host is
degraded.

If your server vendor of choice supports Proactive HA, we would
recommend considering enabling it with the automation level set to
“Automated” and the remediation level set to “Mixed mode”. In the
case of “Mixed mode” Proactive HA will decide, based on the type of
failure that has occurred, whether to place the host into maintenance
mode or to place it into quarantine mode. This “Mixed mode”
balances performance with availability. It only uses partially or
moderately degraded hosts for data placement if virtual machine
workloads performance is at risk by not doing so.

vSphere HA VM Component Protection (VMCP)

In a traditional SAN and NAS environment it is possible to configure
a response to an all paths down (APD) scenario and permanent
device loss (PDL) scenario within HA. This capability is part of a
feature called VM Component Protection (VMCP) and if vSphere HA
detects a datastore accessibility issue, it can automatically begin
failing over virtual machines to a host that can still access the
datastore.

At the time of writing this is not supported for vSAN and as such a
response to APD and/or PDL does not have to be configured for
vSphere HA in a vSAN only cluster. However, it can be configured
when traditional datastores are available in your environment, or
when you are leveraging vSAN HCI Mesh to mount remote vSAN
datastores. HCI Mesh will be discussed in greater detail in later
chapters of the book.

Now that we know what has changed for vSphere HA, let’s take a look
at some core constructs of vSAN.

Storage Pool

The vSAN ESA removes the concept of disk groups and negates the
need for administrator to consider sizing and compatibility of the
different caching and capacity tiers. In its place, vSAN ESA
introduces the construct called ”storage pool.” This storage pool
contains all storage devices on a host that are used to provide
storage resources to vSAN. At the time of going to press, the only
support storage devices for vSAN ESA are NVMe. All devices in a
storage pool contribute to both capacity and performance. Note that
there can only be one storage pool per host, and this storage pool
contributes to a single vSAN datastore per cluster.

Figure 29: Claiming disks for vSAN

After the storage pools have been created on each host, the vSAN
datastore is created. This vSAN datastore can now be used for the
deployment of VMs or other types of vSAN objects like iSCSI
volumes, CNS Container Volumes, etc.

vSAN Datastore Properties

The raw size of a vSAN datastore is governed by the number of
storage pool devices per ESXi host and the number of ESXi hosts in
the vSAN cluster. Since vSAN ESA now uses a single tier for both
performance and capacity, storage devices use a new, modified
object format to store data in an object in two legs. These legs are
known as the performance leg, and the capacity leg. These constructs
will be covered in much greater detail in the architecture section but
suffice to say that these legs are used by components from the same
object. This enables vSAN to deliver both performance and capacity
all from the same tier.

Let’s now look at the raw capacity of the datastore. Raw capacity is
measured by simply adding the capacity of all of the NVMe devices in
each storage pool in each host in the vSphere/vSAN cluster. Now we
know how to calculate how much raw capacity available. But how do
we know much effective capacity we will have? This calculation needs
to include the overheads one might observe when enabling vSAN
ESA. Thus, effective capacity depends on various factors. One aspect
is whether the data compression feature is enabled. It is enabled by
default, but in vSAN ESA, it is configurable on a per object basis.
Therefore, this space efficiency feature plays a big factor in the
effective capacity. We will discuss space efficiency features in more
detail in Chapter 4.

But it is not just compression that can provide space-saving on the
vSAN datastore or can change the amount of available effective

capacity. There is also the number of replica copies configured if the
VM is using a RAID-1 policy. This is enabled through the policy-based
management framework. Conversely, you may decide to use erasure
coding policies such as RAID-5 and RAID-6 which include one or
more parity components depending on the configuration chosen.

Similarly, all objects on vSAN ESA are thin provisioned by default.
Thus, if an 8TB VMDK is requested, but only 4TB is written, then the
overhead of the replica copies mentioned previously is only 4TB as
well. Replica overheads only apply to the capacity used, not the
capacity provisioned.

On top of that, there’s also the ability to reserve capacity for vSAN
maintenance operations and rebuild operations after host failures.
Enabling these reservation options will directly impact how many
VMs can be deployed on the datastore.

From an overhead perspective, there are two areas that should be
considered. These are the vSAN Log-Structured File System (LFS)
overheads for an object, and the global metadata. Both will be
discussed in detail in chapter 4 when the architecture of the vSAN
ESA is reviewed. At present, it is enough to understand that the LFS
helps deliver the high performance associated with the vSAN ESA,
while the global metadata helps vSAN ESA store large amounts of
data in a very space-efficient and scalable manner. The vSAN LFS
overheads for an object will consume an additional 13% of the total
raw capacity of a cluster, whilst global metadata will typically
consume 10% of the total raw capacity of a cluster.

Once the storage pools are created, vSAN is configured and the
vSAN datastore is formed. At this point, a number of datastore
capabilities are surfaced up into vCenter Server. These capabilities
will be used to create the appropriate VM storage policies for VMs,
and their associated virtual machine disk (VMDK) storage objects
deployed on the vSAN datastore. Before deploying VMs, however, you
first need to understand how to create appropriate VM storage

policies that meet the requirements of the application running in the
VM.

VM storage policies and vSAN capabilities will be discussed in
greater detail later in Chapter 5, “VM Storage Policies and VM
Provisioning,” but at present it is enough to know that these
capabilities form the VM policy requirements. These allow a vSphere
administrator to specify requirements based on performance,
availability, and data services when it comes to VM provisioning.
Chapter 5 discusses VM storage policies in the context of vSAN and
how to correctly deploy a VM using vSAN capabilities.

Summary

If everything is configured and working as designed, vSAN can be
configured in just a few clicks. However, it is vitally important that the
infrastructure is ready in advance. Identifying appropriate
performance and capacity characteristics of the NVMe devices and
verifying that your networking is configured to provide the best
availability and performance are all tasks that must be configured
and designed up front.

Now the vSAN cluster is up and running, let’s look at some of the
architectural components of vSAN in the next chapter.

Chapter 4

Architectural Details

This chapter examines some of the underlying architectural details of
vSAN as implemented in the Express Storage Architecture (ESA).
While the vSAN ESA is significantly different from the Original
Storage Architecture (OSA), it shares many of the architectural
details found in the OSA. In a distributed storage solution like vSAN,
concepts around data availability and resilience have not changed,
but hardware has, and the ESA was designed to exploit the full
capabilities of today’s hardware.

This chapter covers concepts of data storage, resilience, and
availability in the vSAN ESA. These concepts introduce terminology
and a model of storage that is different from traditional three-tier
architectures. Although most vSphere administrators will never see
many of these low-level constructs, it will be useful to understand the
various aspects of vSAN to help in your design, operation, and
optimization of the platform in your environment.

Before examining some of the lower-level details, here is one
concept that we need to discuss first as it is the core of vSAN:
distributed RAID (Redundant Array of Inexpensive Disks).

Distributed RAID

vSAN stores data in a resilient way by distributing data across
multiple hosts in a vSAN cluster. It achieves this by using many types
of distributed RAID schemes. In the case of vSAN, these data
placement schemes use the network to distribute data across hosts
in a resilient way. As the name suggests, it means that a vSAN cluster
can withstand the failure of one or more ESXi hosts (or physical
components in that host, such as a storage device, or network
interface card) while ensuring that the VM and the data it serves
remains available.

vSAN allows administrators to define resilience in a granular way. VM
resilience settings are defined on a per-VM or per-VMDK basis using
storage policies. This unique ability comes from how vSAN defines
and uses a relatively small boundary of data, known as objects, which
will be discussed in more detail in this chapter.

Assigning levels of resilience through storage policies applies to all
object types in vSAN, including iSCSI LUNs, and persistent volumes
for cloud-native services. To simplify comprehension, we will often
use a VM or objects that comprise a VM such as a virtual disk for the
examples used in this book.

Storage policies allow the administrator to define how many hosts or
device failures an object can tolerate for the hosts that the object
resides on while remaining available. If you choose not to set an
availability requirement in the storage policy by setting the number of
failures to tolerate equal to zero, a host or storage device failure can
impact an object’s availability. More detailed information on policy
settings will be discussed in chapter 5.

Early versions of vSAN only used RAID-1 (synchronous mirroring) as a
way to provide data resilience across hosts. vSAN would
synchronously mirror an object’s data to one or more locations, or

hosts. The number of copies (replicas) of an object depended on the
number of failures to tolerate requirement in the storage policy
assigned. The ability to select a higher level of failures to tolerate
depended on the available resources in the cluster, such as the
number of hosts, and storage devices. Depending on the VM storage
policy, you could have up to three replica objects of a VM’s disk
(VMDK) object across a vSAN cluster for availability, assuming there
were enough hosts in the cluster to accommodate this. By default,
vSAN always deploys VMs with failures to tolerate equal to 1, meaning
that when new VM objects are deployed that are not using a user-
defined storage policy, the data will be stored in a resilient way.

vSAN also uses other RAID types: RAID-5 and RAID-6. These are
commonly referred to as erasure coding. Erasure coding is a method
of storing data resiliently by fragmenting data across some physical
boundary in a manner that maintains access to the data in the event
of a fragment or fragments becoming unavailable. In vSAN, erasure
codes stripe the data with parity across hosts. Unlike a RAID-1 mirror
where there are two or more copies of the data, an object using
erasure coding will have the data and parity fragments spread across
the hosts storing the object to provide this resilience. Data and parity
fragments reside within each of the components that comprise an
object. There is no dedicated parity component.

RAID-5/6 erasure coding allows for data to be stored resiliently in a
much more space-efficient way than data stored resiliently using
RAID-1. How much better will depend on the failures to tolerate
setting chosen. The erasure code used by vSAN is embedded into the
failures to tolerate setting in the storage policy, stated as “1 failure –
RAID-5 (Erasure Coding)” and “2 failures – RAID-6 (Erasure Coding)”
respectively.

Since the vSAN ESA only supports all-flash configurations, both
RAID-5 and RAID-6 can be used if there are a sufficient number of
hosts in the cluster to support the desired configuration. In the OSA,

a RAID-5 erasure code would spread the object data and parity in a
3+1 (data+parity) configuration across a minimum of 4 hosts, thus
requiring a minimum cluster size of 4 hosts. The ESA uses a new
adaptive erasure coding scheme that will use one of two RAID-5
schemes depending on the size of the cluster. For ESA clusters with
6 or more hosts, an object using RAID-5 will distribute the object
data with parity in a 4+1 (data+parity) configuration across 5 hosts.
For ESA clusters with fewer than 6 hosts, an object using RAID-5 will
distribute the object data with parity in a 2+1 (data+parity)
configuration across 3 hosts. This offers guaranteed levels of space
efficiency for data stored on vSAN clusters with a very small number
of hosts. The following diagram shows an example of a RAID-5
object using a 4+1 configuration. Not shown in this diagram is the
6th ESXi host in the vSAN cluster, which is a requirement for RAID-5
in ESA.

Figure 30: RAID-5 using distributed parity in vSAN

Since a RAID-5 object will include a single parity fragment for every
stripe written, it can tolerate only one host failure. A RAID-6 object
will include two parity fragments for every stripe written and can

tolerate two host failures. As shown in the next diagram, an object
using RAID-6 will distribute data across a minimum of 6 hosts.

An object using RAID-5 can tolerate only one host failure since it
stores one parity segment for every stripe written. An object using
RAID-6 is designed to tolerate two host failures. It will distribute the
object data with parity across 6 hosts.

Figure 31: RAID-6 deployment with distributed parity

The capacity savings can be understood with the following simplified
comparison. If a VMDK stores 100GB of data, and failures to tolerate
is set to 1 using RAID-1, a total of 200GB of capacity would be
consumed on the vSAN datastore. If failures to tolerate is set to 2
using RAID-1, a total of 300GB of capacity would be consumed on
the datastore. With RAID-5, depending on the size of the cluster, a
total of 125GB (4+1) or 150GB (2+1) would be consumed to tolerate
one failure. With RAID-6, a total of 150GB (4+2) would be consumed
to tolerate two failures.

While RAID-5/6 stores data in a resilient and space-efficient manner,
it did have some performance trade-offs when using the OSA. For
performance-sensitive workloads, customers could use storage
policies based on RAID-1 mirroring to ensure optimal performance.
The design of the ESA eliminates this consideration, as it will deliver

efficient RAID-5 and RAID-6 erasure coding with performance as
fast or faster than RAID-1 mirroring. This can simplify the use and
management of storage policies, where RAID-5/6 can be used in all
conditions except for site-level resilience in a stretched cluster, and
host-level resilience in 2-node clusters.

Objects and Components

Now that we have explained how VMs are protected, it is important to
understand the concept that the vSAN datastore is an object storage
system and that VMs are now made up of a few different storage
objects. This is a different concept for vSphere administrators as
traditionally a VM has been made up of a set of files on a LUN or
volume.

We have not spoken in detail about objects and components so far,
so before we go into detail about the various types of objects, let’s
start with the definition and concepts of an object and component on
vSAN.

Objects are the main unit of storage on vSAN. They are a logical
boundary of data that instead of representing an entire clustered file
system like VMFS, represent a much smaller unit of storage, such as
a VMDK supporting a VM. This is an ideal approach for a distributed
storage system like vSAN that must account for temporary or
sustained failure conditions in hosts or devices across a cluster and
scale out easily when adding more hosts. It eliminates the complexity
of trying to maintain a classic, monolithic file system across a
distributed architecture, and provides better availability, simplified
scalability, and more granular management of the VMs and data
stored.

An object is an individual storage block device, compatible with SCSI
semantics that resides on the vSAN datastore. It may be created on-

demand and at any size, though some object sizes are limited. For
example, VMDKs follow the vSphere capacity limitation of 62TB. In
vSAN, the objects that make up a virtual machine are VMDKs, the VM
home namespace, and when the VM is powered on, a VM swap object
is also created. A namespace object can be thought of as a directory-
like object, where files can be stored. When using the vSAN OSA,
snapshots are treated as their own object. In the ESA, snapshots
exist within the properties of an existing object.

In case a failure has occurred, you may also see a special object
called a durability component. This component is used by vSAN to
temporarily store new writes and is very similar to a regular VMDK
component, but we will discuss this in more depth at a later stage.

Other object types include iSCSI targets and LUNs, and a
performance stats object used for storing vSAN performance metrics.
iSCSI targets are like VM home namespaces, and iSCSI LUNs and
file shares are like VMDKs. The performance stats database is also
akin to a namespace object. vSAN will also use objects for storing
infrastructure-supporting files on a vSAN datastore. For example, if a
directory is created to store ISO files or content libraries, this will
create a namespace object. vSAN 8.0 U1 and newer will also use
namespace objects to store trace files to help with troubleshooting.

Each object in vSAN uses its own RAID tree that translates the
requirements set in the assigned policy into a layout of data on
physical devices across the hosts in a cluster. It is the RAID tree that
spreads the data across hosts in a structured, resilient way. A storage
policy is what defines the layout of the object.

Figure 32: Simplified RAID tree in vSAN

To make an object resilient, vSAN breaks objects into smaller chunks
of data and ensures copies of that data are placed on different hosts
across a cluster. A component is a term used to represent this
smaller piece of data. Components are the leaves of an object’s RAID
tree. They are an implementation detail of vSAN’s object structure
and do not need you to perform management tasks at a component
level.

The vSAN ESA uses a slightly different data structure than what is
found in the OSA. Objects are still comprised of components, but the
RAID tree of an object in the ESA is a concatenation of two parts: A
performance leg and a capacity leg.

The components in the performance leg of a RAID tree are used for
vSAN’s new log-structured file system (vSAN LFS). These
components are used to temporarily ingest new writes, hold recently
accessed metadata, and prepare the data and metadata for a fully
aligned, full-stripe write to the capacity leg. Components that make
up the performance leg of a resilient object are always in a two-way
or a 3-way mirror, depending on the failures to tolerate setting
defined in the assigned storage policy. When an object uses a RAID-
5 or RAID-6 erasure code, these mirrored components in the
performance leg of an object will always reside on the same hosts
that store the object’s capacity leg components.

Figure 33: Concatenated RAID trees used in the vSAN ESA

The RAID tree that makes up the components in the capacity leg is
very similar to what is found in the OSA. These capacity leg
components of an object are distributed across hosts in accordance
with the resilience settings used in the assigned storage policy.

A VM in a cluster running the vSAN ESA can have four different types
of objects residing in its datastore. Keep in mind that each VM may
have multiples of some of these objects associated with it:

The VM home or “namespace directory”
A swap object (when the VM is powered on)
Virtual disks/VMDKs
Snapshot memory (each is a unique object) optionally
created for snapshots

Unlike the vSAN OSA, the ESA does not store VM snapshot delta
disks as their own unique object. In the ESA, snapshots exist within
the properties of an existing object.

Of the object types listed, the VM home namespace may need a little
further explanation. Every VM gets its unique home namespace
object. In the vSAN ESA, all VM files, excluding VMDKs, memory

(snapshots), durability component, and swap, reside in this VM home
namespace object on the vSAN datastore. The typical files found in
the VM home namespace are the “.vmx”, the “.log” files, “.vmdk”
descriptor files, snapshot deltas descriptors files, and everything else
one would expect to find in a VM home directory.

Each storage object is deployed on vSAN as a RAID tree, and each
leaf of the tree is said to be a component. For example, if a VMDK is
configured to tolerate a single failure by selecting a RAID-1 policy, a
mirror of the VMDK object would be created with a set of replica
components on one host and another set of components on another
host in the vSAN cluster.

In this RAID-1 configuration, vSAN must use another component in
this object to give us quorum in the event of failure or split-
brain/cluster partition scenarios. In the vSAN OSA, one or more
dedicated witness components are used for each RAID-1 object. This
witness component only stores metadata and does not store any data
belonging to a VM. When RAID-1 is used in the ESA, a dedicated
witness component is no longer used, unless it is for site-level
resilience in a stretched cluster or host-level resilience in a 2-node
cluster. The vSAN ESA will place one of the performance leg
components on a third host to provide this quorum functionality.

Unlike the OSA, the ESA does not create a dedicated object for
snapshot delta disks. A VM’s snapshots in the ESA will contain these
snapshots within the object. As changed data accumulates with these
snapshots, vSAN will create additional components within the object
as necessary.

Component Limits

Components serve as a flexible way for vSAN to distribute an object
across hosts in a resilient way, but a vSAN host does have hard limits

on the number of components that can reside on a single host.

Maximum number of components per host limit for vSAN
ESA: 27,000

You might notice that the component limit per host for the ESA is
three times the limit of the OSA. This is because the modified data
structure of objects residing in an ESA cluster will typically use more
components than the same objects running on an OSA cluster.

Components per host include components from powered-off VMs,
unregistered VMs, and templates. vSAN distributes components
across the various hosts in the cluster and will always try to achieve
an even distribution of components for balance. However, some hosts
may have more components than others, which is why VMware
recommends, as a best practice, that hosts participating in a vSAN
cluster be similarly or identically configured. Components are a
significant sizing consideration when designing and deploying vSAN
clusters. If hosts participating in a vSAN cluster are uniformly
configured, vSAN will try to evenly distribute components across all
storage devices in the hosts that are claimed by vSAN.

The vSphere Client enables administrators to interrogate objects and
components of a VM. The next screenshot provides an example of
one such layout. The VM has a single hard disk. From the list of
object components, you can see that the performance leg for the
object (Hard disk 1) is mirrored across three different hosts to
provide FTT=2, the same as the RAID-6 in the capacity leg for the
object. This is visible in the “hosts” column, which shows the host
location of the components.

Figure 34: Physical disk placement of objects related to a VM

Virtual Machine Storage Objects

As stated earlier, the four storage objects are VM home namespace,
VM Swap, VMDK, and snapshot memory as illustrated in the diagram
below.

Figure 35: VM storage objects

We will now look at how characteristics defined in the VM storage
policy impact these storage objects.

Namespace Object

Virtual machines use the namespace object as their VM home and
use it to store all of the virtual machine files that are not dedicated
objects in their own right. So, for example, this includes, but is not
limited to, the following:

The “.vmx”, ”.vmdk” (the descriptor portion), and “.log” files
that the VMX uses.
Digest files for content-based read cache (CBRC) for VMware
Horizon View. This feature is referred to as the View Storage
Accelerator. Virtual desktop infrastructure (VDI) is a
significant use case for vSAN.
vSphere Replication and Site Recovery Manager files.
Guest customization files.
Files created by other solutions.

These VM home namespace objects are not shared between VMs;
there is one per VM. vSAN uses VMFS as the file system within the
namespace object to store all the files of the VM. This is a fully
fleshed VMFS that includes cluster capabilities to support all the
solutions that require locks on VMFS (e.g., vMotion, vSphere HA). This
appears as an auto-mounted subdirectory when you examine the
ESXi hosts’ file systems.

The VM home namespace uses a variant of the storage policy applied
to the VM. Since the VM home namespace object has unique
responsibilities, it will only inherit a subset of storage policy rules
assigned to the VM. It will honor the VM’s assigned failures to
tolerate setting and RAID type but ignores other rules that may not

be ideal for the object type. For example, it will ignore the number of
disk stripes per object rule, using the default value of 1, as using any
other value would serve little purpose for the object type. It will also
ignore any special object space reservations, assuming the default
value of 0. This ensures that the VM home namespace object
remains thin provisioned, maintaining as much free capacity as
possible for other objects. However, as files within the VM home
namespace grow over time, logs, etc., the VM home namespace will
grow accordingly.

One other important note is that if the option force provisioning is
set in the policy, the VM home namespace object also inherits that,
meaning that a VM will be deployed even if the full complement of
resources is not available. You will learn more about this in the next
chapter when policies are covered in detail. However, suffice it to say
that a VM home namespace could be deployed as a RAID-0 rather
than a RAID-1 if there are not enough resources in the cluster.

Note that the namespace object has other uses other than the VM’s
home namespace. The iSCSI on vSAN feature uses the namespace
object for the iSCSI target and is used to track iSCSI LUNs available
through this target. The vSAN Performance stats database is also
held in the namespace object. vSAN 8.0 U1 will use a new
namespace object to centrally store trace files to improve
diagnostics for technical support issues. And finally, any files that
might be uploaded to the vSAN datastore, such as ISO images, will
be stored in a namespace object as well.

Virtual Machine Swap Object

The vSAN ESA treats a VM swap object in a similar way to recent
releases of vSAN using the OSA. The VM swap object inherits the
failures to tolerate setting in the VM’s assigned storage policy,

meaning that the swap object can be configured using RAID-1, RAID-
5, or RAID-6. Similar to the VM home namespace object, the Virtual
Machine Swap Object will ignore the number of disk stripes per
object rule, using the default value of 1. The object will also assume
the default value of 0 for its object space reservations, making it a
thin provisioned object.

VMDKs

As you have just read, VM home namespace and VM swap have their
own default policies when a VM is deployed and do not adhere to all
of the capabilities set in the policy. Therefore, it is only the VMDK
objects that obey all the capabilities that are set in the VM storage
policies. Each VMDK object will have their own RAID tree
configuration with its components distributed across hosts to satisfy
the requirements in resilience prescribed by the storage policy.

Note that full clones, linked clones, and instant clones all create
VMDK objects on the vSAN datastore. To determine what type of
VMDK a disk object is, the VMDK descriptor file in the VM Home
Namespace object can be referenced.

Witnesses and Replicas

vSAN uses components and depending on the circumstances, one or
more special witness components to help determine the availability
of an object in the event of failure or split-brain/cluster partition
scenarios. Each component is assigned one or more votes to
determine quorum. Historically, in the vSAN OSA, these object
witness components were most visibly on display in objects assigned
a RAID-1 configuration, as they are a part of the object’s RAID-1 tree.

RAID-5 and RAID-6 configurations did not use dedicated witness
components, as quorum could be determined by the components
making up a RAID-5 or RAID-6 object.

Witness components contain only metadata, meaning they do not
store any VM-specific data. Typically, around 16 MB in size, the
witness component contains the minimal information necessary to
understand the characteristics of the object, such as the layout of the
object’s RAID tree, and act as a tiebreaker in the event of a failure or
partitioning of the hosts used to store the object. While witness
components are small, they do contribute to the overall count of
components residing on a host.

The vSAN ESA has greatly reduced the times that it uses a dedicated
witness component. Since all components in the performance leg
and capacity leg are assigned votes to determine object quorum, in
most RAID-1 configurations, the vSAN ESA will place one of the
performance leg components on another host to provide the same
functionality as a dedicated witness component. Dedicated witness
components are still used for site-level resilience in a stretched
cluster, and host-level resilience in a 2-node cluster.

To understand this more clearly, let’s look at a simple example of an
object assigned a failures to tolerate of 1, using RAID-1 mirroring.
The RAID tree will be comprised of a performance leg, concatenated
with a capacity leg. The capacity leg will be comprised of two
replicas, each consisting of components that represent the full copy
of data within that object. The components from one replica will
reside on a different host than the components from the other
replica. With the OSA, vSAN would use a witness component on a
third host to differentiate between a network partition and a host
failure. But with the vSAN ESA, one of the two performance leg
components resides on a third host. Since performance leg
components and capacity leg components all help determine
availability, one of the performance leg components residing on a

third host accomplishes the same result as a dedicated witness
component.

Figure 36: RAID-1 mirroring without using dedicated witness components

For an object in vSAN to be available, two conditions must be met.

For a RAID-1 configuration, at least one full replica needs to
be intact for the object to be available. For a RAID-0
configuration, all stripes need to be intact. For RAID-5
configurations, four out of five (or two out of 3) RAID-5
components must be intact for the object to be available, and
for RAID-6, four out of the six RAID-6 components must be
intact.

The second rule is that there must be more than 50% of all
votes associated with components available.

When determining object availability in the ESA, all performance leg
components and capacity leg components contribute to a vote count.
For RAID-5 and RAID-6, the performance leg components of an
object will typically reside on the same hosts as the capacity leg
components for an object. When using RAID-1, one of the
performance leg components will reside on a host that does not
contain the capacity leg components. This provides a sort of
“witness” functionality to help determine quorum when using RAID-1.
In the preceding example, if the capacity leg components of an
object replica and a performance leg component comprise of more
than 50% of the votes, or the capacity leg of both object replicas are
available, and at least one performance leg component is available,
the object will remain accessible. This ensures that only one part of a
partitioned cluster can ever access an object in the event of a
network partition.

While some concepts such as object availability, component
placement and component voting can be complex, this is a task that
is entirely the responsibility of vSAN, and not the administrator.

Performance Stats DB Object

vSAN provides a performance service for monitoring vSAN, both from
a VM (front-end) perspective, vSAN (back-end) perspective, and
iSCSI perspective. This service aggregates performance information
from all the ESXi hosts in the cluster and stores the metrics in a stats
database (statsDB) on the vSAN datastore. As previously mentioned,
the object in which the statsDB is stored is also a namespace object.
Therefore, the use of namespace objects is not limited to VMs,
although this is the most common use. Administrators can choose

bespoke policies for the Performance Stats object when enabling the
Performance Service. The screenshot below demonstrates how the
storage policy can be customized for the Performance Service.

Figure 37: Policy setting for Performance Service

Note that when using the vSAN ESA, the performance service can no
longer be disabled via the UI. You can however delete and create the
vSAN performance database through rvc (and the APIs). Rvc, short
for Ruby vSphere Console, is a command line tool that is available on
vCenter Server and can be used to query and interact with vSAN. We
will demonstrate how this works in chapter 7 and chapter 10.

Object Layout

The idea of a datastore distributed across hosts is a new concept to
many, and as a result, it is not uncommon to hear questions about
how objects and their components are dispersed across hosts. vSAN

takes care of object placement to meet the failure to tolerate
requirements and while an administrator should not worry about
these placement decisions, we understand that with a solution
unfamiliar to you, there may be a desire to have a better
understanding of the physical placement of components and objects.
The vSphere user interface enables administrators to easily
interrogate the layout of a VM object and see where each component
that makes up a storage object resides.

vSAN will never let components of different replicas (mirrors)
share the same host for availability purposes.

The vSphere Client provides the most convenient way to view objects
such as VMDKs, VM home namespace, and VM swap objects.
Navigate to the vSAN cluster, then the Monitor tab, then vSAN
followed by Virtual Objects, select either the VM or an individual
object, and then click View Placement Details. The default view will
display the physical disk placement of the object components
grouped by the object. The physical disk placement of the objects
will be listed there. One can also group components belonging to a
VM on a per-host basis, as shown in the screenshot.

Figure 38: Components grouped by host placement

vSAN Object Formats

An object format refers to the hierarchical data structure of an object
and its components. Occasionally an update in vSAN will include an
enhancement that in order to realize the benefit of the improvement,
the format of some or all objects must be updated. For example,
vSAN 7 U1 reduced the amount of free capacity required for transient
activities, simply through an update of vSAN, and the upgrading of
the object format. Object formats should not be confused with on-
disk formats, which are discussed later in this chapter.

vSAN makes an object format upgrade easy to identify and
remediate. Skyline Health for vSAN includes a vSAN object format
health finding that will be triggered when an upgrade is available.
Clicking on the Change Object Format in the triggered health finding

will perform the upgrade. Depending on the type of update, it may
change the object format on a small subset of objects, or all the
objects in the vSAN cluster.

Objects do remain available throughout the upgrade process, but the
upgrade process can generate a fair amount of resynchronization
traffic and use additional space temporarily as a result of
reconstructing components of an object to a new structure. To ensure
sufficient resources remain for VM activities, the vSAN ESA will use
adaptive resynchronization techniques on each host and over each
host uplink to ensure the fair prioritization of VM traffic over
resynchronization traffic.

vSAN Software Components

This section outlines some of the software components that make up
the distributed software layer. Much of this information will not be of
particular use to vSphere administrators on a day-to-day basis. All
this complexity is hidden away in how VMware has implemented the
installation, configuration, and management of vSAN. However, we do
want to highlight some of the major components behind the scenes
for you because you may see messages occasionally related to these
components appearing in the vSphere UI and the VMkernel logs. We
want to provide you with some background on what the function is of
these components, which may help in troubleshooting scenarios.

The vSAN architecture consists of four major components, as
illustrated in the diagram below and described in more depth in the
sections that follow.

Figure 39: vSAN software components

While the vSAN ESA introduces significant changes in the data path,
it shares many architectural traits found in the vSAN OSA. The
following will highlight some of those key similarities and differences.

Component Management

The vSAN local log-structured object manager (LSOM) works at the
physical disk level. It is the lowest layer of vSAN and interacts
directly with the pluggable Storage Architecture (PSA) found in
vSphere. It is responsible for persisting data it receives from upper
layers of vSAN to storage devices on a vSAN host. LSOM does not
communicate with other hosts, relying on the upper layers of vSAN
for those tasks.

LSOM has been heavily revamped in the vSAN ESA. It is no longer
responsible for tasks like I/O caching, data compression, and
checksum verifications as found in the OSA, and is more focused on
processing uniform, large I/Os in parallel from the upper layers of
vSAN dedicated to processing variable I/O sizes. It achieves this
through a new block engine, which is an I/O processor that interacts
with the vSAN layers above it. LSOM also now writes data using
uniform, large I/O sizes. This makes LSOM more efficient, as its

metadata only needs to remember large blocks. It also aligns well
with the characteristics of various types of NVMe flash devices.

Storing large amounts of data quickly involves much more than just a
highly parallel I/O engine. It must be able to store the data in a
referenceable way. The vSAN ESA uses a new key-value store known
as SplinterDB. Developed by the VMware Research Group in
collaboration with the vSAN product team, and debuting as open
source in 2022, this transactional metadata store was specifically
designed to exploit the capabilities of high-performing NVMe-based
devices. At up to 7 times faster than other leading key-value stores,
SplinterDB uses write-optimized data structures to minimize the
number of times the data must be written for data and metadata
updates. This keeps I/O and CPU amplification low, helping not only
performance but improving scalability by allowing the system to write
and read vast amounts of data to keep up with increasing densities
of capacity devices.

These architectural changes in LSOM, paired with the use of NVMe
devices, allow the vSAN ESA to do away with the construct of disk
groups. This makes the ESA simpler to administer and reduces the
failure domain, or maintenance domain, down to a discrete storage
device instead of a full disk group with vSAN OSA.

Data Paths for Objects

The distributed object manager (DOM) provides distributed data
access paths to objects built from local (LSOM) components. The
DOM is responsible for the creation of reliable, fault-tolerant storage
objects from local components across multiple ESXi hosts in the
vSAN cluster. It does this by implementing distributed RAID types for
objects.

DOM is also responsible for handling different types of failures such
as I/O failing from a device and being unable to contact a host. In
the event of an unexpected host failure, during recovery DOM must
resynchronize all the components that make up every object.
Components publish a bytesToSync value periodically to show the
progress of a synchronization operation. This can be monitored via
the vSphere Client UI when recovery operations are taking place.

In the vSAN ESA, DOM takes on several new responsibilities
abdicated by LSOM. Sitting at the top of the vSAN stack, it is now
responsible for data compression, data encryption, calculating
checksums, and committing writes and metadata to a new log-
structured file system.

Object Ownership and Interaction

The distributed object manager (DOM) has multiple layers that are
responsible for their own unique tasks. It is this layered approach of
DOM that allows it to work efficiently across conditions and
topologies.

The DOM client represents the highest layer of the stack in the vSAN
ESA. It interfaces with the vSCSI layer of ESXi, where reads and
writes for a VMDK originate. The DOM client interacts with the DOM
owner, below it. For every storage object in the cluster, vSAN elects
an owner for the object. The DOM owner can be considered the
storage head responsible for coordinating (internally within vSAN)
who can perform I/O to the object. As the arbiter of object access,
the DOM owner is the entity that ensures consistent data on the
distributed object by performing a transaction for every operation
that modifies the data/metadata of the object.

The DOM client to DOM owner relationship is analogous to the
concept of an NFS client to NFS server, where only certain clients

can communicate successfully with the server. In this case, the DOM
client acts similarly to an NFS client, and the DOM owner acts
similarly to an NFS server, where the DOM owner determines which
clients can perform I/O to the owner, and which clients cannot. The
DOM client in the ESA has several new responsibilities, including
compressing data, encrypting data, and performing checksums. All of
these will be discussed in more detail later in this chapter.

A new element of DOM introduced in the vSAN ESA is the new log-
structured file system. Known as the vSAN LFS, it is a part of the
DOM owner and is responsible for ingesting incoming I/Os,
coalescing them into larger I/Os, packaging them with metadata, and
committing them to a persistent durable log in a log-like fashion.
This data is written to the components living on the performance leg
of a concatenated RAID tree. As these I/Os accumulate in a log,
vSAN will write the data segments in the durable log as a highly
efficient, fully aligned, full stripe write to the capacity leg of an object,
while the metadata is compacted and stored in a metadata log. This
frees up the durable log for new incoming I/Os. Full-stripe writes are
a critical step to improving the efficiency of writing data. This helps
vSAN avoid the costly CPU and I/O amplification associated with
read-modify-write sequences often found with writing data using
erasure codes.

Note that the references to a “log-structured file system” do not refer
in any way to a traditional file system such as NTFS, ext4, etc. This
common industry term refers to a method of how data and metadata
are persisted in the storage subsystem in an appended, log-like way,
and is one of the keys behind the ability of the vSAN ESA to deliver
high performance while using space-efficient erasure coding.

The use of log-structured file systems is not new. Mendel Rosenblum,
the co-founder of VMware, is cited as the first to implement a log-
structured file system in 1992. vSAN’s implementation is novel in
several ways. Each object has its own LFS, which contrasts with a

more monolithic approach found elsewhere. The vSAN LFS also uses
discrete durable logs for both initial data handling, and metadata.
The metadata log allows vSAN to accumulate metadata in a highly
compact way, then write it efficiently in a structured manner. The
vSAN LFS has mechanisms in place to retain metadata using
multiple data tree structures known as B-Trees. vSAN's unique design
also allows for portions of the respective B-trees to live in the part of
its concatenated RAID tree where it makes the most sense.

The final part of object ownership is the concept of a component
manager. The component manager can be thought of as the network
front end of LSOM (in other words, how a storage object in vSAN can
be accessed). An object owner communicates to the component
manager to find the leaves on the RAID tree that contain the
components of the storage object. Typically, only one client is
accessing the object. However, in the case of a vMotion operation,
multiple clients may be accessing the same object as the DOM
object is being moved between hosts.

In most cases, the DOM client and DOM owner co-reside on the
same node in the vSAN cluster but may temporarily reside on another
host during a routine activity like a vMotion event. When using HCI
Mesh, which allows for the mounting of remote vSAN datastores from
other vSAN clusters, as well as traditional vSphere clusters, the DOM
client and DOM owner will reside on different hosts in different
clusters. This is a good example of this agility is with vSAN’s layered
DOM model. We will discuss HCI Mesh in detail in chapter 6 covering
vSAN operations.

Placement and Migration for Objects

The cluster level object manager (CLOM) is responsible for ensuring
that an object has a configuration that matches its policy (i.e., the

requested stripe width is implemented or that there are enough
mirrors/replicas in place to meet the availability requirement of the
VM). Effectively, CLOM takes the policy assigned to an object and
applies a variety of heuristics to find a configuration in the current
cluster that will meet that policy. It does this while also load-
balancing the resource utilization across all the nodes in the vSAN
cluster.

DOM then applies a configuration as dictated by CLOM. CLOM
distributes components across the various ESXi hosts in the cluster.
CLOM strives to achieve a balance of data across hosts, but it is not
unusual for some hosts to have a modest difference in component
counts and capacity used.

Each node in a vSAN cluster runs an instance of CLOM, called clomd.
Each instance of CLOM is responsible for the configurations and
policy compliance of the objects owned by the DOM on the ESXi host
where it runs. Therefore, it needs to communicate with cluster
monitoring, membership, and directory service (CMMDS) to be aware
of ownership transitions.

CLOM only communicates with entities on the node where it
runs. It does not use the network.

Cluster Monitoring, Membership, and Directory
Services

The purpose of cluster monitoring, membership, and directory
services (CMMDS) is to discover, establish, and maintain a cluster of
networked node members. It manages the physical cluster resources
inventory of items such as hosts, devices, and networks and stores
object metadata information such as policies, distributed RAID
configuration, and so on in an in-memory database. The object

metadata is always also persisted on disk. It is also responsible for
the detection of failures in nodes and network paths.

Other software components browse the directory and subscribe to
updates to learn of changes in cluster topology and object
configuration. For instance, DOM can use the content of the directory
to determine which nodes are storing which components of an
object, and the paths by which those nodes are reachable.

CMMDS is used to elect “owners” for objects. The owner of an object
will manage which clients can do I/O to a particular object, as
discussed earlier.

Host Roles

When a vSAN cluster is formed, you may notice through esxcli
commands that each ESXi host in a vSAN cluster has a particular
role. These roles are for the vSAN clustering service only. The
clustering service (CMMDS) is responsible for maintaining an
updated directory of storage devices and objects that resides on
each ESXi host in the vSAN cluster. This has nothing to do with
managing objects in the cluster or doing I/O to an object by the way;
this is simply to allow nodes in the cluster to keep track of one
another. The clustering service is based on a master (with a backup)
and agents, where all nodes send updates to the master and the
master then redistributes them to the agents.

Roles are applied during a cluster discovery, at which time the ESXi
hosts participating in the vSAN cluster elect the master. A vSphere
administrator has no control over which role a cluster member takes.

A common question is why a backup role is needed. The reason for
this is that if the ESXi host that is currently in the master role suffers
a catastrophic failure and there is no backup, all ESXi hosts must

reconcile their entire view of the directory with the newly elected
master. This would mean that all the nodes in the cluster might be
sending all their directory contents from their respective view of the
cluster to the new master. Having a backup negates the requirement
to send all of this information over the network, and thus speeds up
the process of electing a new master node.

In the case of vSAN stretched clusters, which allow nodes in a vSAN
cluster to be geographically dispersed across different sites, the
master node will reside on one site while the backup node will reside
on the other site.

An important point to make is that, to a user or even a vSphere
administrator, the ESXi node that is elected to the role of a master
has no special features or other visible differences. Because the
master is automatically elected, even on failures, and given that the
node has no user-visible difference in abilities, doing operations
(create VM, clone VM, delete VM, etc.) on a master node versus any
other node makes no difference.

Reliable Datagram Transport

The reliable datagram transport (RDT) is the communication
mechanism within vSAN. It is a purpose-built low-overhead protocol
that offers quick establishment and tear down of communication
sessions between ESXi hosts.

When using traditional ethernet for host-to-host connectivity, RDT will
use Transmission Control Protocol (TCP) for the transport layer. When
using networking that supports RDMA over Converged Ethernet
(specifically, RoCE v2), it will use RDMA for the transport layer.

When an operation needs to be performed on a vSAN object, DOM
uses RDT to talk to the owner of the vSAN object. Because the RDT

promises reliable delivery, users of the RDT can rely on it to retry
requests after a path or node failure, which may result in a change of
object ownership and hence a new path to the owner of the object.
RDT creates and tears down TCP connections (sockets) on demand.

RDT is built on top of the vSAN clustering service. The CMMDS uses
heartbeats to determine the link state. If a link failure is detected,
RDT will drop connections on the path and choose a different healthy
path where possible. Thus, CMMDS and RDT are responsible for
handling path failures and timeouts.

RDT is also used in HCI Mesh topologies to establish communication
and the mounting of a remote vSAN datastore to another vSAN
cluster, or a vSphere cluster. The efficiency and customization of RDT
make it the ideal protocol for other vSAN clusters or vSphere clusters
to use when mounting a remote datastore. Even though vSAN iSCSI
services and vSAN File Service storage services exist (in the OSA at
this time), they are built for other purposes and do not allow you to
mount a remote datastore.

On-Disk Formats and Disk Format Changes
(DFC)

Before looking at the various I/O-related flows, let’s discuss the on-
disk formats used by vSAN, their role with the vSAN OSA, and the
ESA.

The on-disk format refers to a thin underlying layer that helps vSAN
store data and metadata on its capacity devices. Known as vSANFS,
this substrate has played a key part in VMware's ability to introduce
new capabilities in vSAN over its past and current releases of the
vSAN OSA, and now, the ESA.

Typically, a new release of vSAN includes a new on-disk format
version. When an in-place upgrade of vSAN is completed, Skyline
Health for vSAN will recognize the on-disk format version used on the
storage devices against the version of vSAN installed. If there is an
upgrade available for the on-disk format, it will alert the
administrator, and provide an easy way to upgrade the format, by
simply clicking on the button Upgrade On-Disk Format.

On-Disk Formats in the vSAN OSA

After an in-place upgrade of the vSAN OSA was completed, many of
these on-disk format upgrades for the vSAN OSA consisted of simple
metadata updates, while others occasionally required a rolling
evacuation of disks and disk groups followed by an upgrade, then
proceeding to the next disk or disk group until completed.

For the OSA, the on-disk format occasionally needed to be changed
in non-upgrade scenarios, such as enabling or disabling a cluster-
based data service like deduplication and compression, or data-at-
rest encryption. This is sometimes known as a "disk format change"
or DFC. In these cases, it proceeds with a rolling upgrade, where it
will evacuate a disk or disk group, perform the upgrade, then proceed
with the next disk or disk group until completed.

On-Disk Formats in the vSAN ESA

After an in-place upgrade of vSAN ESA is completed (e.g., vSAN 8.0
to vSAN 8.0 U1), the upgrade process for a new on-disk format in the
ESA will be very similar to that of the OSA. With vSAN 8.0 the on-disk
format version is 17.0. After the upgrade to vSAN 8.0 U1 and the on-
disk format upgrade, the version is 18.0. Since the ESA eliminates

the concept of disk groups, all on-disk format upgrades or changes
will occur on the discrete storage devices, instead of treating
multiple devices as a logical unit. Making a change to a smaller unit
of resources tends to lessen the impact on an environment.

In the ESA, a DFC may occur less often for non-upgrade scenarios.
For example, compression is no longer a cluster-based service and
can be enabled or disabled using a storage policy without needing a
DFC. Data-at-rest encryption does use a different on-disk format, as
low-level LSOM metadata is encrypted. However, at the time of this
writing, data-at-rest encryption in the ESA can only be enabled at the
time of the initial cluster configuration, thus a DFC on an existing
cluster for this service would not occur.

Note that the vSAN OSA also used a proprietary on-disk format for
devices assigned as the caching device in each disk group. Since the
ESA no longer uses devices dedicated to caching, all storage devices
contributing resources to vSAN will use the same on-disk format.

In chapter 10 we will demonstrate the output of various commandline
tools, including vdq. For now, it is good to know that the on-disk
format can be discovered using “vdq -sH -d <device id>”. For
example:

vdq -sH -d naa.55cd2e4150afff35

vSAN I/O Flow

The vSAN ESA processes and stores data in a significantly different
way than what is found in the vSAN OSA. This section will discuss the
flow of I/O in the vSAN ESA on both read and write operations from
an application within a guest OS when a VM is deployed on a
datastore. Other processes that manipulate or verify the data will be

discussed, including data compression, encryption, and checksum
verification.

For our examples, we will be using a storage policy with the number
of failures to tolerate is set to 2, using RAID-6. Since the ESA can
store data using erasure coding as fast, if not faster than RAID-1,
RAID-5 and RAID-6 will be the most common way that data is stored
on a standard vSAN ESA cluster.

Before we begin, let’s understand the role of caching, and how it is
implemented differently in the ESA than in the OSA.

Data Caching and Buffering Concepts

Data caching is a common way for systems to quickly retrieve
frequently accessed data. Data buffering is the term used to describe
how new data is committed temporarily, buffering its initial impact so
that it can be saved more quickly. Both caching and buffering aim to
improve levels of performance, efficiency, and consistency. It is why
you will find these techniques used throughout most hardware and
solutions, including CPUs, device controllers, network interface cards,
network switches, and storage systems.

Data caching and buffering can be implemented in dramatically
different ways. The OSA and ESA take very different approaches to
caching and buffering, as described in more detail below.

Data Caching and Buffering in the vSAN OSA

The vSAN OSA used a very distinct tiering model for caching and
buffering. In this model, some storage devices are dedicated as a
cache and/or write buffer, while other storage devices are dedicated

for the purpose of providing storage capacity. In the OSA, vSAN uses
these devices to flow reads and writes through. It uses multiple
algorithms to determine what data should be cached, and when new
writes and their respective metadata landing in the write buffer
should be destaged. Much of the vSAN OSA’s caching and buffering
occurred in LSOM, the lowest layer of the vSAN stack. This approach
is the reason why the OSA is generally described as a two-tier
architecture, even when configurations are comprised of all-flash
devices.

It was a fitting model for the era of hardware that the vSAN OSA
typically used, such as spinning disks, and much lower-performing
flash devices using SATA and SAS interfaces. The architecture did
introduce some challenges as the capabilities of new hardware
advanced. Disk groups, the unit of storage resources that provided
this caching and capacity tiers, were the mechanism through which
all I/O was funneled. However, this model limited the ability for vSAN
to take advantage of newer, faster devices. An architecture that used
a clear line of demarcation between a caching tier and a capacity tier
also limited flexibility based on the needs of the workloads, and in
some cases amplified I/O, consuming CPU and network resources.
Dedicating several storage devices for caching and buffering meant
fewer storage devices available to store the data. Customers were
sometimes uncertain as to how much caching and buffering they
should have for their specific workloads.

Data Caching and Buffering in the vSAN ESA

The design of the vSAN ESA is based on the use of high-
performance solid-state NVMe devices paired with high-performance
networking. Designing a new architecture includes more than just an
assumption of fast hardware. For example, different types of NVMe
devices have their own unique characteristics and preferred

approaches to writing data. With this knowledge, VMware could
design a storage stack that better represented the capabilities of the
hardware and ensure that the design of the software stack could
scale to the performance potential of those devices.

As a result, the vSAN ESA was designed with the utmost levels of
flexibility in its architecture to accommodate the attributes of these
emerging technologies. In vSAN 8.0, and vSAN 8.0 U1, the ESA uses
a single-tier architecture, where all storage devices assigned for use
by vSAN contribute to capacity and performance.

This single tier does not mean there is an absence of caching and
buffering mechanisms in the ESA. They simply exist in different
forms, and in different locations throughout the storage stack to
better align with the capabilities of the hardware. Here are some
examples.

To ingest writes quickly, the object’s RAID tree that consists of a
performance leg and a capacity leg will coalesce smaller I/Os in
memory and write them to a small durable log residing in a two-way
or three-way mirror across hosts to the components on the
performance leg. This, paired with its log-structured approach, where
it always writes data and metadata in an appended form, provides a
similar outcome as a circular buffer, absorbing the write I/Os to
persistent storage quickly so that the write acknowledgement can be
sent to the guest VM as fast as possible to keep latency low. But
unlike the OSA, where it strived to keep as much hot data in a buffer
as possible, this durable log only keeps segments of data long
enough to commit an efficient, full-stripe write to the capacity leg.
Thus, it is more accurate to describe it as an efficient pipeline for
writing data quickly versus a classic buffer.

For recently updated metadata, the vSAN LFS, our log-structured file
system in the ESA, uses in-memory caching for each object
consisting of many types of frequently accessed metadata pages
residing in the object’s metadata tree structures, known as B-Trees.

Storing this mapping metadata in memory allows for subsequent I/O,
snapshotting activities, and garbage collection tasks to perform
faster, as it reduces the need to perform numerous I/O requests to
the metadata structures on the storage devices.

For less recently updated metadata, the vSAN LFS also uses a
dedicated metadata log. This resides in the performance leg
components of an object and holds segment metadata in a log-like
appending form. It is also highly compacted so that large amounts of
metadata pages can be persisted to disk then written to B-Trees
efficiently, coalescing those metadata page updates into fewer
transactions.

An object’s B-Trees will reside in the performance leg components of
an object, but if they can no longer fit in the performance leg, it will
use a technique called log-structured leaf pages to take some of the
B-Tree and place it on the capacity leg. This allows the less recently
accessed leaf pages at the bottom of the B-Tree to live on the
capacity leg, while all of the small, recently used index pages will live
in the performance leg.

Lower in the stack, SplinterDB, the key-value store that is a part of
LSOM in the vSAN ESA, contains a relatively small in-memory cache.
While SplinterDB is an on-disk key-value store, it uses a small
amount of in-memory cache to hold metadata pages recently
accessed or created, reducing I/O activity to the devices.

The vSAN ESA also uses the DOM client cache as found in the vSAN
OSA. This small cache, which is no greater than 1GB per host, serves
as a low latency host-based read cache for VMs and their respective
DOM clients they are interfacing with.

Anatomy of a vSAN Read on the vSAN ESA

Compared to the tasks involved in writing data resiliently, efficiently,
and fast, the objective of a read operation may appear to be simpler
but is equally important as writing data. The goal of the storage
system is to know where to read the data from, retrieve the data
requested, and ensure the integrity of the data retrieved.

For our example, the storage policy assigns a level of failures to
tolerate of 2 using RAID-6. We will also assume incoming I/O is
aligned, and that checksum verifications and data compression are
enabled since they are both enabled by default in the ESA.
Checksums, compression, and encryption will be covered in more
detail later in this chapter.

At a high level, when a VM issues a read operation, the DOM client
for that VM will intercept the request and check the DOM client
cache. If the block is in cache, it will be fetched and returned to the
guest, completing the read request. If not, the cluster service
(CMMDS) is consulted to determine the DOM owner of the object,
and using the block, determines which component will service the
request. The fetched read I/O has its checksum validated and is
returned to the guest VM.

However, the DOM client must also be aware of how data is
processed through the vSAN LFS. There is a possibility that a read
request must fetch data from multiple locations. The diagram below
depicts the flow of a read operation in the vSAN ESA.

Figure 40: vSAN I/O flow: Read Operation in the vSAN ESA

In this example, a guest OS will issue a read request. The DOM client
for the object will check the DOM client cache for any recently used
blocks and satisfy the read operation if it resides there. If not, the
DOM owner for the object will be consulted. The object’s LFS in-
memory stripe buffer, sometimes referred to as a bank, will also be
checked for data payload. If the requested data does not exist in the
stripe buffers, a B-Tree lookup will be performed to build a collection
(known as an array) of physical addresses from in-memory metadata,
as well as potentially on-disk metadata to issue a multi-read
operation to the portions of the requested data payload it is
interested in. This multi-read operation will return the payload to the
DOM client and will be received by the guest OS.

Even a simple example of a read request demonstrates the
importance of the efficient and scalable structures that store the
metadata to help know where to read the data from. It is one of many

reasons why the ESA is designed the way we describe it in this
chapter.

Anatomy of a vSAN Write on the vSAN ESA

Writing data resiliently, efficiently, and quickly tends to be more
complex than reading data. Let’s step through a basic example of
how data is written to a VM running on the vSAN ESA.

When a new VM is deployed, the cluster-level object manager (CLOM)
will determine where to place the object components based on the
requirements of the assigned storage policy. The VM may or may not
reside on one of the ESXi hosts that the object components reside.

For our example, the storage policy assigns a level of failures to
tolerate of 2 using RAID-6, as shown in the diagram below. We will
also assume incoming I/O is aligned, and that checksum
verifications and data compression are enabled since they are both
enabled by default in the ESA. As noted earlier, checksums,
compression, and encryption will be covered in more detail later in
this chapter.

Figure 41: vSAN I/O flow: Write using default write path

In this example, when an application within a VM issues a write
operation, the DOM client receives this write operation from the
guest. In most cases, the DOM client is now responsible for
compression, encryption (if enabled), and checksum operations, so it
will perform these steps in that order. Note that if the guest VM is
sending unaligned I/Os, the ESA will behave a bit differently. It will
checksum the data at the DOM client but leave it uncompressed (and
unencrypted if encryption is enabled). The checksum is then verified
by the vSAN LFS, then will proceed with a full 4KB block read. The
new partial block is then patched into the block, where it is
compressed and a checksum calculated using the vSAN LFS, not the
DOM client.

Next, the DOM client will send one or more write operations to the
vSAN LFS, which is part of the DOM owner of the object. The write
I/Os will enter into an in-memory stripe buffer, also known as a bank.

This 512KB bank where the I/O will be coalesced with other I/Os and
packaged with metadata. This metadata helps vSAN determine where
the data is stored through logical to physical maps and tracks the
consumption of data used by the LFS. The data and metadata will be
flushed to a durable log. vSAN will trigger the write to the durable log
within microseconds if it were a single I/O with no subsequent I/Os.
This durable log is where data and metadata will be written resiliently
to storage media, using the mirrored components on the
performance leg. As soon as the write is persisted to the durable log,
the write acknowledgement will be sent back to the VM, which
completes the write operation as seen by the guest VM. While the VM
interprets this write operation as complete, vSAN performs additional
steps to ensure that the data and metadata are written efficiently and
can be quickly accessed and updated.

Note that even though the metadata is persisted to on-disk logs, its
purpose is to store those accumulated metadata pages to disk in the
event they have to be reconstructed from failure. The ESA in vSAN
will strive to keep this metadata in memory for fast operations.

As the I/O segments (data and packaged metadata) accumulate in
the durable log, vSAN will determine when to take the next step. The
objective of the durable log is to persist new writes and updates in a
log-like fashion, holding just enough to pipeline the data to the next
series of steps. It does not hold a large number of I/Os, and is
frequently truncated to make room for new incoming I/O.

The next step consists of taking an I/O segment and committing the
data portion of that segment to a fully aligned, full-stripe write to the
RAID-6 components that comprise the capacity leg of the object’s
RAID tree. The DOM owner is responsible for calculating the parity
and writing the full-stripe write to the respective hosts. The write
operation from the DOM owner sends 128KB I/Os to each of the six
hosts, which all have a combination of data and parity in them.

Only the data payload with its parity is written to these components
in this step. The metadata packaged with that data is stripped out,
compacted, and written to a metadata log. Think of this as a durable
log for metadata only. This metadata log serves as a fast and
efficient way for vSAN to accumulate this metadata that can be used
to reconstruct the metadata in the event of a failure. It resides on the
components that comprise the performance leg of the object. These
metadata pages are eventually coalesced and written to B-Trees and
truncated from the metadata log. The B-Trees are self-balancing data
tree structures that retain information about the data. In some cases,
the B-Trees may not necessarily fit within the performance leg
components of the RAID tree. This is where vSAN uses a concept
known as log-structured leaf pages, where it can strategically place
some less frequently used pages on the capacity leg side of the
object’s RAID tree.

A common theme in the ESA’s write path is to combine many I/Os
worth of work into a single I/O, using I/O sizes that are very efficient
for modern flash devices to process. This applies to data (coalescing
I/Os before writing them to the durable log) and metadata
(accumulating metadata pages in memory and in a dedicated log)
before writing them to a B-Tree. This helps produce more efficient
updates by allowing metadata to be repeatedly updated before it is
written to the respective B-Trees.

But what if a VM’s workload is generating large I/Os? The ESA in
vSAN helps accommodate these scenarios.

Adaptive Write Paths

The vSAN ESA was designed to store data with a minimal amount of
effort using space-efficient erasure codes. It achieves this in part by
always writing data as full-stripe writes across a set of hosts. But

writing a full stripe of data requires a minimum amount of data to
make a full stripe possible. This is why the ESA’s default write path
coalesces data, writes it quickly in a mirrored fashion to a durable
log, then eventually writes it as a full-stripe write its associated parity.
This allows it to ingest, for example, many small 8KB blocks of data
and coalesce them to form a large I/O that can satisfy the minimum
data needed to complete a full-stripe write. This eliminates the need
to perform read-modify-write steps used to update data and parity
fragments that can be found with other erasure coding techniques,
reducing CPU and I/O amplification dramatically.

But guest VMs can issue write operations using a wide variety of I/O
sizes. These can be between 4KB and 1MB in size and will often be a
wide distribution of these I/O sizes that changes by the second. If
larger write operations are being issued, this changes the optimal
way that data can be written. The ESA uses an adaptive write path in
8.0 U1, where it dynamically determines the best approach for writing
data.

If vSAN detects incoming I/O that meets certain criteria, the data
payload itself will bypass the usual step of being written to the
durable log in a two-way or three-way mirror (depending on the
assigned storage policy). vSAN will create the metadata for those
larger I/Os and commit their metadata to the log on the performance
leg and write the data payload itself as a RAID-6 stripe on the
capacity leg of the RAID tree. The write acknowledgment is sent back
to the guest VM when the metadata is written to the log, and the data
payload is written with parity to the hosts storing the object. This
bypass of the data payload landing in the durable log reduces effort,
as only the metadata is being written to the three-way mirror on the
performance leg. The result is higher throughput on workloads using
these larger I/O sizes.

Which I/Os are eligible for the large I/O write path will be based on
the conditions of incoming I/O. If vSAN detects a single I/O that

exceeds the 512KB size of the in-memory stripe buffer, it will use this
large I/O write path. If a combination of smaller I/Os in flight, or in
flight and residing within the stripe buffer exceed the size of the
stripe buffer, it will use this write path. These are time-dependent
decisions, and if vSAN does not detect the conditions promptly
(microseconds), it will fall back to using the default write path.

Figure 42: vSAN I/O flow: Write using large I/O write path

Data Compression

Erasure coding offers guaranteed levels of space savings when
storing data resiliently. Data compression is a method to look for
opportunities to compress data, reducing its impact on processing
and storage.

As a refresher, the vSAN OSA offered compression as a cluster-
based service, meaning that it is off or on for the entire cluster. It
was performed low in the vSAN stack, on each host where an object
stored its components. This meant that not only were more hosts
responsible for compressing the data of an object but that the
network traffic transmitted to these other object components was in
an uncompressed state. And lastly, compression in the OSA would
evaluate data on a 4KB block size but would only reduce it to less
than or equal to 2KB if it were possible, otherwise, it would skip any
compression efforts.

Aside from its use of the LZ4 compression mechanism, compression
in the ESA bears little resemblance to the implementation in the
OSA. The vSAN ESA offers data compression that now can be
controlled by a storage policy and is enabled by default. Compression
in the ESA occurs at the top of the vSAN stack, as data is being
received at the DOM client from the guest VM. This offers several
advantages. It is performed once from the DOM client, meaning that
all processing of that data on the same host, or other hosts holding
the object remains compressed. This reduces the amount of data
processed inside of the hosts and transmitted across the network.
Performance testing by VMware has demonstrated network
throughput in some cases exceeded the wire-speed of the network
as a result of this new approach.

When a guest VM issues a write, the DOM client will receive these
writes, evaluate each 4KB of data, and compress at the granularity of
a 512 byte sector size. With 8 sectors in a 4KB block, this means it
may compress the 8 sectors down to 7, 6, 5, or all the way down to
the potential of a single 512 byte sector if the data can be
compressed that much. The vSAN ESA will perform checksums on
each sector. When compression is complete and the block is sent to
the DOM owner, the per-sector checksums will be converted to a
single 4KB checksum. In subsequent reads requests, decompression
is typically performed at the DOM client.

For unaligned write operations issued by the guest, the DOM client
will still checksum the data but will defer the compression steps to
the vSAN LFS and DOM owner, where it will take some steps to make
it aligned and proceed with the compression task.

Note that while compression can be enabled or disabled using
storage policies, the changing of this policy will not retroactively
change the data at rest. It will only affect new incoming writes, and as
a result, may not show the potential compression the data can
achieve until all data has been written to once, under the desired
setting.

Should the storage policy setting ever be configured to disable
compression? In most cases, no. Some applications do exist that
write their data entirely in a compressed state. In these cases, it
might make sense to use a different storage policy and save vSAN
from the effort of attempting to compress data that is already
compressed.

Figure 43: Data compression in the vSAN ESA

Data Integrity through Checksum

Checksum verification is a process that verifies that any written data
is the same at the source and the destination of the data. The
primary objective of a checksum is to verify the integrity of the data
with minimal overhead. It is an integral part of both read and write
operations within a storage system and is enabled by default in the
vSAN ESA.

Just as with data compression and encryption, the vSAN ESA moves
the checksum processes up higher in the stack to improve efficiency
and help account for additional data integrity needs in the vSAN LFS.

The ESA uses the almost-ubiquitous cyclic redundancy check (CRC-
32C) (Castognoli) error-detecting code as found in the OSA. It is a

high-performing algorithm that can take advantage of special CPU
instructions on Intel processors.

When a guest VM issues a write, the DOM client will receive the write
and proceed to perform compression, encryption, and checksum in
that order. If the I/O exceeds 64KB in size, it first will break them
into 64KB I/O chunks for checksum processing. While the ingested
I/O may be up to 64KB in size, the checksum is performed at a 4KB
level of granularity. As these I/Os traverse into the vSAN LFS on the
object’s DOM owner, the data payload and its checksum are placed
in the durable log and the stripe buffer. As the stripe buffer is full, it
is flushed to the durable log, and the logical map is updated,
including the existing checksums for all 4KB blocks residing in the
stripe buffer. These checksums will persist in the metadata portion of
the in the durable log.

The ESA also uses special functions to calculate a checksum for a
larger block using the checksums from the smaller blocks. This
prevents the need to calculate a large checksum from scratch. The
ESA uses this technique for compressed data as well as larger data
payload segments living in the durable log, and the respective 128KB
I/Os comprising the full stripe write to the capacity leg.

When a VM issues a read request, the DOM client will simply verify
the checksum when the read request is returned from the DOM
owner, followed by decrypting (if enabled) and decompressing the
data at the DOM client. The metadata structure in the vSAN LFS will
be used to verify the checksum. If a checksum verification results in
a mismatch, the requested data can be automatically rebuilt from the
erasure code or mirrored data.

As a result, the ESA can perform checksums throughout the stack but
do so in a manner that eliminates repetitive steps. For example, the
ESA writes its data payload as efficient full-stripe writes. Not only
does this eliminate the read-modify-write steps of a discrete block in

a fragment of a partial stripe write, but it also eliminates the
checksum verification of that step.

Much like the vSAN OSA, the ESA checksum functionality also
includes a data scrubber mechanism, which validates the data and
checksums up to 36 times per year. This will protect your vSAN
environment for instance against data corruption because of bit rot.
This number is defined through the advanced setting called
VSAN.ObjectScrubsPerYearBase.

Figure 44: Scrub advanced setting

Administrators can configure checksum to be enabled or disabled on
a per vSAN object basis if they so wish. This feature should only be
disabled if an application can provide its own checksumming
functionality, for example, in the case of Hadoop HDFS. We would
recommend leaving it at the default setting of enabled for the vast
majority of vSAN workloads. Such a policy setting is shown below.

Figure 45: Checksum policy setting

vSAN Encryption

The vSAN ESA provided data-at-rest and data-in-transit encryption.
This is a cluster-based feature that as the name implies, allows for
the encryption of all vSAN data stored, and transmitted. The
encryption feature is hardware agnostic and does not require any
special encryption devices such as self-encrypting drives (SEDs). The
encryption cipher used is the Advanced Encryption Standard XTS-
AES 256.

Much like data compression and checksums, vSAN encryption has
been also moved to near the top of the vSAN stack. This has several
advantages. Much like compression, encryption is performed once
from the DOM client as the write occurs. All other hosts participating
in the resilient storage of that data receive and store this encrypted
data. The architecture found in the vSAN ESA eliminates the encrypt,
decrypt, re-encrypt process found when using data-at-rest encryption
on the OSA where data must be encrypted as it enters the cache tier,
decrypted as it leaves the cache tier and encrypted once more as it
enters the capacity tier. This reduces CPU and I/O amplification
significantly.

The I/O flow of encrypted traffic is very similar to what is described
in the data compression and checksum sections discussed earlier.
When enabled, encryption simply occurs after the data is
compressed, but before the checksums are calculated.

If the vSAN ESA encrypts all its vSAN traffic across the network, why
does the vSAN data-in-transit feature still exist? Although the data-
at-rest encryption feature in the ESA transmits all data encrypted,
any cloned write operations would use the same hash. To ensure the
highest levels of security, the data-in-transit encryption feature will
guarantee no encrypted packet transmitted across the network is the
same.

Data-at-rest encryption on the ESA manages the Disk Encryption Key
(DEK) differently than what is found in the OSA. In the ESA, the DEK
is used across the cluster, instead of individual storage devices. This
allows each host in the cluster to decrypt the objects owned by other
hosts. vCenter Server will send a wrapped DEK to each host in the
cluster, where the vSAN management daemon on each host will
unwrap it with the Key Encryption Key (KEK). The vSAN management
daemon on each host will notify other parts of the stack which DEK is
used, and the unwrapped DEK will be inserted in the host key cache
where vSAN can look it up.

The implementation of vSAN Encryption in the ESA includes some
noteworthy caveats. At this time, it can only be enabled upon the
initial configuration of an ESA cluster. It cannot be enabled or
disabled once the cluster is configured. The cluster must be
recreated if this type of change is desired. And finally, a deep rekey
procedure is not supported at this time.

vSAN Encryption vs vSphere VM Encryption

One common question is why we have vSAN Encryption mechanisms
as well as a per-VM encryption mechanism available in vSphere?
Historically, VM encryption did not lend itself well to deduplication or
compression found in the vSAN OSA, since it would negate some of
the benefits of those space efficiency techniques.

The vSAN ESA currently does not use deduplication. While this does
alleviate some of the concern on running encryption on top of
encryption, it can still impact compression and use resources
unnecessarily for no significant benefit. The general guidance would
be to choose one or the other, but not both.

Encryption Key Providers

If you plan to use vSAN encryption, or even the VM encryption
mechanism for that matter, please be aware that VMware does not
provide a full key manager server (KMS). However, starting with vSAN
7.0 U2 there is the option to use the Native Key Provider which is
included with vCenter Server. You may wonder why anyone would
want to use a 3rd party vendor when a native key provider is included.
The Native Key Provider does not provide the same functionality as a
key management server. For instance, the Native Key Provider can
only be used for vSphere and vSAN at the time of writing. Also, the
Native Key Provider does not have support for the Key Management
Interop Protocol (KMIP), and it also doesn’t come with the resiliency
or availability features a full KMS typically comes with. If those
previously mentioned features are required, we recommend selecting
a KMS from one of our supported partners. Details of supported KMS
partners can be found on the official VMware vSAN compatibility
website.

Figure 46: Native Key Provider

The KMS solution provides the key encryption key (KEK) and data
encryption keys (DEK). The KEK is used to encrypt the DEKs. The DEK
does the on-disk encryption. The DEKs created by the KMS are
transferred to vSAN hosts using the key management interoperability
protocol (KMIP). You might think that if the keys are stored on the
host, isn’t this somewhat insecure? This is the reason why the KEK is
used to encrypt the DEKs, i.e., the keys are themselves encrypted.
Unless you have access to the KEK, you cannot decrypt the DEK, and
thus you cannot decrypt the data on disk. The vSAN ESA uses a
different approach in its placement and management of the DEK.
Since encryption in the ESA occurs high in the vSAN stack, the DEK
is used across the cluster, instead of the discrete hosts, as found in
the OSA. This allows each host in the cluster to decrypt the objects
owned by other hosts. The managing vCenter Server will send the
wrapped DEK to each host in the cluster, where the vSAN
management daemon on each host will unwrap it by the KEK. The
vSAN Management daemon on each host will notify other parts oof

the vSAN stack which DEK is used, and the unwrapped DEK will be
inserted in the host key cache for use by the host.

Prior to vSAN 7 U3, it was highly advised to store a KMS on a cluster
that it is not encrypting. This helped avoid a circular dependency if
there was a failure of the KMS. While this approach can still be used,
a more practical approach was introduced in vSAN 7 U3, where the
use of Trusted Platform Module (TPM) chips can be used to persist
the keys safely and securely to each vSAN host to ensure availability
of keys if the key provider is inaccessible. These modules will work
with external KMS solutions, as well as the vSphere Native Key
Provider. TPM 2.0 chips are an affordable component to your
vSphere hosts that make the key management and distribution
process much more robust. The authors recommend that TPMs are a
part of any new vSphere host introduced into an environment.

The vSAN encryption feature relies heavily on Advanced Encryption
Standard Native Instruction (AESNI). This is available on all modern
CPUs. There are also health findings which ensure that the KMS is
still accessible and that all the hosts in the vSAN cluster support
AESNI.

Although outside the scope of this book, if ever vCenter Server needs
to be replaced when vSAN Encryption is enabled we like to refer to
VMware KB 76306 and KB 2151610.

In the case of a KMS replacement, VMware KB 76479 includes the
process for vSAN.

Data Locality

A question that usually comes now is this: What about data locality?
Is cache (for instance) kept local to the VM? Do the VM cache and
the VMDK storage object need to travel with the VM each time

https://kb.vmware.com/s/article/76306
https://kb.vmware.com/s/article/2151610
https://kb.vmware.com/s/article/76479

vSphere distributed resource scheduler (DRS) migrates a VM due to
a compute imbalance?

In general, the answer is no – vSAN is designed to treat the cluster
as a first-class citizen. VMs and their respective objects with no data
locality. There are some exceptions which we will come to shortly.
However, vSAN has been designed with core vSphere features in
mind. In other words, one should be able to do vMotion and/or
enable DRS without worrying about a decrease in performance when
a VM is migrated to a new host. Similarly, we did not want to have
every vMotion operation turn into a Storage vMotion operation and
move all of its data every time that you move a VM’s compute. This is
especially true when you consider the fact that by default vSphere
DRS runs once every 60 seconds at a minimum which can result in
VMs being migrated to a different host every 60 seconds. Benefits of
data locality typically only benefited read operations, as writes must
be written resiliently across hosts. For these reasons, vSAN may
deploy a VM’s compute and a VM’s storage on completely different
hosts in the cluster.

But vSAN employs smart caching and buffering techniques
throughout the storage stack. These are detailed in the vSAN I/O
Flow section of this chapter It is also aware of optimal data paths
when processing data. This is particularly applicable to vSAN
stretched clusters, and topologies using HCI Mesh. See those
sections of this chapter for more details.

Content Based Read Cache

If there is a specific requirement to provide an additional form of
data locality, however, it is good to know that vSAN integrates with
content based read cache (CBRC), mostly seen when used as an in-
memory read cache for VMware Horizon View. This can be enabled

without the need to make any changes to your vSAN configuration.
Note that CBRC does not need a specific object or component
created on the vSAN datastore; the CBRC digests are stored in the
VM home namespace object.

Data Locality in vSAN Stretched Clusters

We mentioned that there are some caveats to this treatment of data
locality. One such caveat arises when considering a vSAN stretched
cluster deployment. vSAN stretched clusters allow hosts in a vSAN
cluster to be deployed at different, geographically dispersed sites. In
a vSAN stretched cluster, one mirror of the data is located at site 1
and the other mirror is located at site 2. vSAN stretched cluster
supports RAID-1 protection across sites. Should it be a requirement,
administrators can implement a secondary failure to tolerate setting
at each site if they wish.

When an object is assigned a failures to tolerate of 1 using a RAID-1
mirror, vSAN implements a sort of round-robin policy when it comes
to reading from mirrors. This would not be suitable for vSAN
stretched clusters as 50% of the reads would need to traverse the
link to the remote site. Since VMware supports latency of up to 5ms
between the sites, this would hurt the performance of the VM.

Rather than continuing to read in a round-robin, block offset fashion,
vSAN now has the intelligence to determine which site a VM is
running in a stretched cluster configuration and change its read
algorithm to do 100% of the reads from the mirror/replica at the
local site. This means that there are no reads requested across the
link during steady-state operations. It also means that all the caching
is performed on the local site, or even on the local host using the in-
memory cache. This avoids incurring any additional latency, as reads
do not have to traverse the inter-site link.

Note that this is not read locality on a per-host basis. It is read
locality on a per VM and per-site basis. On the same site, the VM’s
compute could be on any of the ESXi hosts while its local data object
could be on any other ESXi host within the site.

Data Locality in Shared Nothing Applications

vSAN continues to expand on the use cases and applications that it
can support. One of the application types that is gaining momentum
on vSAN is what might be termed next-gen applications, and a
common next-gen application is Hadoop/Big-Data. We have worked
closely with some of the leading Hadoop partners on creating
reference architecture for running Hadoop on vSAN. One of the initial
requirements was to have data locality – in other words, a VM’s
compute and storage should run on the same host. We should caveat
that this is an optional requirement. However, if the application has
built-in replication and its service is provided by multiple VMs,
administrators need to ensure the data of the VMs are placed on
different hosts. If two replica copies ended up on the same host, and
if that host suffered a failure, then this would render the application
inaccessible.

For example, with an application like Hadoop distributed file system
(HDFS) which has a built-in replication factor, we can provision HDFS
with several VMs, and with vSAN data locality and DRS anti-affinity
rules, we can ensure that each VMs compute and storage are placed
on different vSAN nodes. Thus, a failure of a single node would not
impact the availability of the application's data, since it is being
replicated to other VMs which also have host affinity and data
locality. In this case, we would not need vSAN to protect the VMs as
the application has built-in protection, so the VMs could be deployed
with a failures to tolerate of zero.

Note that this feature was only available under special request at the
time of writing and may introduce additional operational
considerations.

In this particular use case described above, an interesting option
reveals itself with the capabilities of the vSAN ESA. We’ve described
how the ESA can store data using space-efficient erasure coding that
is as fast, or faster than RAID-1 mirroring. In clusters with 6 or more
hosts, assigning a policy of a level of failures to tolerate of 1 using
RAID-5 would consume just 25% of additional capacity for resilience,
yet be just as fast, if not faster. The use of the ESA’s data
compression would likely reduce this capacity consumption even
more. This configuration would avoid the need to request approval
from VMware and would be consistent with other application
deployments.

Recovery to Regain Levels of Compliance

The resilience of an object is prescribed by its assigned storage
policies. Objects can fall out of compliance with the prescribed
storage policy for a few reasons. Two of the most common reasons
are planned maintenance events such as entering a host into
maintenance mode, and unplanned events such as a host outage.

Depending on the type of event, vSAN will take immediate action or
wait for some period of time before it starts the resync process. This
is called the CLOM repair delay timer and it is 60 minutes by default.
This timer may be used in planned events such as entering a host
into maintenance mode using the Ensure accessibility option, and
unplanned events such as a host or network failure.

The distinction here is if vSAN knows what has happened. For
example, when a host fails, vSAN typically does not know why this
happened, or even what has happened exactly. Is it a host failure, a

network failure, or is it transient or permanent? It may be something
as simple as a reboot of the host in question. Should this occur, the
affected components are said to be in an “absent” state and the
repair delay timer starts counting. If a device such as a NVMe-based
flash device reports a permanent error, it is marked as “degraded”
and it is re-protected immediately by vSAN (replacement
components are built and synchronized).

When an unplanned failure has been detected, vSAN will determine
which objects had components on the failed device. These failing
components will then get marked as either degraded or absent, but
I/O flow is renewed instantaneously to the remaining components in
the object.

The vSAN ESA adopts the concept of durability components found in
the OSA. Durability components increase the availability of the very
latest written data to objects impacted by a degraded event. In the
OSA, when a component is marked absent, a durability component
will be created to ensure we still maintain the specified level of
failures to tolerate for newly written data. The benefit to this
approach is that if a second host fails in a failures to tolerate equal
to 1 scenario, one can still recover the very latest writes from the first
failed host, as we can merge the data with the first failed host with
the data contained in the durability component.

At the time of this writing, the support of durability components in
the ESA is limited to vSAN 8.0 U1. It is only available for objects
using RAID-5 or RAID-6 erasure coding, and only used in non-failure
events, such as entering a host into maintenance mode using the
Ensure accessibility option.

Figure 47: Durability component in a RAID-5 configuration

Let’s use a simple example in a cluster running the ESA, where one
of the hosts storing an object has been entered into maintenance
mode using the Ensure Accessibility option. As soon as vSAN
recognizes the component is absent, a timer of 60 minutes will start.
In this scenario, the component is marked absent, and a durability
component is created immediately on another available host.

If the absent component comes back within 60 minutes, vSAN will
update the component in the stripe with its appropriate data and
parity fragments. It will strive to use the updated data in the
durability component as the source of the resynchronization, as it can
be a much faster process than a rebuild of the stripe from calculated
data and parity across the other hosts holding the stripe.

If the host and its component do not come back within 60 minutes, it
will rebuild a new component on a new host using data and parity
calculations from the other available hosts storing the object. It may
or may not use the durability component in this effort. Whether the
reason for the non-compliance was planned, or unplanned, the
methods vSAN uses to regain levels of prescribed compliance are
the same as what is described above.

In the latest version of vSAN, the Object repair timer advanced
parameter is now available in the vSphere Client. As shown below,
this can be found under Cluster > Configure > vSAN > Services >
Advanced options.

Figure 48: vSAN Advanced Options

Caution should be exercised in reducing the value of the Object
repair timer from its default. If it is set to a value that is too low, and
you do a simple maintenance task such as rebooting a host, you may
find that vSAN starts rebuilding new components before the host has
completed its reboot cycle. This adds unnecessary overhead to vSAN
and could have an impact on the overall performance of the cluster.

As mentioned, in some scenarios vSAN responds to a failure
immediately. In some cases, the storage device itself will be able to
indicate what has happened and will essentially inform vSAN that it is
unlikely that the device will return within a reasonable amount of
time. vSAN will then respond by marking all impacted components as
“degraded,” and take immediate action on a rebuild. For objects
using a RAID-1 mirror, it will create a new replica. For objects using
erasure coding, it will build a new component on another available
host by using the data and parity information from the other hosts
holding the stripe. This scenario does not use durability components.

Figure 49: Disk failure with immediate recovery with a RAID-5 (2+1)
configuration

Before it creates the additional components to regain the level of
prescribed resilience, vSAN will validate if there are sufficient
capacity resources available.

If recovery occurs before the 60 minutes have elapsed or before the
creation of the replica has been completed, vSAN will decide which
method will be faster to complete. It may choose to continue to
create new components to regain that level of compliance, or simply
update the components that came back online.

Regaining compliance also applies to changes in assigned storage
policies. A user might change an object’s policy, where the current
configuration does not conform to the newly prescribed policy. In this
case, a reconfiguration must be performed and applied to the object.

A reconfiguration of an object can be a resource-intensive task
because it may involve redistributing the entire data structure of an
object in a new way. This can occur as the result of manual policy
changes, or automatically for objects assigned an adaptive RAID-5
storage policy, where a change in the cluster size may initiate a
different RAID-5 configuration. To ensure that regular VM I/O is not
impacted by reconfiguration tasks, vSAN can throttle these
resynchronizations in ways to minimize the impact on the
performance of VMs. In the vSAN ESA, during times of contention in
either the hardware stack (less likely in the ESA), or the network,
vSAN may automatically throttle any resync I/O down to 20% of
available bandwidth, giving VM I/O most of the available resource
bandwidth. When there is no contention in the hardware stack or
network, then resync traffic can consume all the available bandwidth.

Degraded Device Handling (DDH)

Much like the original storage architecture in vSAN, the ESA uses a
feature called degraded device handling (DDH). The driving factor
behind such a feature is to deal with storage devices that are
demonstrating erratic or unexpected behavior. Storage devices that
are imminently failing tend to show these characteristics for a period

of time prior to a permanent failure. This mechanism allows vSAN to
monitor the device’s performance behaviors over time and mark it
accordingly if it demonstrates inconsistent behavior.

One method that DDH uses to detect impending failures is observing
latency patterns of read and write and write operations from the
device. But detecting issues on latency thresholds requires levels of
sophistication to prevent false positives that would mark its condition
incorrectly. For example, perhaps a spike in latency was a result of a
large burst of writes, which is not unusual behavior. To counter false
positives, DDH will select non-contiguous intervals to better
represent a pattern of degrading performance.

Another challenge is determining a proper threshold for poor latency.
Today’s NVMe-based flash devices can deliver much lower levels of
latency than flash devices of the past, as well as spinning disk. DDH
has evolved to accommodate the device types found in the ESA.

If a sustained period of high latency is observed, then vSAN will
unmount the device. As a result, the components on the device that
is unmounted will be marked as a permanent error and the
components will be rebuilt elsewhere in the cluster. What this means
is that the performance of the virtual machines can be consistent
and will not be impacted by this one misbehaving device.

DDH will also make regular attempts to remount devices marked
under permanent error. This will only succeed if the condition that
caused the initial failure is no longer present. If successful, the
physical device does not need to be replaced, although the
components must be resynced. If unsuccessful, the device continues
to be marked as a permanent error. This will be visible in the vSphere
UI under Disk Management.

If the object is assigned a storage policy that uses a RAID-1 mirror,
the feature checks to see whether there are any available replicas
available before unmounting. If this is the last available replica, DDH

will not unmount it but will continue to make it available since it is
the last available replica. Unmounting it in this case would result in
complete object unavailability. For objects assigned a storage policy
that uses a RAID-5 or RAID-6 erasure code, vSAN can easily
calculate the value from the device in question by using the data
fragments in the remainder of the stripe.

vSAN Storage Services

vSAN is mostly known as a platform that provides block storage
capacity for VMs running on top of vSphere. But vSAN offers data
services to provide storage in other ways. This includes the vSAN
iSCSI Target Service, vSAN File Services, and the ability to mount
remote datastores through HCI Mesh. Let’s look at what these
services are, and how they apply to the vSAN ESA.

iSCSI Targets and LUNs

Using the vSAN iSCSI Target Service, vSAN can create iSCSI targets
and LUNs using vSAN objects and present the LUNs to external
iSCSI initiators. When enabled, vSAN will create an iSCSI Target
namespace object to help store metadata about the configurations
and connections. Just like most other objects, an administrator can
choose a storage policy setting for this object that best suits their
environment. In the next image, we can see where the storage policy
for the iSCSI Target home object can be selected.

Figure 50: Policy setting for iSCSI Target

As you proceed to create iSCSI Targets and iSCSI LUNs on vSAN,
these can be assigned their own different policy as well.

With the iSCSI implementation on vSAN, there is the concept of a
Target I/O owner for vSAN iSCSI. The Target I/O owner (or just I/O
owner) is responsible for coordinating who can do I/O to an object
and is basically what an iSCSI initiator connects to, i.e., whoever
wants to consume the storage, most likely a virtual machine
elsewhere in the datacenter. The I/O owner may be on a completely
different vSAN node/host to the actual iSCSI LUN backed by a vSAN
VMDK object. This is not a problem for vSAN deployments, as this
can be considered akin to a VM's compute residing on one vSAN
host and the VM's storage residing on a completely different vSAN
host. This 'non-locality' feature of vSAN allows us to do operations
like maintenance mode, vMotion, capacity balancing, and so on
without impacting the performance of the VM. The same is true for
the vSAN iSCSI implementation - the I/O owner should be able to
move to a different host, and even the iSCSI LUNs should be able to
migrate to different hosts while not impacting our iSCSI availability

or performance. This enables the vSAN iSCSI implementation to be
unaffected by operations such as maintenance mode, balancing
tasks, and of course any failures in the cluster.

With iSCSI LUNs on a vSAN stretched cluster, a scenario could arise
where the I/O owner is residing on one site in the stretched cluster,
while the actual vSAN object backing the iSCSI LUN could be on the
other site. In that case, all the traffic between the iSCSI initiator and
the iSCSI target would have to traverse the inter-site link. But
remember that this is already true for writes since write data is
written to both sites anyway in a vSAN stretched cluster (RAID-1).
When it comes to read workloads, we do have the ability to read data
from the local site for both iSCSI and VM workloads, and not traverse
the inter-site link. This means that it doesn't matter which site has
the I/O owner resides.

But there is one caveat when it comes to supporting iSCSI on vSAN
stretched clusters. The key issue is the location of the iSCSI initiator.
If the initiator is somewhere on site A, and the target I/O owner is on
site B, then, in this case, the iSCSI traffic (as well as any vSAN traffic)
would need to traverse the inter-site link. In a nutshell, such a
configuration could end up adding an additional inter-site trip for
iSCSI traffic. For this reason, the vSAN ESA supports the ability to
specify site affinity when creating an iSCSI Target as shown in the
screenshot below.

Figure 51: iSCSI Target in a stretched cluster

vSAN File Service

The native file services capability introduced in version 7 of vSAN is
not supported in vSAN 8.0 or vSAN 8.0 U1 when using the ESA. If you
are interested in using vSAN File Services immediately, you can
continue to use this capability found in the vSAN OSA. Enhancements
continue to be introduced with the vSAN file services, up to and
including vSAN 8.0 U1.

vSAN HCI Mesh

HCI Mesh allows a vSAN cluster’s datastore to be remotely mounted
by another cluster. The cluster mounting the vSAN datastore can
either be another vSAN cluster, or a vSphere cluster. Beginning in
vSAN 8.0 U1, the vSAN ESA supports HCI Mesh.

Note that the introduction of vSAN 8.0 U1 introduced two new
enhancements to HCI Mesh, including support of HCI Mesh in
stretched cluster configurations, and connecting to remote vSAN
datastores when using multiple vCenter Server instances. These two
features are not available when using the ESA in vSAN 8.0 U1.

You may ask yourself, why would you want to do this? It could be that
you are running out of disk space on your local vSAN datastore, or
maybe you do not have any local storage or SAN-attached even. HCI
Mesh enables you to run VM instances in one cluster while having the
objects associated with that VM stored remotely. Of course, it means
that an administrator will need to mount the remote datastore, and
the decision will need to be made to use that remote datastore from
a storage point of view. But when this has been done you can even
move the VM between clusters by simply doing a compute-only
vMotion. One thing to note is that we use RDT, vSAN’s native protocol
for communication between the two clusters. The datastore is not
exposed through NFS or iSCSI.

As mentioned earlier in this chapter, the way we have implemented
this is by separating certain processes that normally would run on a
single host. In this case, we are referring to the DOM components,
specifically the DOM Client and the DOM Owner. On top of that, a
CMMDS Client has been developed, which connects to CMMDS
directly. The relationship between the various processes is shown in
the diagram below.

Figure 52: vSAN HCI Mesh components

When HCI Mesh, or Datastore Sharing as it is called in the vSphere
Client, is enabled on a cluster that does not have vSAN enabled, the
DOM Client and the CMMDS client are loaded on each host of the
cluster. The DOM Client and the CMMDS Client then connect with the
DOM Owner and CMMDS to provide the ability to provision workloads
on the remote datastore. Note that a remote datastore can only be
mounted when the “Server Cluster” is managed by the same vCenter
Server instance as the “Client Cluster”. There are various operational
considerations, but we will discuss these in chapter 6 where we are
discussing various operational aspects of vSAN.

The data path of the ESA as described in this chapter remains largely
the same when using HCI Mesh. The layered approach to the vSAN
storage stack allows for the respective data processing to be
extended logically when communicating across clusters. One

difference when using HCI Mesh is when data-at-rest encryption is
enabled on the ESA. Instead of the encryption processes occurring at
the highest layer in the stack (the DOM client), encryption processes
will occur at the DOM owner, which will reside in the “Server Cluster”
side of the two clusters. This is transparent to the administrator and
does not change operations in any way.

One thing we do want to bring up is vSphere HA. From an
architectural perspective, the implementation of vSAN with HCI Mesh
is different, it also means that there’s an additional consideration
when it comes to availability. To ensure VMs are protected by
vSphere HA in the situation anything happens between a “client” host
and the “server” cluster, it is recommended to enable the APD
response. This is very straightforward. You simply go to the HA
cluster settings and set the “Datastore with APD” setting to either
“Power off and restart VMs – Conservative” or “Power off and restart
VMs – Aggressive”. The difference between conservative and
aggressive is that with conservative HA will only kill the VMs when it
knows for sure the VMs can be restarted. With aggressive, it will also
kill the VMs on a host impacted by an APD while it isn’t sure it can
restart the VMs. VMware recommends using the “Conservative
Restart Policy”.

Summary

The growing prevalence of high-performing storage devices and fast
networking allowed the Engineering teams working on vSAN to
rethink how data could be processed and stored. The vSAN ESA uses
a new architecture to process and store data faster and more
efficiently than ever before while retaining the easy of management
found in past versions. This way, customers can continue to use
techniques like VM Storage Policies to define an outcome of desired
resilience and other capabilities and let vSAN take care of the rest.

In the next chapter, we will look at VM Storage Policies, and how to
use them to make your VMs resilient to failures in vSAN.

Chapter 5

VM Storage Policies and VM
Provisioning

VM storage policies and storage policy-based management (SPBM)
build on earlier vSphere functionality which tried to match the
storage requirements of a VM to a particular vSphere datastore. This
was known as profile driven storage in earlier versions of vSphere,
and all VMs residing on the same datastore inherited the capabilities
of the datastore. With vSAN, the storage quality of service no longer
resides with the datastore; instead, it resides with the VM and is
enforced by a VM storage policy associated with the VM and its
VMDKs. Once the policy is pushed down to the storage layer, in this
case, vSAN, the underlying storage is then responsible for creating
and placing components for the VM to meet the requirements
configured in the policy.

Introducing Storage Policy-Based Management
in a vSAN Environment

vSAN leverages a policy-based approach for VM deployment, using a
method called storage policy-based management (SPBM). All VMs
deployed to a vSAN datastore must use a VM storage policy, and if
one is not specified at deployment time, a default one that is

associated with the datastore is assigned to the VM automatically.
The VM storage policy may contain one or more vSAN capabilities.
This chapter will describe the vSAN ESA capabilities and how the
components for each object that makes up a VM are distributed
according to the capabilities configured in the VM’s policy.

After the vSAN ESA cluster has been configured and the vSAN
datastore has been created, vSAN presents a set of capabilities to
vCenter Server. These capabilities are surfaced by the vSphere APIs
for Storage Awareness (VASA) storage provider (more on this shortly)
when the vSAN cluster is successfully configured. These capabilities
are used to set the availability, capacity, and performance policies on
a per-VM (and per-VMDK) basis when that VM is deployed on the
vSAN datastore.

Through SPBM, administrators create a policy defining the storage
requirements for the VM, and this policy is pushed out to the storage,
which in turn instantiates per-VM (and per-VMDK) storage for virtual
machines. In vSphere 6.0, VMware introduced Virtual Volumes
(vVols). SPBM for VMs using vVols is very similar to SPBM for VMs
deployed on vSAN. In other words, administrators no longer need to
carve up LUNs or volumes for virtual machine storage. Instead, the
underlying storage infrastructure instantiates virtual machine storage
based on the contents of the policy. Similarly, with the arrival of the
Kubernetes platform, and the ability to run Kubernetes clusters on top
of vSphere infrastructure, persistent volumes created in Kubernetes
and backed by VMDKs can also leverage SPBM. Each persistent
volume can, using Kubernetes Storage Classes which map to a
vSphere storage policy, be instantiated with its own set of storage
capabilities. The ability to use vSAN as a platform for modern,
containerized applications will be discussed in detail in chapter 9.

Suffice to say that what we have now with SPBM is a mechanism
whereby we can specify the requirements of the VM, and the
associated VMDKs. These requirements are then used to create a

policy. This policy is then sent to the storage layer (in the case of
vVols, this is a SAN or network-attached storage (NAS) storage array)
asking it to build a storage object for this VM that meets these policy
requirements. In fact, both vVols based or a vSAN based VM can
have multiple policies associated with it, and different policies for
different VMDKs.

By way of explaining capabilities and policies, capabilities are what
the underlying storage can provide by way of availability,
performance, and efficiency. These capabilities are visible in vCenter
Server. The capabilities are then used to create a VM storage policy
(or just policy for short). A policy may contain one or more
capabilities, and these capabilities reflect the requirements of your
VM or application running in a VM.

Deploying VMs on a vSAN datastore is very different from previous
approaches in vSphere. With traditional storage, an administrator
presents a shared LUN or volume to a group of ESXi hosts. In the
case of block storage, an administrator would then be required to
partition, format, and build a VMFS datastore for storing VM files.
Care had to be taken to ensure that any shared LUN was uniformly
presented from the array to all ESXi hosts. Similarly, administrators
had to ensure that the path policies were set identically for that LUN
on all ESXi hosts. This resulted in operational complexity and
overhead. In the case of network-attached storage (NAS), a network
file system (NFS) volume is mounted to the ESXi hosts, and once
again a VM is created on the datastore. There is no way from the
ESXi host to specify, for example, a RAID-0 stripe width for a VM, nor
is there any way to specify a RAID-1 replica for the VM. VMs simply
inherited the capabilities of the underlying LUN or share that was
presented to the ESXi hosts as a datastore.

In the case of vSAN (and vVols), the approach to deploying VMs is
quite different. Consideration must be given to the availability,
performance, and efficiency factors of the application running in the

VM. Based on these requirements, an appropriate VM storage policy
must be created and associated with the VM during deployment.
However, it is possible to change the policy after the VM has been
deployed, on-the-fly. This will be discussed shortly.

Figure 53: Standard vSAN capabilities

vSAN features include the ability to implement various storage
configurations, for example, administrators can create RAID-5 and
RAID-6 configurations for virtual machine objects deployed on vSAN
ESA. Of course, there are also RAID-0 and RAID-1 configurations
available, but they are less commonly used with vSAN ESA and we
will explore why later in this chapter. With RAID-5 and RAID-6,
administrators can deploy VMs that are able to tolerate one or two
failures, but the amount of space consumed on the vSAN datastore is
much less than a RAID-1 configuration.

There is also an additional policy rule for software checksum.
Checksum is enabled by default, but it can be disabled through policy
on a per VM basis if an administrator wishes to disable it. Another
capability relates to quality of service and provides the ability to limit
the number of input/output operations per second (IOPS) for a
particular object. We can also specify how VMs, which are part of a
stretched cluster, should be protected within a site. For this RAID-1,
RAID-5, or RAID-6 can be used. This is an additional level of
protection within a site that works alongside the cross-site

protection. A similar configuration is also available for 2-node vSAN
configurations. Since all vSAN ReadyNodes for ESA use at least 4
storage devices, a 2-node cluster using ESA will be able to support
the secondary level of resilience capability as found with the OSA. It
is more economical however, as it achieves this without the use of
disk groups.

Figure 54: Advanced vSAN capabilities

You can select the capabilities when a VM storage policy is created.
Note that certain capabilities apply to hybrid vSAN OSA
configurations (e.g., flash read cache reservation), while other
capabilities apply to all-flash vSAN OSA & ESA configurations only
(e.g., RAID-5 and/or RAID-6). In the case of vSAN ESA, setting a
“Flash read cache reservation”, for instance, would make the policy
incompatible with the vSAN Datastore.

VM storage policies are essential in vSAN deployments because they
define how a VM is deployed on a vSAN datastore. Using VM storage
policies, you can define the capabilities that can provide the number
of VMDK RAID-0 stripe components or the number of RAID-1 mirror
copies of a VMDK. Let’s now revisit erasure coding before learning
how to configure them via policies. We have already learned that if an
administrator desires a VM to tolerate one failure but does not want
to consume as much capacity as a RAID-1 mirror, a RAID-5

configuration can be used. If this configuration was implemented
with RAID-1, the amount of capacity consumed would be 200% the
size of the VMDK due to having two copies of the data. If this is
implemented with RAID-5 with vSAN OSA, the amount of capacity
consumed would be 133% the size of the VM, the extra 33%
accounting for the single parity segment since RAID-5 is
implemented on vSAN as 3 data segments and 1 parity segment.
RAID-5 requires a minimum of four hosts in an all-flash vSAN cluster
and will implement a distributed parity mechanism across the
storage of all four hosts.

However, starting with vSAN ESA we now have a new adaptive RAID-
5 mechanism, which either uses an extra 25% or 50%, depending on
the size of the cluster. In a cluster with 5 hosts, or less, a RAID-5
configuration would lead to a 2+1 configuration. Meaning, 2 data
segments and 1 parity segment. This leads to a total amount of
capacity consumed of 150% of the size of the VM. In a cluster with 6
hosts, or more, a RAID-5 configuration would lead to a 4+1
configuration. Meaning, 4 data segments and 1 parity segment. This
would lead to a total amount of capacity consumed of 125% of the
VM.

Similarly, if an administrator desires a VM to tolerate two failures
using a RAID-1 mirroring configuration, there will need to be three
copies of the VMDK, meaning the amount of capacity consumed
would be 300% the size of the VMDK. When using a RAID-6
implementation instead of RAID-1, a double parity is implemented,
which is also distributed across all the hosts. By this, we mean 4 data
segments and 2 parity segments. For RAID-6, there must be a
minimum of six hosts in a vSAN cluster. RAID-6 also allows a VM to
tolerate two failures, but only consumes capacity equivalent to 150%
the size of the VMDK, the overhead of the two parity segments. When
using the vSAN ESA with RAID-6 , a recommended minimum cluster
size of 7 or more hosts would ensure that a spare fault domain would
be available upon failure. This will simplify administration, and likely

increase the effective resilience setting for most vSAN workloads
while not inhibiting performance in any way.

The sections that follow will highlight where you should use these
capabilities when creating a VM storage policy and when to tune
these values to something other than the default. Remember that a
VM storage policy can contain one or more capabilities.

Note: Some significant changes were made to how the layout of
vSAN objects was implemented in vSAN 7.0 U1. A concerted effort
was made to address the requirement of keeping 25-30% of what
was termed slack space on the vSAN datastore. This was a
considerable overhead but was necessary due to the way vSAN
implemented its recovery and resyncing mechanism. Data that was
being rebuilt or resynchronized used this slack space as a staging
area. The slack space needed to be this large since vSAN would
attempt to rebuild as many missing or failed components as
possible, so if a complete host failed, vSAN needed space to stage
the rebuild of all components on this host. In vSAN 7.0 U1, a new
approach was envisioned. This revolved around negating the need to
build whole replicas or mirrors. The decision was made to implement
large objects greater than 255GB in size in a different way than
objects smaller than 255GB. Therefore, instead of implementing a
top of tree RAID-1 (mirror) with 2 x RAID-0 branches, vSAN
implemented a top of tree RAID-0 (concatenation) with each of the
underlying components mirrored in a RAID-1 configuration. Now
when rebuild operations are required, for example when a policy
change is requested, vSAN can work on each component on the
concatenation as a distinct item, working on a much smaller chunk of
data. Previously vSAN had to set aside slack space for the whole of
the mirror. This is all preamble to some of the examples shown later,
when vSAN objects with the same policy will get a different layout
depending on their size.

As an administrator, you can decide which of these capabilities can
be added to the policy, but this is of course dependent on the
requirements of your VM. For example, what performance and
availability requirements does the VM have?

The capabilities for “vSAN” storage datastore specific rules are as
follows:

Availability

Site disaster tolerance
None – standard cluster (default)
Host mirroring – 2 node cluster
Site mirroring - stretched cluster
None – keep data on preferred (stretched cluster)
None – keep data on non-preferred (stretched cluster)
None – stretched cluster
Failures to tolerate
No data redundancy
No data redundancy with host affinity
1 failure – RAID-1 (Mirroring) (default)
1 failure – RAID-5 (Erasure Coding)
2 failures – RAID-1 (Mirroring)
2 failures – RAID-6 (Erasure Coding)
3 failures – RAID-1 (Mirroring)

Storage rules

Encryption Services
Data-At-Rest encryption
No encryption
No preference (default)
Space Efficiency
Deduplication and compression
Compression only

No space efficiency
No preference (default)
Storage tier
All flash
Hybrid
No preference (default)

Advanced Policy Rules

Number of disk stripes per object (default value of 1)
IOPS limit for an object (default value of 0 meaning
unlimited)
Object space reservation
Thin provisioning (default)
25% reservation
50% reservation
75% reservation
Thick provisioning
Flash read cache reservation (hybrid vSAN only) (default value
of 0 meaning none)
Disable object checksum (default off)
Force provisioning (default off)

Storage rules

Whilst we have already seen what the Availability and Advanced
Policy rules looked like in the vSphere UI, we have not yet seen the
Storage rules. The next screenshot displays what the Storage rules
look like.

Figure 55: Storage rules

These configuration settings were originally intended to be related to
HCI-Mesh (Datastore Sharing), where a vSphere cluster can consume
storage from both a local vSAN datastore as well as multiple remote
vSAN datastores. Datastore Sharing is discussed in greater detail in
the Operations chapter later in the book. However, in an all-flash
configuration, which vSAN ESA is, you will need to select the correct
storage tier. On top of that, there is another exception with the
Storage Rules, as it can also be used to disable the use of
“compression” with vSAN ESA on a per VM basis through policy. If
“no preference” or “compression only is selected under “Space
efficiency” then compression is essentially enabled on the
associated VMs. If “No space efficiency” is selected then vSAN ESA
compression is disabled for the VMs associated with this policy, as
shown in the next screenshot.

Figure 56: Disabling vSAN ESA Compression

One thing we do want to emphasize is what happens when you
disable, or enable, vSAN ESA Compression. As mentioned,
compression is enabled by default, and can be disabled by
configuring the Storage Rules accordingly, i.e., “no space efficiency”.
Changing an existing VM from “compression enabled” to
“compression disabled”, or the other way around for that matter,
does not trigger a recreation of the components of the VM and does
not change the currently stored data in any shape or form. In other
words, if compression is enabled and you have stored a total amount
of compressed capacity of 40GB, then the total amount of
compressed capacity after changing the policy on that object to
“compression disabled” is still 40GB. Only new writes are stored as
requested in policy, meaning that new writes will not be compressed
when compression is disabled in policy.

Now you may ask yourself, do I really need to use these Storage
Rules? Storage Rules are extremely useful, as mentioned, when you
are using Datastore Sharing capabilities. Especially in larger
environments where a variety of different data services are (or can
be) enabled on each individual datastore. It could be that the local
datastore has deduplication or compression enabled, or that a
remote datastore is from a hybrid vSAN but the local datastore is a

vSAN ESA all-NVMe based cluster. By using some of the settings in
this configuration screen, an administrator can create policies that
will place VMs with the same availability policy, and the selected data
services, on either the local vSAN datastore or one of the remote
datastores, depending on these settings. By default, these are all left
at “No preference” meaning that none of these capabilities are
considered when provisioning a VM in an HCI-Mesh environment.

The sections that follow describe the vSAN capabilities in detail.

Failures to tolerate

In this section, we are going to discuss Failures to tolerate,
specifically RAID-1. In the next section, we will describe RAID-5 and
RAID-6. Failures to tolerate is often short-handed to FTT and this
shorthand is used quite extensively in this book. The maximum value
for FTT is 3. This is available if RAID-1 is used. The maximum for FTT
is 2 when using erasure coding assuming RAID-6 is used. We will
examine these limits in more detail shortly.

The Failures to tolerate capability sets a requirement on the vSAN
storage object (e.g., VM) to tolerate at least n number of failures in
the cluster. This is the number of concurrent hosts, networks, or
storage device failures that may occur in the cluster and still ensure
the availability (accessibility) of the object. When failures to tolerate
is set to RAID-1 the VM’s storage objects are mirrored; however, the
mirroring is done across different ESXi hosts, as shown below. In the
diagram “C-LEG” and “P-LEG” respectively refer to the “Capacity
Leg” and the “Performance Leg”, which are described in-depth in
chapter 4.

Figure 57: RAID-1 - Failures to tolerate

When this capability is set to a value of n, it specifies that the vSAN
configuration must contain at least n+1 replica copies of the data;
this also implies that there are 2n+1 hosts in the cluster.

With vSAN ESA there’s a big difference in terms of how RAID-1 is
implemented compared to vSAN OSA. With vSAN OSA witness
components were used to ensure that the VM remained available
even when there were as many as failures to tolerate concurrent
failures in the vSAN cluster. The witness objects would provide a
quorum when failures occurred in the cluster. With vSAN ESA this is
no longer the case. As we have two different types of objects, namely
the “performance leg” and the “capacity leg”, it is possible to
determine the owner of the object by placing components of both the

performance leg and the capacity leg across the hosts and by using
the existing voting mechanism. We will go through various examples
in this chapter to demonstrate how the voting mechanism and the
smart placement of components help determine who has retained
ownership during certain failure scenarios.

One aspect worth noting is that any disk failure on a single host is
treated as a “failure” for this metric (although multiple disk failures
on the same host are also treated as a single host failure). Therefore,
the VM may not persist (remain accessible) if there is a disk failure
on host A and a complete host failure of host B when the number of
failures to tolerate is set to one.

As mentioned earlier, the above diagram shows the layout when the
object that is created on the vSAN datastore is less than 255GB in
size. We will look at the larger size layout shortly.

The following table is true if the capability called number of disk
objects to stripe is set to 1 and RAID-1 is used as the Failures to
tolerate setting, which is the default.

Table 5: Hosts required to meet the number of failures to tolerate
requirement for RAID-1

If no policy is chosen when a VM is deployed, the default policy
associated with the vSAN datastore is chosen. What that policy looks
like depends on which policy was selected as the default policy for
the vSAN datastore. Starting with vSAN 8.0 U1 ESA it is also possible

to have vSAN provide recommendations about the configuration of
your storage policy. This functionality can be enabled during the
creation of the vSAN cluster or can be enabled after the vSAN cluster
has been created as shown in the screenshot below.

Figure 58: Enabling auto-policy management

Although we will come back to this at a later stage, we do already
want to point out that there is a vSAN Optimal Datastore Default
Policy Configuration health finding available under Skyline Health in
the monitoring section of vSAN. This section will provide insights in
both the current configuration, as well as the suggested configuration
for your default policy. The suggested configuration is, as expected,
based on the size of your vSAN ESA cluster.

When a new policy is created however, the default value of number of
failures to tolerate is still 1 failure – RAID-1 (Mirroring).

Recommended Practice for Failures to Tolerate

The recommended practice for Failures to tolerate is 1 with RAID-5
or 2 with RAID-6. With vSAN OSA the recommendation was RAID-1
Mirroring, but as described in chapter 4, with vSAN ESA RAID-5 and
RAID-6 perform similar to RAID-1, and as such it makes sense to
take advantage of the lower capacity overhead of RAID-5 or RAID-6.
Whether you should set Failures to tolerate to a value of 1 or 2 is
entirely up to you. If you a sufficient number of hosts, and are not
concerned about the additionally required capacity, then RAID-6 will
provide extra protection against failures and can be a great choice.
Either way, “Erasure coding”, is preferred for all VMs deployed on
vSAN ESA.

vSAN has multiple management workflows to warn/protect against
accidental decommissioning of hosts that could result in vSAN being
unable to meet the number of failures to tolerate policy of given VMs.
This includes a noncompliant state being shown in the VM summary
tab for the VM Storage Policy.

Then the question arises: What is the minimal number of hosts for a
vSAN cluster? If we omit the 2-node configuration (more typically
seen in remote office-branch office type deployments) for the
moment, customers would for the most part require three ESXi hosts
to deploy vSAN. However, what about scenarios where you need to do
maintenance or upgrades and want to maintain the same level of
availability during maintenance hours?

To comply with a policy of failures to tolerate = 1 using RAID-1 or
RAID-5, you need three hosts at a minimum. RAID-1 will use
mirroring for protection while RAID-5, in a 2+1 configuration, will use
parity for protection. With RAID-1, even if one host fails, you can still
access your data, because with components (votes) spread across
three hosts, you will still have more than 50% of your components
(votes) available. But what happens if, rather than a failure, you place
one of those hosts in maintenance mode?

Figure 59: vSAN: Minimum number of hosts

Placing a host into maintenance mode will place all components on
this host in an absent state. This host can no longer contribute
capacity to the vSAN datastore when in maintenance mode. Similarly,
it will not be possible to provision new VMs with an FTT=1 when one
node is in maintenance mode (unless you force provision the VM or
deploy a VM with an FTT=0). If both remaining hosts keep
functioning as expected, all VMs will continue to run. However, if
another host fails or needs to be placed into maintenance mode, you
have a challenge. At this point, the remaining host will have less than
50% of the components of your VM. As a result, VMs cannot be
restarted (nor do any I/O), and this is the reason you will see many
people recommending a minimum of four hosts within a cluster, or
the minimum your desired “Failures to tolerate” recommends plus

one. Meaning that if you use RAID-6, which requires six hosts, the
recommendation is to have seven hosts within your cluster to
accommodate for maintenance mode or failure scenarios. Note, this
is a general recommendation and not a product requirement, cluster
sizes ultimately should be determined based on the workload,
budget, service level agreement, and operational expectations.

RAID-5 and RAID-6

In this section, we are going to discuss Failures to tolerate
implemented through RAID-5 and RAID-6. Which should, as
mentioned, be the default selected policy option for almost all vSAN
ESA implementations.

Using the Site disaster tolerance set to “None – standard cluster”,
the table below explains the type of configuration that will be
provisioned and the minimum number of ESXi hosts required. This
table will help you determine which policy you can use based on the
number of ESXi hosts within your cluster. Note that although the
minimum number of ESXi hosts may be similar for some
configurations, the capacity overhead will be different.

Table 6: Object configuration when number of failures to tolerate and failure
tolerance method set

As can be seen from the table, when RAID-5/6 is selected, the
maximum number of failures that can be tolerated is 2. RAID-1 allows
up to 3 failures to be tolerated in the cluster, using 4 copies of the
data.

One might ask why RAID-5/6 is not less performing than RAID-1 any
longer with vSAN ESA, as it used to be less performing with vSAN
OSA. The reason lies in how vSAN ESA leverages the durable log,
implemented in the performance leg, to coalesce data and create
full-stripe writes to the performance leg, as explained in chapter 4.

One thing to note is that when there is a failure of some component
in the RAID-5 and RAID-6 objects, and data needs to be determined
using parity, then there will be a form of I/O amplification compared
to RAID-1. Meaning that in failure scenarios, or maintenance mode
situations, the performance of RAID-5/6 compared to RAID-1 may be
different. However, these are what we would consider special
situations. We do not recommend making the decision for your
default policy based on that situation but rather base it on when your
vSAN is running steady-state and is functioning normally.

Traditionally, even though RAID-5/6 consumed less capacity, it did
require more hosts than the RAID-1 approach. When using RAID-1,
the rule is that to tolerate n failures, there must be a minimum of
2n+1 hosts for the mirrors/replicas and witness components.
Therefore, to tolerate one failure, there must be at least three hosts.
To tolerate two failures, there must be at least five hosts. For those
wondering why we need five hosts, we need to ensure that in the case
of a network partition scenario we need to determine who owns the
data, which will be the partition that has the most votes. To do so we
need an odd number of components, and because of this
requirement, we need an odd number of hosts. To tolerate three
failures, there must be seven hosts in the cluster. All of the hosts
must be contributing storage to the vSAN datastore.

Starting with vSAN ESA and the newly introduced Adaptive RAID-5
mechanism, RAID-5 now requires a minimum of three hosts to
tolerate one failure and with RAID-6 six hosts are needed to tolerate
two failures, even though less space is consumed on each host. The
following diagram shows an example of a RAID-5 configuration for
the capacity leg, deployed across 3 hosts with a distributed parity in
a 2+1 (data+parity) configuration.

Figure 60: RAID-5 configuration

Why did we call out “capacity leg” specifically for the above diagram?
Well, as mentioned before, the selected data placement scheme
(Mirroring or Erasure Coding) only applies to the capacity leg. The
performance leg of the object is always created as a RAID-1
configuration. The number of components of the performance leg is
however still determined by the Failures to tolerate applied to the VM.

Meaning that if you have a RAID-5 configuration your performance
leg will consist of a RAID-1 configuration with two components (two-
way mirror). If you have a RAID-6 configuration, the performance leg
will exist of a RAID-1 configuration with three components (three-way
mirror).

With vSAN OSA “Number of disk stripes per object” was always a
debate. Should you, or should you not use this setting in policy. If you
used it, what was the direct impact on performance and data
placement? With vSAN ESA and with vSAN OSA 7.0 U1 component
layout and placement has changed significantly.
(https://core.vmware.com/blog/stripe-width-improvements-vsan-7-u1)
Let’s discuss in more depth.

Number of Disk Stripes Per Object

This capability defines the number of physical disks across which
each replica of a storage object (e.g., VMDK) is striped. Number of
disk stripes per object is often short-handed to stripe width or even
SW.

When RAID-1 is used, this policy setting can be considered in the
context of a RAID-0 configuration on each RAID-1 mirror/replica
where I/O traverses several physical disks. When RAID-5/6 is used,
each segment of the RAID-5 or RAID-6 stripe may also be
configured as a RAID-0 stripe. The next screenshot shows a vSAN
ESA object when both RAID-0 and RAID-1 capabilities are used. As
demonstrated, the configuration becomes rather complex with even
the most basic policy settings.

https://core.vmware.com/blog/stripe-width-improvements-vsan-7-u1

Figure 61: RAID-1 configuration with stripes

The "Number of disk stripes per object" storage policy rule has
limited relevance in vSAN's new architecture, as a result of how the
ESA is optimized for NVMe-based storage devices. This is because
performance has been improved in the ESA, as explained in the
architecture chapter. On top of that, vSAN ESA can exploit the full
capabilities of these NVMe devices without the need to split the data
into smaller chunks and disperse them across more devices - which
was at times needed with vSAN OSA to achieve the desired
performance.

While we recommend leaving the stripe width policy rule at its default
value of 1, you may be curious as to what happens if the value is
increased on a VM running in a cluster using the ESA. The stripe
width setting in a vSAN cluster using the ESA will behave in a very
similar way to a cluster using the OSA. How it splits the components

will depend on whether the components are for the capacity leg or
performance leg of an object and the selected RAID configuration
(RAID-1, RAID-5, RAID-6).

The capacity leg and performance leg of an object are new
constructs in the object data structure for vSAN ESA and helps it
deliver high levels of performance while using space-efficient erasure
coding. As shown in in the previous screenshot, increasing the value
to 3 will split the performance leg and capacity leg component
components.

However, when using a stripe width setting of 2, the object
components that comprise the RAID-6 erasure code will not be
changed. If the stripe width setting was high enough (to 12), it would
eventually increase the number of components in the RAID-6 stripe.
This aligns with the changes introduced in vSAN 7.0 U1, where the
stripe width values affect an erasure code differently than a RAID-1
mirror. (https://core.vmware.com/blog/stripe-width-improvements-
vsan-7-u1)

Given that the new data structure and Log Structured Object
Manager allow vSAN to deliver near device-level performance of
NVMe devices, increasing the stripe width value does little more than
create more data components, and complicate placement decisions
for vSAN. Increasing the stripe width is not recommended as a
mitigation step when troubleshooting vSAN performance with vSAN
ESA. If it is no longer relevant for vSAN ESA, then why does the policy
rule still exist? Storage policies and the rules that make up a storage
policy are a construct of vCenter Server. A given vCenter Server
instance may be responsible for many vSAN clusters, some of which
may be running vSAN OSA, while others may be configured for vSAN
ESA. Keeping these policy rules available across all cluster types
helps maintain the compatibility of different cluster types and
conditions across environments within the same vCenter Server
instance.

https://core.vmware.com/blog/stripe-width-improvements-vsan-7-u1

RAID-0 used when no Striping is specified in
the Policy

Those who have been looking at the vSphere Client regularly, where
you can see the placement of components, may have noticed that
vSAN appears to create a multi-component RAID-0 for your VM even
when you did not explicitly ask it to. Or perhaps you have requested a
stripe width of two in your policy and then observed what appears to
be a stripe width of three (or more) being created. vSAN will split
objects as it sees fit when there are space constraints. This is not
striping per se, since components can end up on the same physical
capacity device, which in many ways can be thought of as a
concatenation. We can refer to it as chunking.

vSAN will use this chunking method on certain occasions. When an
object is larger than any single chunk of free space. Essentially, vSAN
hides the fact that even when there is a low amount of free capacity
on a single device, administrators can still create very large VMs.
Therefore, it is not uncommon to see objects split into multiple
components, even when no stripe width is specified in the VM
storage policy. vSAN will use this chunking method when an object is
larger than the available free space on any capacity device.

There is another occasion where this chunking may occur. By default,
an object will also be split if its size is greater than 255 GB (the
maximum component size). An object might appear to be made up of
multiple 255 GB RAID-0 chunks even though striping may not have
been a policy requirement. It can be split even before it reaches 255
GB when free disk space makes vSAN think that there is a benefit in
doing so. Note that just because there is a standard split at 255 GB,
it doesn’t mean all new chunks will go onto different capacity
devices. In fact, since this is not striping per se, multiple chunks may
be placed on the same physical capacity device. It may, or may not,
depending on overall balance and free capacity.

Stripe Width Maximum

In vSAN, the maximum stripe width that can be defined in a policy is
12. This can be striping across storage devices in the same host, or
across storage devices, in different hosts, as mentioned earlier. I’m
going to add a caveat here that, since vSAN 7.0U1, certain limits have
been placed on striping for both large objects as well as RAID-5 and
RAID-6 objects. The description that follows applied to vSAN
versions prior to 7.0U1, as well as to objects that are 255GB or less in
size.

Remember that when you specify a stripe width there has to
be at least a stripe width (SW) × (FTT+1) number of capacity
devices before vSAN can satisfy the policy requirement.

The larger the number of FTT and SW, the more complex the
placement of object and associated components will become. The
number of disk stripes per object setting in the VM storage policy
means stripe across “at least” this number of storage devices per
mirror. vSAN may, when it sees fit, use additional stripes.

Figure 62: Number of disk stripes per object

Stripe Width Configuration Error

You may ask yourself what happens if a vSphere administrator
requests the vSAN cluster to meet a stripe width policy setting that is
not available or achievable, typically due to a lack of resources.
During the creation of the policy, vSAN will verify if there is a
datastore that is compatible with the capabilities specified in the
policy. As shown in the screenshot below, where we have requested
FTT=3 and SW=12, no datastore is shown as compatible with the
defined policy.

Figure 63: No compatible datastore

If you would forcefully try to deploy a VM using this policy, then the
creation of the VM will fail. This is demonstrated in the screenshot
below.

Figure 64: VM creation tasks fails

What this error message is telling us is that vSAN needs 48 disks (4
copies of the data by a stripe width of 12) to implement this policy.
There are currently only 27 disks available in the cluster, so 21 more
are needed to create such a policy.

We have discussed stripe width probably more than needed at this
point, considering the recommendation is for vSAN ESA to not use
this policy setting. There are, however, various policy capabilities that
we will need to discuss and explore.

In order to be able to describe the various scenarios and
capabilities, we have deployed a twelve node vSAN cluster, as
demonstrated in the next screenshot.

Figure 65: vSAN lab cluster

We will use this lab to demonstrate the different policy configurations
and the impact on the layout of the objects. Before we do, let’s
discuss a few of the options first which are less common to be
configured within policy, which is why they can be found under
“Advanced Policy Rules”.

IOPS Limit for Object

IOPS limit for object is a Quality of Service (QoS) capability
introduced with vSAN 6.2. This allows administrators to ensure that
an object, such as a VMDK, does not generate more than a
predefined number of I/O operations per second. This is a great way
of ensuring that a “noisy neighbor” virtual machine does not impact
other virtual machine components on the same host by consuming
more than its fair share of resources.

By default, vSAN uses a normalized I/O size of 32 KB as a base. This
means that a 64 KB I/O will therefore represent two I/O operations
in the QoS calculation. I/Os that are less than or equal to 32 KB will
be considered single I/O operations. For example, 2 × 4 KB I/Os are
considered two distinct I/Os. It should also be noted that both read
and write IOPS are regarded as equivalent. Neither cache hit rate nor
sequential I/O is considered. If the IOPS limit threshold is passed,
the I/O is throttled back to bring the IOPS value back under the
threshold. The default value for this capability is 0, meaning that
there is no IOPS limit threshold and VMs can consume as many IOPS
as they want, subject to available resources.

We do not see this capability used too often by vSAN customers. Only
a small number of Service Providers use this to limit their customer's
workloads.

Figure 66: IOPS Limit of 1000

Flash Read Cache Reservation

This capability applies to hybrid vSAN OSA configurations only. It is
the amount of flash capacity reserved on the cache tier device as
read cache for the storage object. It is specified as a percentage of
the logical size of the storage object (i.e., VMDK). This is specified as
a percentage value (%), with up to four decimal places. This fine
granular unit size is needed so that administrators can express sub
1% units. Take the example of a 1 TB VMDK. If you limited the read
cache reservation to 1% increments, this would mean cache
reservations in increments of 10 GB, which in most cases is far too
much for a single VM.

Note, this policy setting should not be used with vSAN ESA.

Object Space Reservation

By default, all objects deployed on vSAN are thin provisioned. This
means that no space is reserved at VM provisioning time but rather
space is consumed as the VM uses storage. The object space
reservation is the amount of space to reserve specified as a
percentage of the total object address space.

This is a property used for specifying a thick provisioned storage
object. If object space reservation is set to Thick provisioning (or
100% in the vSphere Client), all of the storage capacity requirements
of the VM are reserved upfront. This will be lazy zeroed thick (LZT)
format and not eager zeroed thick (EZT). The difference between LZT
and EZT is that EZT virtual disks are zeroed out at creation time; LZT
virtual disks are zeroed out at first write time.

Figure 67: Object space reservation

Force Provisioning

If the force provisioning parameter is enabled, any object that has
this setting in its policy will be provisioned even if the requirements
specified in the VM storage policy cannot be satisfied by the vSAN
datastore. The VM will be shown as noncompliant in the VM summary
tab and relevant VM storage policy views in the vSphere client. If
there is not enough space in the cluster to satisfy the reservation
requirements of at least one replica, however, the provisioning will
fail even if force provisioning is turned on. When additional resources
become available in the cluster, vSAN will bring this object to a
compliant state.

Figure 68: Force provisioning enabled

One thing that might not be well understood regarding force
provisioning is that if a policy cannot be met, it attempts a much
simpler placement with requirements that reduce failures to tolerate
to 0. This means vSAN will attempt to create an object with just a
single copy of data. Any Object space reservation policy setting is
still honored. Therefore, there is no gradual reduction in capabilities
as vSAN tries to find a placement for an object. For example, if the
policy contains failures to tolerate = 2, vSAN won’t attempt an object
placement using failures to tolerate = 1. Instead, it immediately looks
to implement failures to tolerate = 0.

Caution should be exercised if this policy setting is implemented.
Since this allows VMs to be provisioned with no protection, it can
lead to scenarios where VMs and data are at risk.

Administrators who use this option to force provision virtual
machines need to be aware that although virtual machine objects
may be provisioned with only one replica copy (perhaps due to lack
of space), once additional resources become available in the cluster,
vSAN may immediately consume these resources to try to satisfy the
policy settings of virtual machines. Thus, administrators may see the
additional space from newly added capacity devices very quickly
consumed if there are objects that are force provisioned on the
cluster.

In the past, the use case for setting force provision was when a vSAN
management cluster needed to be bootstrapped. In this scenario,
you would start with a single vSAN node that would host the vCenter
Server, which was then used to configure a larger vSAN cluster.
vCenter Server would be deployed initially with failures to tolerate =
0 but once additional nodes were added to the cluster, it would get
reconfigured with failures to tolerate = 1.

Another use case is the situation where a cluster is under
maintenance or a failure has occurred, but there is still a need to
provision new virtual machines.

Remember that this parameter should be used only when
needed and as an exception. When used by default, this could
easily lead to scenarios where VMs, and all data associated
with them, are at risk due to provisioning with no FTT. Use with
caution!

Disable Object Checksum

This feature, which is enabled by default, is looking for data
corruption (bit rot), and if found, automatically corrects it. Checksum
is validated on the complete I/O path, which means that when writing
data, the checksum is calculated and automatically stored. Upon a
read, the checksum of the data is validated, and if there is a
mismatch the data is repaired. vSAN also includes a checksum
scrubber mechanism. This mechanism is configured to check all data
on the vSAN datastore. Note that the scrubber runs in the
background and only when there is limited I/O, to avoid a
performance impact on the workload.

In some rare cases, you may desire to disable checksums
completely. The reason for this could be performance, although the

overhead is negligible, and most customers prefer data integrity over
a minimal performance increase. In certain cases, the application,
especially if it is a newer next-gen or cloud-native application, may
already provide a checksum mechanism, or the workload does not
require a checksum. If that is the case, then checksums can be
disabled through the “disable object checksum” capability. There has
already been some discussion around disabling object checksum in
the ‘Data Integrity through Checksum’ topic in chapter 4. You may
find it useful to review that section of the book when trying to decide
if checksumming should be disabled on a workload.

Figure 69: Object checksum disabled

We do not recommend disabling Object Checksum. This feature was
introduced as a direct request by customers and partners who have
workloads that have their own checksum mechanism. Even if that is
the case, we would still not recommend disabling Object Checksum.
Use at your own risk!

That completes the vSAN advanced policy capabilities overview. All
above-mentioned capabilities can be specified within a policy. There
is however more to a virtual machine as explained in earlier chapters.
Let’s now look at those special objects and let’s examine which policy
capabilities are inherited and which are not.

VM Home Namespace

The VM home namespace on vSAN is a 255 GB thin object by
default. A namespace is a per-VM object. As you could imagine, if
policy settings were allocated to the VM home namespace, such as
proportional capacity and flash read cache reservation, much of the
magnetic disk and flash resources could be wasted. To that end, the
VM home namespace has its own special policy, as follows:

Number of disk stripes per object: 1
Failures to tolerate: <as-per-policy>
This includes RAID-1, RAID-5, and RAID-6 configurations
Flash read cache reservation: 0% (Not used with ESA.)
Force provisioning: Off
Object space reservation: thin
Checksum disabled: <as-per-policy>
IOPS limit for object: <as-per-policy>

To validate our learnings, we deployed a VM, and for this virtual
machine, disk stripes were configured to 3, failures to tolerate to 1
with RAID-1. We used “rvc” to inspect the VM, we will discuss rvc in
more detail in chapter 10 of the book, for now it suffices to know that
rvc is a commandline tool available on vCenter Server that enables
you to inspect vSAN objects in-depth. As shown in the screenshot
below, the “.vmx” file has a different policy configuration than the
“.vmdk” file. Where the “.vmx” represents the VM Home object, and
the “.vmdk” file the virtual disk attached to the VM.

Figure 70: VM Home components and SW=3

We started out this section by stating that the VM home namespace
is a 255GB thin object by default. Starting with vSAN 8.0 U1 it is
possible to change the size of the VM home namespace. You may
wonder why anyone would want to do this? Well, the VM home
namespace is not only used for the VM log files or the VMs .vmx file,
but it is also used when you create folder on a vSAN datastore and
upload ISOs to it. Another example of when a VM home namespace
is used is Content Library. You can imagine that in these scenarios
255GB may not be sufficient.

If needed, you can increase the size of the VM home namespace
through PowerCLI. We will describe how to do this in chapter 10,
command line tools.

VM Swap Revisited

The VM Swap object is only created when the VM is powered on and
is deleted when the VM is powered off. The VM swap follows much
the same conventions as the VM home namespace. It has the same
default policy as the VM home namespace. VM swap is thin
provisioned by default. This was done to avoid relatively high
amounts of capacity needlessly being reserved for swap space.

This behavior, if desired, can be disabled in the advanced options
view of the vSAN Service section on your cluster. To disable this
behavior, simply toggle the switch to the left.

Figure 71: Changing Swap behavior

We recommend validating if memory is overcommitted or not and
how much spare capacity is available on vSAN. Free capacity needs
to be available for swap when a VM wants to consume it. If new
blocks can’t be allocated, the VM will fail!

VM swap, like VM Home Namespace, follows the FTT specified by the
administrator in the VMs policy. This is to ensure that the swap file
has the same availability characteristics as the VM itself.

Number of disk stripes per object: 1
Number of failures to tolerate: <as-per-policy>
Flash read cache reservation: 0% (Not used with ESA.)
Force provisioning: On
Object space reservation: 0% (thin)
Failure tolerance method: <as-per-policy>
Checksum disabled: <as-per-policy>
IOPS limit for object: <as-per-policy>

There is one additional point concerning swap, and that is that it has
force provisioning set to on. This means that if some of the policy
requirements cannot be met, such as failures to tolerate, VM swap is
still created.

Snapshot Changes

With vSAN ESA snapshots have also been implemented differently, as
described in chapter 04. The big change, to briefly summarize, is the
fact that “delta disks” no longer exist. With vSAN ESA all I/O is done
to the existing objects, and changes are tracked in a new metadata
structure. When creating a snapshot however, one caveat will have to
called out, and that is the memory snapshot. If “Include virtual
machine’s memory” was selected during the snapshot creation
process, then a so called “.vmem” file is created. This “.vmem” file

contains the content of the memory of the VM and will always inherit
the policy associated with the base disk as shown in the output of rvc
of a VM with a RAID-5 policy associated.

Figure 72: Snapshot and .vmem file

Now we have discussed all policy capabilities and the impact they
have on a VM (and associated objects), let’s have a look at the
component which surfaces up the capabilities to vCenter Server
before we start exploring all different policy configurations.

VASA Vendor Provider

As part of the vSAN cluster creation step, each ESXi host has a vSAN
storage provider registered with vCenter Server. This uses the
vSphere APIs for Storage Awareness (VASA) to surface the vSAN
capabilities to vCenter Server. The capabilities can then be used to
create VM storage policies for the VMs deployed on the vSAN
datastore. If you are familiar with VASA and have used it with
traditional storage environments, you’ll find this functionality familiar;
however, with traditional storage environments that leverage VASA,
some configuration work needs to be done to add the storage
provider for that storage. In the context of vSAN, a vSphere

administrator does not need to worry about registering these; these
are automatically registered when a vSAN cluster is created.

An Introduction to VASA

VASA enables storage vendors to publish the capabilities of their
storage to vCenter Server, which in turn can display these
capabilities in the vSphere Client. VASA may also provide information
about storage health status, configuration info, capacity, thin
provisioning info, and so on. VASA enables VMware to have an end-
to-end story regarding storage. Traditionally, this enabled storage
arrays to inform the VASA storage provider of capabilities. Then the
storage provider informed vCenter Server to allow users to see
storage array capabilities from the vSphere Client. Through VM
storage policies, these storage capabilities are used in the vSphere
Client to assist administrators in choosing the right storage in terms
of space, performance, and service level agreement (SLA)
requirements. This is true for both traditional storage arrays and
vSAN.

With vSAN and vVols, the administrator defines the capabilities that
they want to have for VM storage through a VM storage policy. This
policy information is then pushed down to the storage layer,
informing it of the requirements you have for storage. VASA will then
inform the administrator whether the underlying storage (e.g., vSAN)
can meet these requirements, effectively communicating compliance
information on a per-storage object basis. VASA functionality is
working in a bidirectional mode. Early versions of VASA for traditional
storage arrays would only surface up capabilities. Today with vSAN, it
not only surfaces up capabilities, but also verifies whether a VM’s
storage requirements are being met based on the contents of the
policy.

Storage Providers

The next screenshot illustrates an example of what the storage
provider section looks like. When a vSAN cluster is created, the VASA
storage provider from every ESXi host in the cluster is registered to
the vCenter Server. In an environment where the vCenter Server is
managing multiple vSAN clusters (in the following example, there are
12 hosts across multiple clusters in total), the VASA vSAN storage
provider configuration would look like this. Note that there’s a long
list of IOFILTER Providers, one per host. These providers are needed
for features like Storage IO Control and VM Encryption, or any of the
3rd party IO Filters you may have installed. IO Filters are essentially
storage services that are decoupled from your storage system. They
may provide storage agnostic replication services, or host local flash
caching for instance.

Figure 73: vSAN Storage Provider

You can always check the status of the storage providers by
navigating in the vSphere Client to the vCenter Server inventory item,
selecting the Configure tab, and then the Storage Providers view. The
vSAN provider should always be online. Note that the vSAN storage
provider is listed as “internally managed” and you will only see one
listed. Internally managed means that all operational aspects are
automatically handled by vSAN. In early versions of vSphere, you
were able to view all hosts registered with the vSAN Storage Provider,
but this is no longer the case.

vSAN Storage Providers: Highly Available

The vSAN storage provider is high availability. Should one ESXi host
fail, another ESXi host in the cluster can take over the presentation of
these vSAN capabilities. In other words, should the storage provider
that is currently online go offline or fail for whatever reason (most
likely because of a host failure), one of the standby providers on
another ESXi host will be promoted to online.

There is very little work that a vSphere administrator needs to do with
storage providers to create a vSAN cluster. This is simply for your
own reference. However, if you do run into a situation where the vSAN
capabilities are not surfacing up in the VM storage policies section, it
is worth visiting this part of the configuration and verifying that the
storage provider is online. If the storage provider is not online, you
will not discover any vSAN capabilities when trying to build a VM
storage policy. At this point, as a troubleshooting step, you could
consider doing a resync of the storage providers by clicking on the
Synchronize Storage Providers in the Storage Provider screen.

Figure 74: Synchronize storage provider

The VASA storage providers do not play any role in the data path for
vSAN. If storage providers fail, this has no impact on VMs running on
the vSAN datastore. The impact of not having a storage provider is a
lack of visibility into the underlying capabilities, so you will not be
able to create new storage policies. However, already running VMs
and policies are unaffected.

Now that we have discussed both VASA and all vSAN policy
capabilities, let’s have a look at various examples of VMs provisioned
with a specific capability enabled.

Assigning a VM Storage Policy during VM
Provisioning

The assignment of a VM storage policy is done during the VM
provisioning. At the point where the vSphere administrator must
select a destination datastore, the appropriate policy is selected
from the drop-down menu of available VM storage policies. The
datastores are then separated into compatible and incompatible
datastores, allowing the vSphere administrator to make the
appropriate and correct choice for VM placement. Most environments
will have a single datastore available, i.e., vSAN. In some
environments you may have multiple datastores.

Figure 75: Compatible datastore

In early versions of vSphere and vSAN, this matching of datastores
did not necessarily mean that the datastore would meet the
requirements in the VM storage policy. It was a little confusing
because what it meant was that the datastore understood the set of
requirements placed in the policy because they were vSAN
requirements. But it did not mean that it could successfully provision
the storage object on the vSAN datastore. Thus, it was difficult to
know if a VM with a specific policy could be provisioned until you
tried to provision it with the policy. Then it would either fail or
succeed.

In the currents versions of vSAN, the VM is now validated to check if
it can be provisioned with the specified capabilities in the policy. In
the screenshot above we have a policy with failures to tolerate set to
2 with Erasure Coding. As shown, the vSAN cluster is capable of
matching those requirements, and as such, the datastore is listed as
compatible and the VM can be successfully provisioned.

Virtual Machine Provisioning

You have previously learned about the various vSAN capabilities that
you can add to a VM storage policy. This policy can then be used by
objects (VMs, etc.) deployed on a vSAN datastore. This section covers
how to create the appropriate VM storage policy using these
capabilities. It also discusses the layout of these VM storage objects
as they are deployed on the vSAN ESA datastore. Hopefully, this will
give you a better understanding of the inner workings of vSAN ESA.

Before we dive into it, we do want to point out again that VMware,
and the authors, recommend using Erasure Coding as your default.
With vSAN ESA RAID-5 delivers the same, or even better,
performance as RAID-1, but from a required capacity perspective, it
comes at a much lower cost.

Policy Setting: Failures to Tolerate = 1, RAID-1

Let’s begin by creating a very simple VM storage policy. Then we can
examine what will happen if a VM is deployed to a vSAN datastore
using this policy. Let’s create the first policy to have a single
capability setting of number of failures to tolerate set to 1. We are
going to use RAID-1 mirroring to implement failures to tolerate
initially. Later, we shall look at RAID-5 and RAID-6 configurations for
the VM objects which offer different protection mechanisms. But
before we get to that, it is important to understand that this policy of
failures to tolerate = 1 means that any VMs deployed on the vSAN
datastore with this policy will be configured with an additional mirror
copy (replica) of the data. This means that if there is a single failure
in the vSAN cluster, a full complement of the vSAN storage objects is
still available. Let’s see this in action, but before we do, let’s visualize
the expected results as shown in the next figure.

Figure 76: Failures to tolerate = 1

In this vSAN environment, there are twelve ESXi hosts. This is an all-
NVMe configuration, and vSAN ESA has been enabled, and vSAN
networking has been configured and the ESXi hosts have formed a
vSAN datastore. To this datastore, we will deploy a new VM.

We will keep this first VM storage policy simple, with just a single
capability, failures to tolerate set to 1.

To begin, go to the Policies and Profiles section in the navigation bar
on the left-hand side of the vSphere Client, and click the VM Storage
Policies icon. Next click on CREATE. This will open the Create VM
Storage Policy screen, as shown below. Make sure to provide the new
policy with a proper name. In this scenario, we will name the policy
FTT=1 – RAID 1.

Figure 77: Create a new VM Storage Policy

The next screen displays information about the policy structure. This
includes host-based services, vSAN rule sets, vSANDirect rule sets,
and tag-based placement. The host-based services are I/O filters, in
most environments limited to vSphere features called Storage I/O
Control and VM Encryption. Note however that there are also 3rd
party I/O filters, these can also be included in a policy. vSANDirect
rules are like tag rules and are used to identify devices that are
consumed by vSANDirect for the vSAN Data Persistence platform,
which will be discussed in further detail when we discuss vSAN as a
platform for modern applications in chapter 9. Tag-based placement
rules are typically used in scenarios where VMs need to be deployed
on datastores that are not represented by a storage provider or to
differentiate between multiple datastores that offer the same
capabilities, e.g., an HCI-Mesh environment, or when placement of
VMs should be determined by specific categories that those VMs, or
VM owners, belong to.

This was described on VMware’s VirtualBlocks blog by Jason Massae
as follows:

“Many are familiar with SPBM policies when used with vSAN or
VVols as they have some incredible features and
functionalities. But another valuable SPBM use is with Tags
and Categories. By using tags, we can create high-level
generic policies or very custom and detailed policies. With tag

based SPBM, you can create your own specific categories and
tags based on almost anything you can envision. Performance
levels or tiers, disk configurations, locations, OS type,
departments, and disk types such as SAS, SATA or SSD are
just a few examples. The categories and tags you can create
are almost limitless!”

Select the option ‘Enable rules for “vSAN” storage’ as shown below.

Figure 78: Enable rules for vSAN storage

On the next screen, we can begin to add requirements for vSAN. For
our first policy, the capability that we want to configure is Failures to
tolerate, and we will set this to 1 failure – RAID-1 (Mirroring), as
shown below. Leave the Site disaster tolerance setting at the default
of “None – standard cluster”.

Figure 79: Failures to tolerate = 1 failure

Note that below the Failures to tolerate setting it now displays what
the impact is on consumed storage space. It uses a 100 GB VM disk
as an example, and as shown in the screenshot above, this policy
setting results in 200 GB consumed. This of course is assuming that
100% of the capacity of the virtual disk is used, as vSAN disks are
provision thin by default. This gives administrators a good idea of
how much space will be consumed depending on the requirements
placed in the policy.

Clicking Next moves the wizard onto the storage compatibility view,
and at this point, all vSAN datastores managed by the vCenter Server
should be displayed as compatible, as below. This means that the
contents of the VM storage policy (i.e., the capabilities) are
understood and the requirements can be met by the vSAN datastore.

Figure 80: Storage compatibility

Similarly, if the INCOMPATIBLE view is selected, we should see
datastores that are not compatible with the policy.

Click Next and review your policy and click Finish to create it.
Congratulations! You have created your first VM storage policy. We
will now go ahead and deploy a new VM using this policy. The
process for deploying a new VM is the same as before. The only
difference is at the storage-selection step, here the created policy
will need to be selected, as shown below. Any datastores available to
the VM will be displayed, and their associated storage compatibility
is also shown. In the example here, the vSAN datastore is shown as
Compatible but an NFS v3 datastore would be shown as
Incompatible since it cannot implement the required VM storage
policy. Selecting the vSAN datastore will populate the Compatibility
check window with details about whether the checks were successful
or not.

Figure 81: Select vSAN Storage Policy

Note that if no policy is selected the vSAN default storage policy will
be applied. This policy is selected for all new VMs deployed on vSAN
by default. The capabilities for the default policy are in our

environment based on the size of the environment as we have Auto-
Policy Management enabled. This means that with a 12 host vSAN
ESA cluster the default results in FTT=2 – RAID-6. However, we have
selected a policy during the VM deployment, ‘RAID-1 FTT=1’, so the
Auto-Policy Management will not be used in this case.

Once the VM has been deployed, we can check the layout of the VM’s
objects. Navigate to the VM and then click Monitor > vSAN > Physical
disk placement, as shown below. From here, we can see the layout of
the VM’s storage objects such as the VM home, VM Swap (if the
virtual machine is powered on), and VM disk files (VMDKs).

Figure 82: Physical disk placement

As you can see, there is a RAID-1 (mirror) configuration around all
components, for both the performance leg (the top RAID-1
configuration), as well as the capacity leg (the bottom RAID-1
configuration).

There are two components making up the RAID-1 mirrored storage
object for Hard disk 1 for the performance leg, one on the host
esxi09 and the other on the host esxi11. These are the mirror replicas
of the data temporarily stored in the performance leg. There are six
components making up the RAID-1 mirror for the capacity leg of Hard
disk 1. Here we have six components as the RAID-1 configuration is
concatenated.

As mentioned earlier, with vSAN ESA witness objects are no longer
used for regular clusters. We will only see witness objects when a
Stretched Cluster or a 2-Node configuration is created. The quorum
mechanism in this case solely relies on the voting mechanism and
the placement of the components. The vote count is not visible in the
UI unfortunately, but it can be examined using the command-line
tool rvc, and the Ruby vSphere Console command
vsan.vm_object_info. Next you can see a condensed version of this
output which will give you an idea of how votes work.

As shown above, the RAID-1 configuration for the capacity leg has
two RAID-0 configurations underneath and the RAID-1 configuration
for the performance leg has no RAID-0 configurations underneath. A
variety of vote counts is used, in this example ranging from 1 up to 3.
This is to ensure that when a host is isolated it can’t achieve majority
by itself and potentially cause data corruption. There is one
component with three votes, and there are two components with one
vote. Note that the components which have one vote are located on
the same host.

Policy Setting: RAID-5

Let us now look at a policy where we leverage erasure coding, more
commonly referred to as RAID-5 or RAID-6. The big advantage of
leveraging erasure coding over mirroring is that it requires less disk
capacity to protect against a single failure (FTT=1). For a 100 GB
VMDK, a 4+1 configurations only consumes 125GB, which is 25%
above the actual size of the VMDK, whereas a 2+1 configuration
consumed 150GB, which is 50% above the actual size of the VMDK.
The additionally consumed disk capacity is used for parity.

Previously when we created a policy to protect against a single failure
using RAID-1, because of the mirror copies, an additional 100% of
capacity was consumed. In the event of a data component failure in a
RAID-5 configuration, a single component’s data can be
reconstructed using the remaining data components along with the
parity component.

When an Erasure Coding policy is created, administrators need to be
aware that these are only available on All-Flash vSAN configurations.
When failures to tolerate is set to RAID-5 or RAID-6 Erasure Coding,
a warning is displayed to highlight this requirement. While you will
not encounter this situation with vSAN ESA, you may encounter it
when using a remotely mounted vSAN OSA datastore with HCI-Mesh.
If that vSAN OSA datastore is a hybrid configuration, then you will
not be able to use erasure-coding.

Figure 83: Erasure Coding warning in Availability

Note that a warning has also been added to Storage rules. If we
examine the Storage rules, we can see why.

Figure 84: Erasure Coding warning in Storage rules

The warning is against the storage tier. This, if you recall, is a section
primarily used for HCI-Mesh. Since we can remotely mount vSAN
datastores to this vSphere cluster, which, if vSAN OSA, are both
hybrid and all-flash, this setting will prevent a RAID-5 policy from
showing remote vSAN OSA datastore as compatible, if they are not
an All-flash vSAN configuration. Thus, even if you do not plan to use
HCI-Mesh, the Storage tier needs to be set to All-flash for Erasure

Coding policies. This step should also be done for vSAN ESA
specifically! This will toggle the warning message.

After creating the RAID-5 FTT=1 policy, deploy a VM with it. The
physical disk placement can be examined as before, and we should
now observe a RAID-5 layout across five disks and five hosts. The
below screenshot shows the physical disk placement view, and as
described, we see a RAID-5 configuration for the objects, each
having 5 components. This is a so-called 4+1 configuration, meaning
4 data and 1 parity segment. Note, that this only applies to the
capacity leg. The performance leg leverages RAID-1.

Figure 85: Physical placement 4+1 RAID-5

Note that the VM home namespace and VM Swap objects also inherit
the RAID-5 configuration.

As also mentioned in the RAID-1 example, votes are used as a
quorum mechanism with vSAN ESA. The vote count can be examined
using the command-line tool rvc, and the command
vsan.vm_object_info. Next you can see a condensed version of this
output for RAID-5.

Note that in this scenario each component only has a single vote, but
that each component is also placed on a different host within the
cluster. So, depending on how components are distributed, and what
kind of RAID configuration is used, the vote count will differ.

One thing we have not discussed in this chapter yet, but has been
discussed in chapter 4, is the Adaptive RAID-5 mechanism which
was introduced in vSAN 8.0 U1. Considering that this mechanism
introduces a relatively big architectural difference, let’s briefly
discuss it again. Depending on the size of the cluster, and depending

on availability of hosts, the RAID-5 configuration is either 4+1 or 2+1.
In order to use a 4+1 RAID-5 configuration at minimum 6 hosts are
required. In our situation we deployed a twelve node cluster, which is
why we see the above configuration. If for whatever reason our
cluster would have 7 hosts failing, vSAN ESA would after 24 hours
automatically resync this 4+1 RAID-5 configuration to a 2+1
configuration. Of course, if additional hosts would be introduced or
failed hosts would be recovered, vSAN ESA would resync the 2+1
configuration to a 4+1 configuration, assuming the minimum host
count for 4+1 RAID-5 would be met.

This concept does not only apply to VMs which are already
provisioned, but also applies during the provisioning process. If we
place seven hosts into maintenance mode and provision a new
RAID-5 VM then the VM would be configured with a 2+1 RAID-5
configuration, as demonstrated in the next screenshot.

Figure 86: Physical placement 2+1 RAID-5

Of course, when we take the seven hosts out of maintenance mode,
the 4+1 RAID-5 configuration would be recreated after 24 hours.
Note, at the time of writing there’s no mechanism available to force
this recreation/resync from happening manually.

That then leads to the final question, is it possible to change the 24
hour time window? It is possible, however, if you want to change this
time window then you will need to configure an advanced setting on
each host of the cluster, and please note that at the time of writing
VMware has not provided a support statement around modifying this
advanced setting. We would also like to point out that lowering the
default of 86400 seconds (24 hours) can have a significant impact
on resync traffic. As a result, we recommend leaving the host level
advanced setting “/VSAN/ClomRaidECReconfigureDelaySec”
unchanged.

Policy Setting: RAID-6

Besides RAID-5, the option to tolerate two failures in a capacity-
efficient manner is also available via erasure coding and is called
RAID-6. To configure a RAID-6 object, select 2 failures – RAID-6 for
the Failures to tolerate policy setting. Note the storage consumption
model. For a 100 GB VMDK, this only consumes 150 GB, which is
50% above the actual size of the VMDK. The additional 50 GB is
used by the two parity blocks of the RAID-6 object, 25GB each in the
100 GB VMDK example. Previously when we created a policy for
RAID-1 objects with failures to tolerate set to 2, because of the mirror
copies, an additional 200% of capacity was consumed. This means
that a 100 GB VMDK required 300 GB of disk capacity at the
backend. RAID-6 consumes half that amount of capacity to provide
the same level of availability.

Figure 87: Failures to tolerate = 2, RAID-6

When a VM is deployed with this policy, the physical disk placement
can be examined as before, and as demonstrated in the screenshot
above, a RAID-6 layout is observed across six hosts for the capacity
leg of the object. For the performance leg of the object, you will
notice that a RAID-1 layout has been created, but across 3 hosts.
This is to ensure that it is possible to tolerate two failures for both
the capacity leg, as well as the performance leg.

Figure 88: Physical placement RAID-6

Note that again the VM Swap and VM home namespace objects also
inherit the RAID-6 configuration.

Default Policy

As mentioned earlier, vSAN has a default policy. This means that if no
policy is chosen for a VM deployed on the vSAN datastore, a default

policy that is automatically associated with the vSAN datastore is
used. What this policy looks like will depend on a few things. First,
and foremost, whether Auto-Policy Management is enabled or not,
and secondly, what the size of the cluster is.

Figure 89: Auto-policy management

If Auto-Policy Management is disabled, then default policy contains
the following capabilities:

Number of failures to tolerate = 1
Number of disk stripes per object = 1
Object space reservation = Thin Provisioning
Force provisioning = disabled
Checksum = enabled
IOPS Limit = 0 (unlimited)
Compression = enabled

Note that this default policy for the vSAN datastore, called the vSAN
default storage policy, can be edited. If you wish to change the
default policy, you can simply edit the capability values of the policy

from the vSphere Client by selecting the policy and clicking Edit
Settings.

Figure 90: Default vSAN policy

An alternative to editing the default policy is to create a new policy
with the desired capabilities and associate this new policy with the
vSAN datastore. This would be the preferred way of changing the
default policy inherited by VMs that are deployed on the vSAN
datastore.

If you are managing multiple vSAN deployments with a single
vCenter Server, different default policies can be associated with
different vSAN datastores. Therefore, if you have a “test-and-dev”
cluster and a “production” cluster, there can be different default
policies associated with the different vSAN datastores. To change the
default policy of the vSAN datastore you need to go to the Storage
view in the vSphere Client and select the vSAN datastore then click

Configure > General followed by clicking Edit on Default Storage
Policy. Now you can simply associate a different policy with the
datastore you selected as demonstrated in the screenshot below.

Figure 91: Change default vSAN policy

Hopefully, what stands out in the above screenshot is that the
“Default Storage Policy” is not “vSAN Default Storage Policy” but
rather “Cluster – Optimal Datastore Default Policy – RAID6”. This
policy is created by vSAN when the vSAN ESA Cluster was created
and Auto-policy Management was enabled. Based on the
configuration of the cluster, and whether “Host Rebuild Reserve” is
used, this functionality will determine what the optimal policy should
be. Let’s list the different policy configurations proposed, based on
the various potential cluster sizes.

Standard Cluster (without Host Rebuild Reserve)
3 hosts: FTT=1 using RAID-1
4 hosts: FTT=1 using RAID-5 (2+1)

5 hosts: FTT=1 using RAID-5 (2+1)
6 hosts or more: FTT=2 using RAID-6 (4+2)
Standard Cluster (with Host Rebuild Reserve)
3 hosts: not supported with 3 hosts!
4 hosts: FTT=1 using RAID-1
5 hosts: FTT=1 using RAID-5 (2+1)
6 hosts: FTT=1 using RAID-5 (4+1)
6 hosts or more: FTT=2 using RAID-6 (4+2)
Stretched Cluster
3 hosts in each location: Site Mirroring and Secondary FTT=1
using RAID-1
4 hosts in each location : Site Mirroring and Secondary
FTT=1 using RAID-5 (2+1)
5 hosts in each location : Site Mirroring and Secondary
FTT=1 using RAID-5 (2+1)
6 hosts in each location or more: Site Mirroring and
Secondary FTT=2 using RAID-6 (4+2)
2-Node Cluster
2 hosts: Host level mirroring using RAID-1

Now that we know what the default policy will be for a certain cluster
configuration, what happens if the cluster configuration changes?

If the cluster configuration changes, let’s say the size of the cluster is
increased from a 3-host configuration to a 6-host configuration, then
after 24 hours Skyline Health will recommend changing the cluster
specific policy from FTT=1 using RAID-1 to FTT=2 using RAID-6. Do
note that this is, at the time of writing, a recommendation which is
made, and this recommendation is not automatically applied.

Failure Scenarios

Failure scenarios are often a hot topic of discussion when it comes
to vSAN. What should one configure, and how do we expect vSAN to
respond? This section runs through some simple scenarios to
demonstrate what you can expect of vSAN in certain situations when
it comes to data availability. We will run through some of the more
complex scenarios in the Stretched Cluster section of the book.

The following examples use a six-host vSAN cluster and use an
FTT=1 configuration. We will examine both RAID-1 and RAID-5 and
discuss the behavior in the event of a host failure. You should
understand that the examples shown here are for illustrative
purposes only. These are simply to explain some of the decisions
that vSAN might make when it comes to object placement. vSAN may
choose any configuration if it satisfies the customer requirements.

Example 1: Failures to Tolerate = 1, RAID-1

In this first example, failures to tolerate is set to 1 and RAID-1
Mirroring is used. Therefore, there is no striping per se, simply a
single instance of the object. However, the requirements are that we
must tolerate a single disk or host failure, so we must instantiate a
replica (a RAID-1 mirror of the component). A split-brain could be
when ESXi-01 and ESXi-3 continue to operate, but no longer
communicate with each another. Whichever combination of the hosts
(ESXi-01 and ESXi02, or ESXi03 and ESXi-02) has the highest
number of votes retains access to data in that scenario. Where with
vSAN OSA the witness component was used in combination with the
voting mechanism, vSAN ESA depends on the performance leg and
the capacity leg, combined with smart placement of those
components and voting to help determine who owns the data. Data
placement in these configurations may look like the one displayed in
the next diagram.

Figure 92: FTT = 1 – RAID-1

The data remains accessible in the event of a host or disk failure. If
ESXi-02 has a failure, ESXi-01 and ESXi-03 continue to provide
access to the data as a quorum continues to exist. However, if ESXi-
02 and ESXi-03 both suffer failures, there is no longer a quorum, so
data becomes inaccessible. Note that in this scenario the VM is
running (from a compute perspective) on ESXi-01, while the
components of the objects are stored on ESXi-01, 02, and 03. The
VM can run on any host in the cluster, and vSphere DRS is free to
migrate it anywhere when deemed necessary. If the VM runs on a
host that fails, then vSphere HA will (when configured properly)
automatically restart the impact VM(s).

Example 2: Failures to Tolerate = 1 and RAID-5

In this example, the failures to tolerate is set to 1, and RAID-5 is
used instead of mirroring. In this example the minimum number of
hosts needed is 3, and as we have a five host cluster we will see a
2+1 RAID-5 configuration deployed in the case of the capacity leg, as
demonstrated in the next diagram. The performance leg will be
configured as RAID-1 with 2 components.

Figure 93: FTT = 1 – RAID-5

One thing to point out is that when it is desired to have the ability to
resync data after a failure, an additional host will need to be part of
the cluster. For a RAID-5 configured object, this means that the
number of hosts required depends on the RAID-5 configuration used
plus one. In other words, in the case of a 2+1 configuration, which
requires 3 hosts at minimum, you would require 4 hosts to provide
the ability to resync data after a failure to bring back the impact
objects to policy compliance. When a single host fails in the example
above, the VM will be able to access its disk. And by leveraging parity
blocks, vSAN will be able to reconstruct the missing data on one of
the other hosts within the cluster. In this example it would mean that
if the first host has failed, data would be resynced to a capacity leg in
one of the hosts which is currently also storing the performance leg.

Changing VM Storage Policy On-the-Fly

Being able to change a VM storage policy on-the-fly is a useful
aspect of vSAN, or Storage Policy Based Management (SPBM) in
general. This example explains the concept of how a VM storage

policy can be changed on-the-fly, and how it changes the layout of a
VM without impacting the application or the guest operating system
running in the VM.

Consider the following scenario. A vSphere administrator has
deployed a VM on a vSAN ESA cluster with a RAID-1 VM storage
policy assigned. The layout of the VM would roughly look as follows.

Figure 94: vSAN Default policy data layout

After some time, the vSphere administrator starts to notice that the
VM is consuming a relatively large amount of disk capacity, and
realizes that the VM is not using their standard vSAN ESA storage
policy, which is configured with RAID-5.

On vSAN, the vSphere administrator has two options to address this.
The first option is to simply modify the VM storage policy currently

associated with the VM and change the RAID level from RAID-1 to
RAID-5; however, this would change the storage layout of all the
other VMs using this same policy simultaneously. Not just for a single
cluster, but potentially for all clusters being managed by the same
vCenter Server and running VMs using the same policy. This is
because policies are defined on a vCenter Server level. This change
could lead to a huge amount of rebuild traffic and is not our
recommended approach as it is difficult to manage and estimate the
impact.

We recommend creating a brand-new policy or selecting an existing
policy with the correct capabilities enabled. This policy can then be
attached to only that given VM (and, of course, to its VMDKs). Once
the new policy is associated with the VM, vSAN takes care of
changing the underlying VM storage layout required to meet the new
policy, while the VM is still running without the loss of any failure
protection. It does this by creating a new VM and resynchronizing the
data from source to destination in the format associated to the
destination object, RAID-5 in this situation.

After making the change the new components reflecting the new
configuration (e.g., a RAID-5) will enter a state of reconfiguring. This
will temporarily build out additional replicas or components, in
addition to keeping the original replicas/components, so additional
space will be needed on the vSAN datastore to accommodate this
on-the-fly change. When the new replicas or components are ready
and the configuration is completed, the original replicas/components
are discarded.

One should keep in mind that making a change like this could lead to
rebuilds and generate resync traffic on the vSAN network. For that
reason, policy changes should be considered a maintenance task and
kept to a minimum during production hours.

Note that not all policy changes require the creation of new replicas
or components. For example, adding an IOPS limit, or reducing the

number of failures to tolerate with RAID-1, or reducing space
reservation does not require this. However, in many cases, policy
changes will trigger the creation of new replicas or components or
potentially even trigger a full rebuild of the object. (Table 7, which we
shall see shortly, describes which policy setting triggers a rebuild.)
Therefore, caution should be used when changing storage policies on
the fly, especially if the change may impact many virtual machines.
Significant improvements have been made over the years to ensure
that rebuild network traffic does not negatively impact VM network
traffic, but our advice is to treat large policy changes as a
maintenance task, and to implement those changes out of normal
production hours.

Your VM storage objects will now reflect the changes in the vSphere
Client, for example, a RAID-5 configuration, as shown below.

Figure 95: vSAN data layout after change of policy

Compare this to the tasks you may have to perform on many
traditional storage arrays to achieve this. It would involve, at the very

least, the following:

The migration of VMs from the original datastore.
The decommissioning of said LUN/volume.
The creation of a new LUN with the new storage
requirements (different RAID level).
Possibly the reformatting of the LUN with VMFS in the case
of block storage.
Finally, you must migrate your VMs back to the new datastore.

In the case of vSAN, after the new storage replicas or components
have been created and synchronized, the older storage replicas
and/or components will be automatically removed. Note that vSAN is
capable of striping across devices, and hosts when required, as
mentioned before. It should also be noted that vSAN can create the
new replicas or components without the need to move any data
between hosts; in many cases, the new components can be
instantiated on the same storage on the same host.

You can see the configuration changes taking place in the vSphere
UI during this process. Select the vSAN cluster object in the vCenter
Server inventory, then select monitor, vSAN, and finally “resyncing
objects” in the menu. This will display all objects and components
that are currently resyncing/rebuilding. The screenshot below shows
the resyncing dashboard view with a resync in progress for a VM
where we manually changed the policy from RAID-5 to RAID-6. Note,
in this case it was a relatively small VM, and only a single VM, so the
resyncing could literally be finished in seconds. In the case of
multiple or relatively larger VMs, it could take minutes, or hours to
complete.

Figure 96: Resync/rebuild activity

The big question which then remains is when exactly is a full rebuild
needed when changing a policy and when will vSAN simply create
extra components? As you can imagine, a full rebuild of many virtual
machines can have an impact on required storage capacity, and
potentially also on performance. The following table outlines when a
full rebuild is required and when it is not required.

Table 7: Impact of policy changes

Summary

This completes the coverage of VM storage policy creation and VM
deployments on the vSAN datastore. What you will have noticed is
that there are a few behaviors with VM storage policies that might
not be intuitive, such as the default policy settings when Auto-Policy
Management is enabled, and that some virtual storage objects
implement only some of the policy settings. We are hoping though
that this chapter provided you with sufficient confidence to create,
apply and edit VM storage policies.

Chapter 6

vSAN Operations

This chapter covers the common procedures and tasks when
monitoring and maintaining a vSAN deployment. It also provides
some generic workflows and examples related to day-to-day
management often referred to as day-2 management. While many
aspects of management, monitoring, and maintenance of a vSAN
cluster are the same regardless of the architecture (Express Storage
Architecture versus Original Storage Architecture), some
management tasks have changed with the ESA.

Recent versions of vSAN have also introduced significant
improvements in the built-in tools that play a part in the day-to-day
operations of vSAN clusters. This chapter will highlight some of those
changes.

Skyline Health

We will begin this chapter with a look at what has become the most
valuable tool in an administrator’s arsenal for monitoring vSAN.
Skyline Health, formerly known as vSAN health check, is embedded
into both vCenter Server and ESXi and is automatically available
without any administrative actions required. Skyline Health for vSAN

immediately provides a complete overview of the current health of a
vSAN cluster.

Skyline Health consists of two parts: A sophisticated health test
engine, and new to vSAN 8.0 U1, a cluster scoring and remediation
dashboard. These will be described in more detail below.

Skyline Health Engine

The Skyline Health Engine is comprised of dozens of integrated tests
to help ensure that a vSAN cluster is configured to serve as a robust
platform. It will provide a list of findings as a result of continuously
monitoring the environment. It will report on these “health findings”
(renamed from “health checks” in vSphere and vSAN 8.0 U1) for both
successful tests, and failed tests. For the latter, it will help alert
administrators when there is an identified configuration issue, such
as a device not certified on the VMware Compatibility Guide (VCG)
for vSAN. It will also alert an administrator if there is perhaps a
degraded state of health of object data, such as a VM or VMs.

The Skyline Health engine is unique in its ability to understand the
priority and severity of health findings in an unhealthy state, the
relationships between health findings, and the history of the health
findings. It is the combination of this intelligence that helps to not
only understand the state of the cluster, but which identified issues
should be addressed first.

Skyline Health Dashboard

The Skyline Health Dashboard in vSAN is new to both architectures in
vSAN 8.0 U1. It replaces the previous user interface that enumerated
a long list of health findings in general categories. While a listing of

health findings can be a simple way to show discrete health findings,
it lacked a way to convey the priority and importance of identified
health issues. The dashboard displays the current cluster health
score, the history of the cluster health score, and the status of the
current health findings, as shown in the image below.

Figure 97: Skyline Health dashboard in vSAN

All tests are run at regular intervals, but a test can be initiated at any
time by the administrator by clicking on the Retest button near the
top of the dashboard.

To better understand the information portrayed in the Skyline Health
dashboard, we first should look at how Skyline Health achieves this
idea of priority and severity of health issues in a cluster.

Weighted Health Findings

The health findings used by Skyline Health for vSAN cover a wide
range of cluster and host configuration settings, device compatibility,
cluster capacity, and data availability states that are within the
domain of management. While it may not be able to catch an issue
out of its domain of management such as a misconfigured network
switch, it is an invaluable tool for troubleshooting vSAN issues,
quickly leading administrators to the root cause of an issue.
Administrators should always refer to the Skyline health tests to
ensure that vSAN is completely healthy before introducing a cluster
into production, as well as embarking on any management, lifecycle,
or maintenance tasks.

New to vSAN 8.0 U1, and a key part of its new functionality is the
implementation of a multifactorial weighting mechanism for each
health finding. This proportional “weight” for each health finding is
based on a predefined category and priority of each finding.

Each health finding is associated with one of four categories:
Availability, Performance, Capacity Utilization, and Efficiency and
Compliance. The categories align with common responsibilities for
an administrator and have a “weight” to rank them proportionally to
each other. For example, triggered health findings that fall into the
Availability category will have a much higher impact on the score
than triggered health findings in the Efficiency and Compliance
category.

Next, each health issue will have a weighted value to give it a rank
within its associated category. This priority factor will help weigh
them proportional to other health findings in the same category. It is
the combination of these category factors and priority factors that
will provide a calculated score impact, as shown in the image below.

Figure 98: A health finding in an “unhealthy” state and its associated impact
score

The resulting impact scores for each discrete unhealthy finding serve
two purposes. It helps provide a single cluster score prominently on
the dashboard, where the calculated impact score of each unhealthy
finding is deducted from the theoretically perfect cluster score of
100. It also provides the ability to prioritize unhealthy findings to fix
issues more quickly and effectively.

Note that many of the Skyline Health findings in a cluster will only
display themselves if they are relevant to the configuration of a
cluster. For example, vSAN data encryption configuration health
findings will not be visible if data encryption is not configured in a
cluster. Health findings for a given topology, such as stretched
clusters, will only show when the topology is in use.

Cluster Health Score and Health Score Trend

The various weights of triggered health findings allow Skyline Health
to project a score of health for the cluster. It will present a cluster
score from 0 to 100, with 100 being a perfectly healthy cluster based
on the conditions of the health findings. The health findings in an
unhealthy state will have their weighted score deducted from the
value of 100 to give a total cluster score. Cluster scores between 81-
100 mean that the cluster is healthy enough that no immediate
attention is required. A score of 61 – 80 means that some aspect of
the cluster is in a degraded state, and that attention is suggested. A
cluster score of 0 – 60 falls into an unhealthy state, and attention is
required.

The weighting and calculation of impact scores have been designed
in such a way as to ensure that the score is impacted sufficiently
based on the type of condition it finds. For example, any triggered
health findings regarding the "Availability" category will always reduce
the total cluster health score enough to move it into the "Unhealthy -
Attention required" range.

The health score history is presented adjacent to the current cluster
health score, providing a history for the past 24 hours. Note that the
top of the Y-axis of the graph will always show 100, but the bottom of
the Y-axis graph will be relative to the lowest score for the period
viewed. For clusters with a very healthy, high score, any small change
can give the impression that the change in health was significant,
where it actually may have just moved a point or two.

Clicking on the “View Details” button on the “Health score trend”
area of the dashboard will expand the cluster score history view. This
provides the ability to click anywhere on the cluster score history to
see the specific healthy and unhealthy findings that resulted in the

score for the time selected. An example of this is shown in the image
below.

Figure 99: Health score trend with associated health findings for the period
selected

A single value representing the health of a cluster provides another
benefit to administrators. Knowing that the triggered health findings
vary in their proportional weight to each other, an administrator can
judge the health of a cluster not by the number of unhealthy findings,
but by the severity or importance of the unhealthy findings. This is a
much more accurate way to diagnose the state of the cluster.

Health Alerting and Remediation

The Skyline Health dashboard provides a health findings area. The
objective of this area is to direct the administrator to the most

important issue first – unhealthy checks appear in the order of their
importance. The default view will sort by the triggered findings that
have the most impact and are identified by vSAN as a root cause of
any secondary, symptomatic issue.

All health findings will be grouped into one of four categories:
Unhealthy, Healthy, Info, and Silenced. Note that silenced alerts still
contribute to the impact of a cluster health score. For all healthy and
silenced alerts, a “View Current Result” button will be provided to
give more details on the test. Each health finding will have an “Ask
VMware” link that will link the test to a VMware KB article which
provides details about the nature of the test, what it means when it
fails, and how to remediate the issue.

For all current, unhealthy findings, the “View Current Result” button is
replaced with the “Troubleshoot” button. This may present a direct
way to remediate the issue automatically or present one or more
manual methods to remediate the issue.

Figure 100: Current unhealthy findings in Skyline Health

When looking at unhealthy findings stored in the health history, the
“Troubleshoot” button will be replaced with “View History Details.”
Clicking on this button will show the history of this specific health
finding and may look similar to the image below.

Figure 101: Health history of a specific health finding

When a group of alerts is condensed, it will present a bubble with a
number indicating the number of health conditions. An administrator
can click on that bubble with a number, and it will expand the period
to show the timeline of those health findings. This will allow an
administrator to easily drill into a specified time period for more
details.

Health History and Data Retention

As shown in the previous images, the history of health findings is
fully integrated throughout Skyline Health for vSAN. It can help
answer the questions of when it occurred, for how long, and what
other findings were triggered for that given period This is especially
important for intermittent issues that are difficult to capture in real
time.

vSAN Skyline Health data is retained for about 30 days, depending
on the available capacity of the statsDB object where the data is
stored. vSAN 8.0 U1 increases the capacity of the statsDB object,
which may reduce conditions where health history retention is
shorter due to the statsDB object capacity conditions. The health
history views in vSAN will default to viewing a 24-hour time window
but can be adjusted to a custom time window within the retention
period of the data.

In-Product versus Online Health Findings

Many of the Health findings in Skyline Health for vSAN are built into
the product. Meaning that if a new health finding is introduced or
improved in a version of vSAN, one must be running that version of
vSAN or newer to take advantage of those improvements.

Online health findings are checks built into the Skyline health
framework with the same look and feel as other health findings, but
they can be dynamically introduced or updated by VMware. This is
extremely useful when new potential issues are identified by VMware
and new KB articles are released. Customers can be proactively
informed about these new issues and resolutions before potentially
encountering them on their own vSAN clusters. However, the authors
would always recommend reviewing the Release Notes before
attempting any vSAN or vSphere upgrade to that particular release.

When performing a manual retest of health findings, the display will
provide an option for you to retest the environment with the online
health findings as well as the in-product findings. Deselecting online
health findings does not impact the execution of the in-product
health findings.

Skyline Health and CEIP

In past editions, online health findings required activation of the
Customer Experience Improvement Program (CEIP). Enabling the
CEIP is no longer required as of vSAN 8.0, but VMware still highly
encourages CEIP to be enabled, as it helps VMware improve its
products and services, resolve issues, and advises customers on how
best to deploy and use our products. To learn more about CEIP,
check out the following online resource: https://vmwa.re/ceip.
Enabling CEIP has other significant benefits.

Customers often ask what kind of data is sent back to VMware when
CEIP is enabled. This is described in great detail in the link provided
above, but the data collected is primarily to do with configuration
information, such as which vSAN features are enabled, as well as
some performance data and logs. No actual customer data is being
captured, only metadata, or to put it another way, only information
about data is captured (if that makes sense). The data that is
captured is also obfuscated so that even when the configuration is
reviewed, no information such as hostnames and VM names is
available. There is a way for VMware support engineers to de-
obfuscate the names, but this can only be done via customer consent
as the customer needs to provide VMware support with a so-called
obfuscation map. This map can be found in the vSphere Client under
Monitor > vSAN > Support on the vSAN cluster object as
demonstrated in the screenshot below.

https://vmwa.re/ceip

Figure 102: Obfuscation map

We have seen great success for customers, both from a proactive
and reactive perspective, when CEIP is enabled in an environment.
CEIP is enabled by default in recent editions of vSAN but will honor
the previous setting for any in-place upgrades. Please consider
taking the step of ensuring that it is enabled for your environment.

Proactive Tests

While Skyline Health aims to continuously monitor the environment
for known issues, vSAN also has a set of proactive tests that can be
used as a part of a proof-of-concept (PoC) effort, or prior to
introducing production workloads onto a newly formed vSAN cluster.
These types of initial stress tests will help validate the operational
consistency across the hosts that comprise a cluster, as well as serve
as an early indicator of some issues that may not otherwise show up
in a static test. For example, suppose a new vSAN cluster was built

with servers received from your favorite server vendor. A proactive
test may be able to detect if one of the hosts is unable to perform at
the same rate as the other servers, due to an inconsistent firmware
version of a Network Interface Card (NIC). Without performing this
type of test, a cluster that is not operating optimally may be
introduced into production.

The proactive tests have evolved over the many versions of vSAN and
have been updated in vSAN 8.0 U1 to accommodate the architectural
differences of the Express Storage Architecture. vSAN 8.0 U1
includes three tests:

VM Creation Test
Network Performance Test
Storage Performance Test

Simply select the test that you wish to run and click the “Run Test”
button to begin the test. A popup window is displayed giving you
additional information about the test. The next screenshot shows the
tests as they appear in the vSphere client. The Last Run Result field
displays the time of the last test and whether the test was successful
or not.

The actual tests that are run are well described in the vSphere Client.
The “VM Creation Test” quickly verifies that virtual machines can be
deployed on the vSAN datastore, and once that verification is
complete, the sample VMs are removed. The VMs are created with
whatever policy is the default policy for the vSAN datastore, and the
test reports if the test was successful or not, along with any relevant
error messages.

Figure 103: Proactive tests

The “Network Performance Test” performs a series of connectivity
tests between hosts and measures effective throughput. Previous
editions of this test used a target network speed to help the
administrator know if they were meeting minimum throughput
requirements. Since the Express Storage Architecture and Original
Storage Architecture in vSAN have different requirements, vSAN 8.0
U1 adjusts this test to simply render the maximum effective
throughput capable from each host.

Testing network performance is critically important for a distributed
storage solution like vSAN. It is especially important when there
might be complex network configurations that may involve several
hops or routes when vSAN is deployed over L3.

Figure 104: Enable network diagnostic mode

The “Network Performance Test” offers an additional option of
including network diagnostics. These diagnostics can be useful in
determining whether the bandwidth is sufficient for the type of vSAN
cluster being deployed.

Figure 105: Proactive Tests Network Performance Test

The “Storage Performance Test” redirects the administrator to using
HCIBench for all storage performance testing. HCIBench is a tool
written by VMware for testing the aggregate storage performance of
a distributed storage solution like vSAN. It uses common synthetic
I/O generators including vdBench and FIO, and greatly simplifies the
deployment and configuration of standardized testing. HCIBench is
designed to be run as part of a PoC acceptance test and is tightly
integrated with other management and operational aspects of vSAN.
HCIBench is available from the VMware Fling site;
http://flings.vmware.com. This location also includes documentation
on how to quickly get started with the tool. Anyone involved in
running storage benchmarks on vSAN is recommended to familiarize
themselves with this tool.

http://flings.vmware.com/

Figure 106: Proactive Tests Storage Performance Test

The network performance test and storage performance tests using
HCIBench can put tremendous stress on the network and servers in a
vSAN cluster. It is recommended that these tools primarily play a
part in a PoC process, or deployment validation step prior to
introducing a cluster into production. Performing these tests with
production workloads running could have an adverse effect on the
performance of those workloads.

Performance Service

The Performance Service is responsible for capturing and storing the
data that helps convey the behavior in the performance of the VMs
that are consuming resources in a vSAN cluster. It serves to help
administrators understand what type of resources the VMs are
demanding from the cluster, and if they are performing to anticipated
levels. Performance data collected by the vSAN performance service
is mostly rendered as time-based graphs as commonly found with
other performance metrics in the vSphere Client.

The performance service is automatically enabled in the most recent
versions of vSAN, and as of vSAN 8.0 U1, it no longer provides an
option in the UI to disable the service. The status of this service, and
other vSAN services, are visible on the Cluster > Configure > vSAN >
Services view in the vSphere client.

Figure 107: vSAN Performance Service status

The design used for the performance service ensures that data
collection will not place any additional burden on the vCenter Server
managing the cluster. While vSAN uses the vSphere Client to render
vSAN-specific performance metrics, the vSAN performance services
run in a distributed way. Performance data is collected by each host
in the vSAN cluster and is stored in a special namespace object on
the vSAN datastore. Known as the statistics database, or StatsDB
object, it holds all of the performance metrics collected by the
performance service. This object is automatically created when the
performance service is started.

The metrics collected by the performance service may be available
for up to 90 days, depending on the conditions of the cluster, such as
host count and overall cluster capacity usage. vSAN renders most
data to a time window of 1 hour, but it can be adjusted to as high as
24 hours.

A sampling interval (sometimes known as collection interval, time
interval, or sampling rate) is a common method to collect and render
performance metrics over a duration of time. Through the use of
counters, it determines how much activity occurred during a period
of time and presents that as a single value that represents the
average for that time interval. This is the method used in vSAN, and
in past versions, the time interval to collect and render the metrics
was 5 minutes.

vSAN 8.0 U1 allows users to select a new time range option. The
“Real-time” option will render some performance metrics at a 30-
second sampling interval for the past hour and will be retained at this
higher level for up to 7 days. This finer level of granularity will allow
the performance graphs to be much more representative of the
actual workload and system behavior.

Figure 108: vSAN high-resolution performance monitoring

Since a much higher level of a sampling interval collects a significant
amount of data and can begin to place a computational burden on
the hosts, this “Real-time” option will be limited to a subset of
metrics. vSAN 8.0 U1 accommodates the additional needs of this
higher-resolution performance metrics by expanding the statsDB

object to 512GB and running a HighResolutionStatsCollector service
on each host.

Just as with other objects, the Performance Service statsDB object
can be managed using a storage policy. The storage policy can be
assigned by clicking on the Edit button associated with the
Performance Service, as shown in the image below.

Figure 109: Performance service enabled

Note that the health finding also includes several tests to ensure that
the performance service is functioning normally. A verbose mode is
also available. This gathers additional CPU, storage I/O, and storage
capacity information and should only be used if VMware Technical
Support directs you to do so – this is stated in the UI. Finally, there is
a new Network diagnostics mode option, which is disabled by default.
If enabled, this allows the vSAN Performance Service to create a
RAM disk stats object which can subsequently be used for the
collection and storing of network metrics. Typically, this is also only
done when a customer is directed to do so by VMware support. The

advantage is that it provides more detailed performance data but be
aware that it generates a lot more data.

The performance service in vSAN is convenient and powerful for day-
to-day monitoring and will be an appropriate tool to use for the
majority of performance monitoring cases. There are times when
additional diagnostics capabilities are needed. vSAN offers another
feature known as IOInsight that is able to provide capabilities not
available in the performance service. IOInsight will be discussed
later in this chapter.

Performance Diagnostics

The Performance Diagnostics feature is a capability intended for the
proof of concept (PoC) and evaluation phases of a vSAN cluster
deployment. It is found in Cluster > Monitor > vSAN > Performance
Diagnostics, and when executed, will analyze benchmarks performed
on a cluster to offer guidance on how a cluster could be adjusted to
attain higher performance in that specific environment. At the time of
this writing, this service is not available for a vSAN cluster running
the vSAN Express Storage Architecture.

Network Monitoring

vSAN is a distributed storage system, placing data strategically
across hosts to ensure resilience. As a result, it relies on the network
for almost every aspect of its operation. vSAN’s network diagnostics
are an enhanced set of performance metrics and alerts that provide
details of network communication that is commonly unavailable. By
navigating to an ESXi host in a vSAN cluster, then selecting Monitor
> vSAN > Performance > Physical Adapters, there are several new

metrics and counters to look at such as Port Drop Rate, RX CRC
Error, TX Carrier Errors, and so on. Some of these metrics even have
customizable alert thresholds that can be adjusted to fit the needs of
an environment. While the source of any identified issues from these
metrics (such as a misconfigured switch, bad network cable, etc.)
may be beyond the capabilities of vSphere to remediate the issue,
these continuously captured metrics can still be very effective in
isolating a potential cause of an issue in troubleshooting efforts.

Figure 110: Networking Diagnostics

vSAN IOInsight

The vSAN Performance Service provides the vast majority of storage-
related metrics for a vSAN environment. These performance metrics
are usually sufficient for the vast majority of day-to-day operations.
There are times where more detailed information is needed on the
characteristics of read and write operations from a guest VM. But

gathering these types of metrics can be resource intensive and is
usually only needed during troubleshooting efforts.

IOInsight is a feature of vSAN that allows a user to gather these
unique storage metrics not captured by the vSAN performance
service. Initially introduced as a VMware Fling and now fully
incorporated into the product, it captures specific VM and VMDK-
level metrics in a manner that makes it ideal for troubleshooting
performance. Unlike traditional sampling interval techniques,
IOInsight considers every I/O seen at the vSCSI layer of the VM.
Aggregation occurs simply for the rendering of data as viewed in the
vSphere Client. This level of detail cannot be achieved with other
metrics collected by the performance service, which are limited to 5-
minute or 30-second intervals.

vSAN IOInsight is ideally suited for scenarios where a problematic
host or VM has been identified, and additional data is required to
add clarity to findings that have already been observed using other
performance metrics. It will not only capture IOPS through a higher
level of granularity not possible with the performance service, but
also captures I/O size distribution, I/O alignment, read/write ratios,
sequential/random I/O ratios, and distribution of latency for I/O
activity.

vSAN IOInsight may be run against individual VMs or hosts, or the
entire vSAN cluster. It is run for a defined period to capture workload
characteristics. The time duration ranges from 1 minute to 24 hours.
The data collection operation may be interrupted by the
administrator if necessary. Because of the consumption of resources
that it uses, IOInsight is not intended for continual use.

IOInsight requires the vSAN performance service to be enabled in
order to capture data. The data collected by IOInsight is stored in
the performance service statsDB object. While vSAN 8.0 U1
increased the object size of the statsDB object, storing multiple data
collections of IOInsight, running the performance service in verbose

mode, or using network diagnostics mode can truncate the retention
time of other performance metrics.

To gather an instance of vSAN IOInsight metrics, navigate to Cluster
> Monitor > vSAN > Performance, and then select IOINSIGHT from
the list of options. Unless an instance of IOInsight has been
previously created, there will be none found initially. Click on the
NEW INSTANCE option to create an I/O Insight run. A prompt to
select the monitoring target appears; by default, all hosts in the
cluster are selected. Alternatively, you can select individual hosts or
VMs.

Figure 111: vSAN IOInsight targets

The next step is to provide a name and duration for the instance.
Note the warning about monitoring overhead. This should be
considered when running I/O Insight on a production system. By
default, the duration is 10 minutes, but this can be reduced to 1

minute minimum or left to run for 24 hours maximum. I changed it to
5 minutes for the purpose of this demonstration.

Figure 112: vSAN IOInsight name and duration

After initiating the instance, the new instance now appears in the
IOINSIGHT view. It provides a status field that details how much
time is remaining until the operation is complete. An administrator
can view the metrics from the running instance or can choose to stop
the run at any time as well. If an administrator chooses to view the
metrics from a running instance, these are updated at 10-second
intervals. Figure 113: vSAN IOInsight results show some of the
storage metrics from a VM’s hard disk (VMDK) which resides on a
vSAN datastore, as gathered by IOInsight.

Figure 113: vSAN IOInsight results

Finally, vSAN IOInsight provides administrators with the ability to
export the metrics from an instance run. By clicking on the EXPORT
RESULT link as shown in the top left-hand corner of Figure 113, a zip
file that includes both graph images and raw data in CSV file format
is created.

I/O Trip Analyzer

While vSAN IOInsight provides unique, highly detailed performance
metrics for VMs, the I/O Trip Analyzer in vSAN examines the path of
a read or a write operation and provides information about the
latency incurred at different stages in the I/O path. This tool
complements vSAN IOInsight to provide administrators with
additional information when performing troubleshooting, or even
getting a better understanding of the I/O path.

I/O Trip Analyzer is a VM-centric tool. Thus, to enable I/O Trip
Analyzer, navigate to any VM that you wish to query, select the
Monitor tab, then vSAN, and then select I/O Trip Analyzer. This will
drop you to the I/O Trip Analyzer page, which prompts administrators
to click on the “RUN NEW TEST” button. Simply click on this button
to launch it. A prompt for the duration of the I/O Trip Analyzer test
appears, which defaults to 5 minutes. This can be changed to a
maximum of 60 minutes if so desired. Finally, click on the "RUN"
button after the time has been chosen. Note that only a single I/O
Trip Analyzer test can be run on the cluster at a time. Like vSAN
IOInsight, the UI is updated with the amount of time left before the
test is complete. Once the test completes, the “VIEW RESULT”
button is highlighted, and the data path can be examined. Note how
with the ESA, it will show data paths for the components that reside
on the RAID-1 performance leg, and the RAID-6 capacity leg of the
given virtual disk.

Figure 114: I/O Trip Analyzer results

To see the latency at any point in the I/O path, simply click on one of
the dots. This displays the kind of latency introduced at that layer.
I/O Trip Analyzer also provides a potential cause for the latency as
well as some insights in terms of how you can potentially resolve a
latency issue. If a significant amount of latency is introduced, the
diagram will highlight it using colors for the respective layer where
the latency is introduced.

The metrics provided also display the standard deviation for read and
write latencies. This is a measurement of latency variability, where
increased values represent a larger degree of variability in latency
during the collection period. The map paired with the performance
metrics can help indicate the primary source of the latency.

Figure 115: I/O Trip Analyzer latency

Note that there are some limitations to using both vSAN IOInsight,
as well as I/O Trip Analyzer. At the time of writing, it is not possible
to vMotion a VM that currently has metrics being gathered by vSAN
IOInsight. The vMotion will succeed but data collection will stop and
cannot be viewed. The advice from the authors is therefore to

override any DRS automation for any VMs that are being traced so
that DRS does not interfere with the data collection. The reason for
this is that the tracing is happening at the ESXi host level. A user
world is created on the host where the VM is running to trace the I/O.
If the VM is moved to another ESXi host, the user world doesn’t know
what has happened to the VM and obviously cannot continue to
monitor it.

There are also a few limitations regarding I/O Trip Analyzer. At the
time of writing, it could not be used with vSAN Stretched Cluster,
iSCSI, or Kubernetes Persistent Volumes created via CSI-CNS. These
restrictions will most likely be lifted over time.

Now that we have provided an overview of Skyline Health and
associated services, let’s now turn our attention to some of the more
common management tasks an administrator might be faced with
when managing vSAN.

Host Management

VMware vSAN has a scale-up and scale-out storage architecture,
which allows for seamless scaling no matter which approach is
selected. Resources can be scaled up by adding storage devices to
each host in the cluster, which will allow each host to contribute more
capacity and potentially more performance capabilities. Resources
can also be scaled out by adding more hosts to a cluster, which
provides additional compute, network, and storage resources for the
workloads to use.

Those who have been managing vSphere environments for a while
will not be surprised that host management with vSAN is extremely
simple; adding more resources (either a combination of compute and
storage capacity or just storage capacity) can truly be as simple as

adding a new storage device to a host or adding a new host to a
cluster. Let’s look at some of these tasks in more detail.

Adding Hosts to the Cluster

Adding hosts to the vSAN cluster is quite straightforward. Of course,
you must ensure that the host meets vSAN requirements or
recommendations such as a NIC port (25GbE is the minimum
requirement for clusters running ESA) and storage devices such as
NVMe-based triple-level cell (TLC) as defined in the VMware
Compatibility Guide for vSAN.

When adding hosts to a cluster, we recommend that host
specifications be as uniform as possible. While this has been a long-
standing recommendation for vSphere clusters, it is especially
important for vSAN clusters that provide storage resources for the
cluster. As market conditions and hardware availability change,
perfect uniformity of hosts is not always possible. VMware does
support clusters with hosts that have these non-uniform host
specifications, but reasonable levels of symmetry across hosts are
preferred.

Also, pre-configuration steps such as a VMkernel port for vSAN
communication should be considered, although these can be done
after the host is added to the cluster. After the host has successfully
joined the cluster, you should observe the size of the vSAN datastore
grow according to the size of the additional storage devices claimed
by vSAN in the new host. Just for completeness’ sake, these are the
steps required to add a host to a vSAN cluster using the vSphere
Client:

1. Right-click the cluster object and click Add Hosts.

2. Fill in the IP address or host name of the server, as shown below.

Figure 116: Adding a host to the cluster

3. Fill in the user account (root typically) and the password.

4. Accept the SHA1 thumbprint option.

5. Click Next on the Host summary screen.

6. Click Next on the Host lifecycle screen.

7. Select the license to be used.

8. Enable lockdown mode if needed and click Next.

9. Click Next in the resource pool section.

10. Click Finish to add the host to the cluster.

And that is all that is needed. If the host is added to the cluster, and
vSAN ESA’s “managed disk claim” capability is enabled, vSAN will
automatically claim the devices for use with vSAN. You will learn
more about managing storage devices and the use of storage pools
later in the storage device management section of this chapter.

Removing Hosts from the Cluster

Should you want to remove a host from a cluster, you must first
ensure that the host is placed into maintenance mode. The various
options will be discussed in further detail in the next section. After
the host has been successfully placed into maintenance mode, you
may safely remove it from the vSAN cluster. To remove a host from a
cluster using the vSphere client, follow these steps:

1. Right-click the host and click Enter Maintenance Mode and select
the appropriate vSAN migration option from the screen below and
then click OK. If the plan is to indeed remove this host from the
cluster, then a full data migration is the recommended maintenance
mode option. If it is a temporary maintenance operation that should
last less than 60 minutes, and therefore no rebuild of vSAN objects
will be initiated, “Ensure accessibility” (default option) may be
chosen.

Figure 117: Enter maintenance mode

2. Now all the virtual machines will be migrated (vMotion) to other
hosts. If DRS is enabled on the cluster, this will happen automatically.
If DRS is not enabled on the cluster, the administrator will have to
manually migrate VMs from the host entering maintenance mode for
the operation to complete successfully.

3. When migrations are completed, depending on the selected vSAN
migration option, vSAN components may also be rebuilt on other
hosts in the cluster.

4. When maintenance mode has been completed, right-click the host
again and select the move to option to move the host out of the
cluster.

5. If you wish to remove the host from vCenter Server completely,
right-click on the host once again, and select remove from inventory.

6. Read the text presented twice and click Yes when you understand
the potential impact.

Maintenance Mode

The previous section briefly touched on maintenance mode when
removing an ESXi host from a vSAN cluster. Since vSAN hosts
contribute storage resources to a cluster, maintenance mode
includes functionality unique to vSAN clusters that we will elaborate
on here. When an ESXi host is placed in maintenance mode, the
primary focus is on migrating VM compute resources from that ESXi
host to other hosts in the cluster; however, with vSAN, maintenance
mode provides you with the option to migrate storage resources as
well as compute resources. The vSAN maintenance mode options
related to data migration are as follows:

Ensure Accessibility: This option evacuates enough data
from the host entering maintenance mode to ensure that all
VM storage objects are accessible after the host is taken
offline. This is not a full data evacuation. Instead, vSAN

examines the storage objects that could end up without
quorum or data availability when the host is placed into
maintenance mode. It then ensures that there are enough
components belonging to the object available to achieve
quorum and remain accessible. vSAN (or to be more precise
the cluster level object manager) will have to successfully
reconfigure all objects that would become inaccessible due
to a host entering maintenance mode and no longer
providing its storage to the vSAN datastore. One example
where this could happen is when VMs are configured with
“failures to tolerate” set to 0. Another example is when there
is already a host with a failure in the cluster, or indeed
another host is in maintenance mode. Ensure Accessibility is
the default option of the maintenance mode workflow and the
recommended option by VMware if the host is going to be in
maintenance for a short period of time. If the maintenance
time is expected to be reasonably long, administrators should
decide if they want to fully evacuate the data from that host
to avoid risk to their VMs and data availability. When a host is
placed into maintenance mode, it no longer contributes
storage to the vSAN datastore, and any components on the
datastore are marked as ABSENT.
Full Data Migration: This option is a full data evacuation and
essentially creates replacement copies for every piece of
data residing on storage devices on the host being placed
into maintenance mode. vSAN does not necessarily copy the
data from the host entering maintenance mode; however, it
can and will also use the hosts holding replica or stripe with
parity of the object to avoid creating a bottleneck on the host
entering maintenance mode. In other words, in an eight-host
cluster, when a host is placed in maintenance mode using full
data migration, then potentially all eight hosts will contribute
to the re-creation of the impacted components. The host
does not successfully enter maintenance mode until all

affected objects are reconfigured and compliance is ensured
when all the component(s) have been placed on different
hosts in the cluster. This is the option that VMware
recommends when hosts are being removed from the cluster,
or there is a longer-term maintenance operation planned.
No Data Migration: This option does nothing with the
storage objects. As the name implies, there is no data
migration. It is important to understand that if you have
objects that have number of failures to tolerate set to 0, you
could impact the availability of those objects by choosing this
option. There are some other risks associated with this
option. For example, if there is some other “unknown” issue
or failure in the cluster, or there is another maintenance
mode operation in progress that the administrator is not
aware of, this maintenance mode option can lead to VM or
data unavailability. For this reason, VMware only recommends
this option when there is a full cluster shutdown planned (or
on the advice of VMware support staff).

Again, just to reiterate an important point made earlier, when a host
is placed into maintenance mode, it no longer contributes storage to
the vSAN datastore. Any components that reside on the physical
storage of the host that is placed into maintenance mode are marked
as ABSENT.

Maintenance Mode and Host Locality

Much like the original storage architecture of vSAN, the vSAN ESA
supports shared-nothing architectures. These types of applications
often have their own built-in data replication capabilities, making the
use of data resilience in vSAN redundant. When data resilience is not
provided by vSAN, special attention must be paid to ensure that the

data and the application instances providing the solution remain
available during maintenance events.

Some independent software vendors (ISV) such as Cloudian, Dell
EMC, and Minio use the vSAN Data Persistence platform (DPp) to
ensure their shared-nothing applications and data remain available
during maintenance events. The DPp coordinates all of this activity
for the administrator. DPp is discussed in more detail in chapter 9.

For other shared-nothing applications that do not use the DPp, vSAN
can be configured to accommodate their unique traits through a
feature known as host locality. This is essentially the deployment of
virtual machines which use failures to tolerate value of 0 (thus, no
protection) in its policy. It ensures that the compute and storage for
a particular VM are co-located on the same host. Hadoop’s HDFS is
one such example, but this configuration may be applicable to other
shared-nothing applications that use their own built-in replication
capability, such as NoSQL databases like Cassandra.

Note that support for this host locality policy setting is only available
on special request (RPQ) – it is not generally available. Customers
wishing to use such a policy would need to raise a request via their
local VMware contacts.

Figure 118: Host locality

There are a number of caveats around host locality that have yet to
be ironed out before the feature can be generally available. One such
restriction is the use of maintenance mode. Since the VM’s compute
and storage must reside on the same host, one cannot vMotion the
VM or evacuate the data from this host during a maintenance mode
operation. Users will have to rely on the built-in application
protection mechanism if a host is required to be taken offline for
maintenance, etc.

As mentioned in the Data Locality section of Chapter 4, using the
ESA for shared nothing applications may simplify the operational
model of supporting some shared-nothing applications. With its
ability to store data with high levels of space efficiency and no
compromise on performance, it may make sense for these shared-
nothing applications to use a storage policy configured with RAID-5.

This configuration would avoid the need to request approval from
VMware and would be consistent with other application deployments.

Default Maintenance / Decommission Mode

One other important point is the default maintenance mode setting
when a product like vSphere Lifecycle Manager is being used.
Lifecycle management refers to the process of installing software,
maintaining it through updates and upgrades, and decommissioning
it. Certain lifecycle operations require placing hosts into
maintenance mode, and even rebooting them depending on the
update.

The default maintenance mode (decommission mode) option is set
to ensureAccessibility but this can be controlled through an
advanced setting. The advanced setting is called
vSAN.DefaultHostDecommissionMode which is set on a per-host
basis. It allows administrators to set the default maintenance mode
to an option other than Ensure Accessibility, as listed in the next
table.

Table 8: vSAN.DefaultHostDecommissionMode Options

Maintenance Mode for Updates and Patching

It is best to draw a comparison to a regular storage environment first
when discussing options for updates and patches. When working on a
traditional storage array, updates are typically done in a rolling
fashion. If you have two controllers, one will be taken offline and
upgraded while the other remains active and handles all the I/O. In
this dual controller scenario, you are at risk while performing the
upgrade because if the active controller hits a problem during the
upgrade of the offline controller, no further I/O can flow and the
whole array is offline.

The primary difference when working on vSAN as a virtualization
administrator is that you have a bit more flexibility. Each node in the
cluster can be thought of as a storage controller, and even with one
node out of the cluster, a second node failure may not impact all VM
workloads (depending on the size of the vSAN cluster and the failures
to tolerate setting of course). Coupled with other vSphere features,
such as HA, for instance, you can reduce your level of risk during
maintenance operations. The question that a vSphere or vSAN
administrator must ask themselves is what level of risk they are
willing to take, and what level of risk they can take.

From a vSAN perspective, when it comes to placing a host into
maintenance mode, you will need to ask yourself the following
questions:

Why am I placing my host in maintenance mode? Am I
going to upgrade my hosts and expect them to be
unavailable for just a brief period? Am I removing a host
from the cluster altogether? This will play a big role in which
maintenance mode data migration option you should use.
How many hosts do I have? When using three hosts, the
only option you have is Ensure Accessibility or No Data

Evacuation because, by default, vSAN always needs three
hosts to store objects, whether it be a RAID-1 mirror using
two replicas, or a RAID-5 configuration where the data is
striped with parity across three hosts. Therefore, with a three-
node cluster, you will have to accept some risk by using
maintenance mode. There is no way to do a Full Data
Evacuation with just 3 nodes. Therefore, VMware
recommends 4 hosts in a vSAN cluster when using RAID-1 or
RAID-5. This allows vSAN to self-heal on failures and
continue to provide full protection of VMs during
maintenance.
How long will the move take? The answer to this question
depends on a number of factors, such as:
How much space has been consumed?
How capable is my network interconnect? Do I have 25GbE,
teamed 25GbE, or 100GbE?
How large is my cluster?
Do I want to move data from one host to another to
maintain availability levels? Only stored components need
to be moved, not the “raw capacity” of the host! That is, if 6
TB of capacity is used out of 12 TB, 6 TB will be moved.
Do I just want to ensure data accessibility and take the
risk of potential downtime during maintenance? Only
components of those objects at risk will be moved. For
example, if only 500 GB out of the 6 TB used capacity is at
risk, that 500 GB will be moved.

All of the maintenance mode options have their own reasons for use,
as well as trade-offs and other considerations. For example, when you
select full data migration, to maintain availability levels, your
“maintenance window” will be elongated, as you could be copying
terabytes of data over the network from host to host. It could
potentially take hours to complete depending on the capabilities of
the hosts and your network. If your ESXi upgrade (including a host

reboot) takes about 20 minutes, is it acceptable to wait hours for the
data to be migrated? Or do you consider it a managed risk, where
the level of resilience is below the level prescribed by the storage
policy for only a short time, yet the operation is completed in a
matter of minutes rather than hours?

If the maintenance mode takes longer than 1 hour, then you may
have components begin to rebuild and resync on other nodes on the
cluster, which will consume additional resources. Remember that 60
minutes is when the clomd repair delay timeout expires, and absent
components are automatically rebuilt. This timer is tunable, so if you
know maintenance is going to take longer than 60 minutes, you
could change it to a higher value to avoid the rebuilds taking place.

However, the main risk is if another failure occurs in the cluster
during the maintenance window. Then you risk the availability to your
VMs and your data. Historically, we’ve had customers overcome this
by using a failures to tolerate setting of 2, which means that
maintenance can occur on one of the hosts storing the object data,
and one can still tolerate another host storing that object data failing
while maintaining availability. For some customers, this is not always
possible because a failures to tolerate setting of 2 requires at least 6
hosts in a cluster.

In vSAN 8.0 U1, the ESA introduced support of durability
components. Durability components increase the availability of the
very latest written data to objects impacted by a degraded event,
such as a host entered into maintenance mode. While it does not
mimic the increase of resilience by changing the storage policy from
FTT=1 to FTT=2, it does ensure that newly written data is always
resilient should a subsequent failure occur during a maintenance
mode event and is often a sufficient enough step to ensure proper
resilience during a maintenance mode event using ensure
accessibility. The use of durability components in the ESA is available

only for objects using RAID-5 or RAID-6 erasure coding. For more
information on durability components, see Chapter 4.

The authors cannot give you advice on what the best approach is for
your organization. We do strongly feel that for normal software or
hardware maintenance tasks that only take a short period of time
(less than 1 hour), it will be acceptable to use the Ensure Accessibility
maintenance mode data migration option. You should still, however,
discuss all approaches with your storage team and look at their
procedures. What is the agreed SLA with your business partners and
what fits from an operational perspective?

One final point to note on maintenance modes; as was mentioned
earlier, it is possible to change the clomd repair delay timeout to be
something much larger if you are involved in a maintenance task that
is going to take some hours, but you do not want to have any data
rebuilding during this maintenance. Approach this with caution,
however, since your VMs will be at risk for an extended period. And it
is important to remember to put this setting back to the default after
maintenance has finished. This is because certain failure scenarios
will also use this timeout before rebuilding failed components, so you
want this to kick off as soon as possible, and not be delayed. After all,
you modified the timer value.

With the capabilities of recent versions of vSAN including durability
components, the support of features like Quickboot’s “Suspend to
Memory” option, and architectural differences in ESA that eliminated
some of the longer host restart times associated with the OSA,
adjusting the clomd repair delay timeout value will generally not be
needed. If you find that adjusting it is necessary, it can be found in
the “Advanced Options” section, under the configuration of services.
This has already been highlighted in the book; see Advanced Settings
in chapter 4, Figure 48.

Maintenance Mode and vSphere Lifecycle
Manager

VMware Lifecycle Manager (vLCM) uses maintenance mode
operations to automatically place hosts in maintenance in a rolling
fashion during upgrades. vLCM, by default, uses Ensure Accessibility
as the data migration option. This is deemed acceptable as any
required components to keep a VM available will still be evacuated
from the host entering maintenance mode. Upgrade operations,
along with reboot operations, are not expected to exceed the 60-
minute timeout associated with the commencement of rebuild
activity.

Multiple hosts in Maintenance Mode
simultaneously

Placing multiple vSAN hosts into maintenance mode introduces
challenges not always obvious to an administrator. Since vSAN is a
distributed storage system, the more hosts in a cluster that are
offline, the fewer storage and compute resources are available. This
can not only create capacity-constrained conditions but also the
potential inability to re-protect the VMs at levels prescribed by the
storage policy, due to a lack of the minimum required hosts. The
latter is most common on smaller clusters with relatively few hosts.

To address capacity-constrained conditions as a result of one or
more hosts placed into maintenance mode (or removed), Skyline
Heath for vSAN will report whether the vSAN cluster has sufficient
capacity to re-protect all VMs per their prescribed storage policy. It
checks to ensure there will be enough capacity on the datastore
should it lose the contributing devices from a single host. This

additional logic prevents scenarios that occurred with much earlier
versions of vSAN, where multiple hosts could be placed into
maintenance mode even if the reprotection of those VMs created a
capacity-full condition.

vSAN also performs prechecks to help administrators determine if
entering a host into maintenance mode will introduce issues, such as
capacity-constrained conditions, or the inability to protect data using
its prescribed storage policy. This is described in more detail below.

Maintenance Mode Pre-Check

In the section “Removing Hosts from the Cluster” earlier in this
chapter, we saw an example of the popup window (Figure 117) which
appears when you request a host to be placed into maintenance
mode. In the lower left-hand corner of that popup window, the was a
“Go to Pre-Check” button. This is the data migration precheck and it
will determine if there are any issues, such as object compliance,
availability, or capacity issues, if the administrator proceeds with the
maintenance mode operation.

When the “Go to Pre-Check” button is clicked, the administrator is
automatically brought to the Cluster > Monitor > vSAN > Data
Migration Pre-Check section in the vSphere UI. From here the
administrator can choose which host the pre-check for data
migration should be run on (it should be set to the host that was
selected for maintenance mode). The other configurable option is the
vSAN data migration setting, which is one of “Full data migration”,
“Ensure accessibility” or “No data migration”, all of which have been
described earlier in this chapter. This should also be set to whatever
was chosen as the data migration option in the maintenance mode
window.

Figure 119: Data Migration Pre-check

Once the “Pre-Check” button is clicked, several tests to check the
impact of placing this host into maintenance mode are run.
Remember that placing a host into maintenance mode, effectively
removes this host from providing any storage capacity to the vSAN
cluster. Thus, in a 3-node cluster, every single RAID-1 object will be
unprotected and thus displayed as non-compliant. The test result will
inform the administrator if the host can be placed in maintenance
mode or not and then report on the Objects state, as shown next.

Figure 120: Data Migration Pre-check – Objects state

The precheck also reports on cluster capacity, both before and after
the maintenance mode operation. This is useful as on an overloaded
cluster, it may not be possible to move all components from the
storage on the host that is entering maintenance mode to the
remaining hosts in the cluster. This check will highlight such a
predicament.

Figure 121: Data Migration Pre-check – Cluster Capacity

Finally, the Data Migration pre-check reports on the impact that the
maintenance mode operations will have on the health of the vSAN
cluster. Since this is a 3-node vSAN cluster, all RAID-1 objects will be
impacted; there is no place to move the components that are
currently on the host that is entering into maintenance mode, so all
objects will be unprotected and thus non-compliant with their policy.

Figure 122: Data Migration Pre-check – Predicted Health

The Data Migration pre-check is an extremely useful feature to
examine the impact of maintenance mode operations and should be
used regularly by vSAN administrators to understand what impact
taking a host out of the vSAN cluster has on the overall system from
an availability, capacity, and health perspective.

Stretched Cluster Site Maintenance

In vSAN Stretched Cluster, there is no way to place a complete site
or even a specific fault domain into maintenance mode. We will
discuss the impact of this, and our guidance, in chapter 7.

Shutting down a cluster

A vSAN cluster provides all of its own storage resources for the
cluster, so naturally, shutting down a cluster requires different
operational practices than the shutdown of a vSphere cluster using
external storage. Up until recently, vSAN administrators had to
perform several manual steps to gracefully shut down the entire
vSAN cluster. This typically involved a process of shutting down all

VMs and placing each host into maintenance mode using the ‘no
data evacuation’ option. Once each host was in maintenance mode,
they could be safely powered off.

More recent editions of vSAN have introduced a cluster shutdown
feature. Introduced in vSAN 7.0 U3 and enhanced in vSAN 8.0, this
provides the administrator the ability to shut down a cluster in a
single step.

To trigger a cluster shutdown, right click the cluster object, select
vSAN in the drop-down menu, and then select “shutdown cluster”.
This will launch a window that initiates a shutdown pre-check as
shown below. Note that there is a requirement for all VMs to be
powered off before the cluster can be shut down. Some VMs, such as
Agent VMs and the vCenter Server VM (if it exists) can be
automatically managed. The remaining customer VMs are checked by
the shutdown pre-check to make sure they are powered off. As per
VMware KB article 85594, any VMs that are not powered off will be
identified during the shutdown pre-check and will need to be
powered off manually by the administrator. The figure below displays
the set of shutdown pre-checks that are run before a cluster can be
shut down and highlights the fact that some VMs are still powered on,
preventing the shutdown from proceeding.

https://kb.vmware.com/s/article/85594

Figure 123: Cluster Shutdown pre-check

vSAN 8.0 U1 introduces support of the cluster shutdown feature via
PowerCLI. New cmdlets included in PowerCLI 13.1 will allow an
administrator to initiate these events programmatically. This can be
especially important for those environments that have sustained on-
battery conditions with no secondary source of power.

Upgrade Considerations

vSAN is integrated with vSphere Lifecycle Manager (vLCM). vLCM
understands that it is upgrading a vSAN cluster. Therefore, it will

automatically take care of selecting a host in the cluster to upgrade
and place it into maintenance mode using the default setting of
‘ensure accessibility’. It then does the upgrading, reboots the host if
needed, and once the host has reconnected to vCenter Server and
re-joins the cluster, vLCM takes the host out of maintenance mode
and lets the ‘out of date’ components resynchronize. It then selects
the next host and repeats the upgrade task in a rolling fashion until
all nodes in the cluster are upgraded.

vLCM not only does hypervisor lifecycle management but also
supports firmware lifecycle management as well. In the past, this was
a manual process, with administrators needing to download third-
party tools along with the appropriate firmware versions to carry out
this task on a per-host basis. Today, this can be automated through
vLCM. There are some prerequisites before administrators can use
vLCM to apply firmware updates, such as ensuring that the vSAN
cluster is lifecycle managed with a single image. Firmware updates
require a special firmware and drivers add-on which is vendor-
provided. The add-on contains the firmware packages. Note that
VMware does not host these firmware packages in its own online
depots. Instead, each vendor hosts their add-ons in their own
proprietary depot. Access to the depot is provided through a vCenter
Server plugin, called a “hardware support manager”. The appropriate
“hardware support manager” must be selected when converting from
baseline to image-based lifecycle management, and selecting the
appropriate Firmware and Drivers Addon, as shown below.

Figure 124: Firmware and Drivers Addon

At the time of writing, there are hardware support managers available
for Cisco, DELL, Fujitsu, Hitachi, HPE and Lenovo.

vLCM is also aware of vSAN topologies. It will understand the host
placement in vSAN stretched clusters, 2-node clusters, and fault
domain configurations, and can orchestrate the upgrades of those
different vSAN configurations.

An important consideration relates to the vSAN on-disk format. On-
disk formats are discussed in Chapter 4. VMware KB article 2145267
provides an excellent overview of the various on-disk formats that
vSAN has had with its various releases. While most on-disk format
changes have been minor and did not require a rolling upgrade, there
is the potential for a rolling upgrade to be required.

The primary consideration with the on-disk format change (referred
to as a DFC) is the evacuation of all data on the respective device to

https://kb.vmware.com/s/article/2148493

perform the underlying disk format change. In the ESA, the device is
evacuated, placing the object data on other devices or hosts in the
cluster. The device is removed from service, recreated with a new
disk format, and reentered into service. This process is not as
invasive in the ESA as it was in the OSA. The ESA performs these
maintenance activities on a per-device basis, where the OSA would
often have maintenance boundary of a disk group. This smaller
maintenance domain of the ESA may reduce the amount of data
movement during these activities.

You may well ask what happens when there are not enough resources
in the cluster to accommodate a full device evacuation, especially on
two-node or three-node vSAN clusters that may have very few storage
devices, and very few locations to relocate the data. In this case,
there is an option to do the DFC with ‘Allow Reduced Redundancy’
where only one copy of the data is available during the DFC.

Allowing reduced levels of redundancy can introduce risk, and it is
another reason why VMware recommends an additional host be
available in the cluster. Having an additional host in the cluster will
mean VMs will be fully protected against a failure occurring in the
cluster during this task. As mentioned, not every on-disk format
change requires an evacuation to format the disks. The most recent
on-disk formats that were made to vSAN did not require one.

Storage Device Management

One of the design goals for vSAN, as already mentioned, is the ability
to scale up the storage capacity. This requires the ability to add new
devices, replace existing devices with larger devices, and easily
replace failed devices. This next section discusses the procedures
involved in doing these tasks in a vSAN environment.

Adding Storage Devices for use by vSAN

The removal of the construct of a disk group in the ESA makes for a
much simpler experience in managing storage devices that are used
by vSAN. All storage devices claimed by a vSAN ESA host reside in a
storage pool for that host. A storage pool is simply a way to identify
the devices claimed for use by a vSAN host, and thus, there is only
one storage pool per host. Unlike disk groups, devices in a storage
pool remain fully independent from each other and can be added or
removed as desired.

The following example shows how to manually claim a device for use
by the vSAN ESA. This is a cluster-based task, so one can easily
claim multiple devices across multiple hosts.

1. Click your vSAN cluster in the left pane.

2. Click the Configure tab on the right side.

3. Click vSAN > Disk Management.

4. As shown below, one gets a cluster overview of hosts, the number
of devices in use, their health state, capacity, and network partition
information. This is useful in determining if there is a network
partition, and which host or hosts are in a different network partition
group. For disk management tasks across the cluster, one can
choose the options of “View Cluster Objects,” “Claim Unused Disks”
or “Change Disk Claim Mode.” In this case, we will click on Claim
Unused Disks.

Figure 125: vSAN disk management

5. A list of unused disks will be presented for the purposes of
claiming by vSAN, as shown below. Note here that if the cluster is
configured for the ESA, it will check for device compatibility and warn
against any detected device compatibility issues.

Figure 126: Claiming unused disks

Since all storage devices in an ESA cluster will contribute to both
capacity and performance, it greatly simplifies assigning storage
devices to be used by vSAN. As you may have noticed above, the ESA
also allows for a “vSAN managed disk claim” mode to make this
effort even easier. It reintroduces a capability initially provided with
much earlier versions of vSAN but removed due to some of the
management complexities with disk groups. The ESA makes this
automatic claiming easier to implement.

By clicking on “Change Disk Claim Mode” one can instruct vSAN to
automatically claim all compatible storage devices. The setting can
be configured on a per-cluster basis to best suit the needs of the
environment. One can enable it or disable this cluster-based setting,
as shown below.

Figure 127: vSAN ESA Managed Disk Claim

When this process completes, the claimed devices show up in
storage pool of the vSAN host and will contribute to the advertised
resources of the vSAN cluster. We will talk about the other storage
management options throughout the rest of this section.

Removing Storage Devices used by vSAN

Administrators can remove a storage device from vSAN once they
have selected the “View Disks” as shown below.

Figure 128: Remove Disk option

Before the Remove task starts, the administrator is prompted to
evacuate the components that are currently on that storage device,
as shown in the next figure. vSAN allows administrators to evacuate
these storage devices without placing the host where the device
resides into maintenance mode. Another useful feature like what was
seen in the Host Maintenance Mode section is that the disk removal
actions also include a “Pre-Check” option. As before, you can choose
“Full data evacuation”, Ensure accessibility” and “No data
evacuation”. An administrator can also go directly to the pre-check
option from the drop-down menu list above.

Figure 129: Migration mode when removing a claimed disk

Evacuating the VM components from storage device claimed by
vSAN in a host’s storage pool is not a required step for removing a
storage device for use by vSAN, but the authors believe that most
administrators would like to move the VM components currently on
the storage device to other storage devices in the cluster before
deleting it. If you don’t do this step, and evacuate the data, you may
be left with degraded components that are no longer highly available.
vSAN will then need to reconfigure these components when the
storage device is deleted. As highlighted many times now, if there is
another failure while the objects are degraded, it may lead to the
unavailability of data.

However, there may be valid reasons for wanting to delete a storage
device without first evacuating all the data, and those options are
also provided. Just like with ESXi hosts, administrators can choose
simply to ensure accessibility, or indeed not to evacuate the data at
all.

If you are planning on performing a full data evacuation of a storage
device, vSAN will validate first whether sufficient space is available
within the cluster to do so. Note that just as with the removal of a
host, the removal of all of the storage devices in a host using a full
data migration on a cluster with an insufficient number of hosts for

the associated storage policy is simply not possible, as there is
nowhere to move the resilient data to.

You will generally find that with the ESA, the step of adding and
removing storage devices used by vSAN will be simpler, and far less
invasive than when using the construct of disk groups, found in the
OSA.

Erasing a Storage Device

In some cases, other features or operating systems may have used
NVMe devices before vSAN is enabled. In those cases, vSAN will not
be able to reuse the devices when the devices still contain partitions
or even a file system. Note that this has been done intentionally to
prevent the user from selecting the wrong devices. If you want to use
a storage device that has been previously used, you can wipe the
devices manually, either via the command line or from the vSphere
Client.

The Erase Partitions option in the vSphere Client is found by
selecting an ESXi host, the selecting Configure > Storage Devices, as
shown below.

Figure 130: Erase partition

It is possible to remove an NVMe device from a storage pool through
the Command Line Interface (CLI). However, this should be done
with absolute care and the authors strongly recommend going
through the UI for such operations, as shown on the previous pages.

Similarly, if a storage device was previously used for another function
and the wish is to now use it for vSAN, its partitions can be erased
using the UI as already seen. Alternatively, another method is to use
the CLI to wipe a disk. The disk can be erased from the commands
line using the esxcli vsan storage utility.

The above options assume that you have an existing vSAN cluster.
Some other less conventional ways are included here in case you do
not have a vSAN cluster (i.e., vSAN has been disabled), and thus you
do not have the above options available. In those cases, disks can be
erased:

Using the command partedUtil, a disk partition management
utility that is included with ESXi.
Booting the host with the gparted bootable ISO image.

The gparted procedure is straightforward. You can download the ISO
image from http://gparted.org/, and create a boot CD from it. Then,
boot the ESXi host from it. After that, it is simply a matter of deleting
all partitions on the appropriate disk and clicking Apply.

Warning: The tasks involved with wiping a storage device are
destructive, and it will be nearly impossible to retrieve any data after
wiping the storage device.

The partedUtil method is slightly more complex because it is a
command-line utility. Administrators will need to SSH to the ESXi
host that contains the storage devices that need its partitions erased.
The partedUtil binary is available and preinstalled on the ESXi host.
The following steps are required to wipe a storage device using

http://gparted.org/

partedUtil. If you are not certain which device to wipe, make sure to
double-check the device ID using esxcli storage core device list:

Step 1: Display the partition table

~ # partedUtil get /vmfs/devices/disks/naa.500xxx

24321 255 63 390721968

1 2048 6143 0 0

2 6144 390721934 0 0

Step 2: Display partition types

~ # partedUtil getptbl

/vmfs/devices/disks/naa.500xxx

gpt

24321 255 63 390721968

1 2048 6143 381CFCCC728811E092EE000C2911D0B2 vsan

0

2 6144 390721934 77719A0CA4A011E3A47E000C29745A24

virsto 0

~ #

Step 3: Delete the partitions

~ # partedUtil delete

/vmfs/devices/disks/naa.500xxxxxx 1

~ # partedUtil delete

/vmfs/devices/disks/naa.500xxxxxx 2

If you are looking for more guidance about the use of partedUtil,
read the following VMware Knowledge Base (KB) article: 1036609.

Turn on the LED on an NVMe device

vSphere has historically provided a way to turn on and off a storage
device, known as “blinking” the device. The ability to correctly identify
a storage device becomes critically important for device removal or
replacement activities.

You’ll find the buttons for turning on and off LEDs when you select a
storage device in the UI, under Host > Configure > Storage Devices,
as seen earlier in Figure 130 when we looked at the “Erase
Partitions” option. As you can probably guess, clicking on the “Turn
On Led” turns the LED on; clicking on the “Turn Off Led” icon turns
the LED off again.

The ability to blink a device is highly dependent on the respective
capabilities of the storage controllers. NVMe-based devices use their
own dedicated storage controller embedded on each device and may
or may not support device blinking. Since the vSAN ESA only allows
the use of NVMe devices, you will want to check to ensure that device
blinking is supported on the vSAN ReadyNode certified for ESA. One
may need to install additional tools such as the HPE Smart Storage
Admin (SSA) CLI to enable the capability.

vSAN Capacity Monitoring and Management

We’ve described how vSAN aggregates storage from devices across
hosts in a vSAN cluster to provide capacity resources. The distributed
architecture of vSAN requires a different way of reporting on capacity
usage and consumption than commonly found with a traditional
storage array. The total capacity advertised by a cluster is the
aggregate total of all of the storage devices claimed for use by vSAN
in the hosts that comprise a vSAN cluster. Different levels of

resilience can be assigned per VM or per VMDK thanks to storage
policies. As a result, the cluster capacity advertised as available does
not reflect the capacity available for data in a resilient manner, as it
will be dependent on the assigned policy.

To accommodate vSAN’s distributed architecture, and the ability to
granularly define levels of resilience for different data, vSAN provides
a capacity dashboard to give detailed information about the space
consumption of a cluster. Navigate to Cluster > Monitor > vSAN >
Capacity to see this information.

There are two views available, Capacity Usage and Capacity History.
The default view is Capacity Usage, which has several distinct
sections, such as Capacity Overview, What If Analysis, and Usage
breakdown, as shown next.

Figure 131: vSAN Capacity Overview

Capacity Overview

To help the administrator understand how much capacity is used, or
remains, the Capacity Overview portion of the dashboard provides a
simple way to visualize vSAN datastore capacity and is the best way
to understand how much data is stored, and how much capacity
remains free on a cluster.

This portion of the dashboard shows the total capacity advertised by
a cluster from the devices claimed for use by vSAN. It presents a sum
total of raw capacity available. Note the use of the term “Actually
written” associated with a dark green color to convey the data written
after factoring in levels of resilience applied to the objects, thin
provisioning, and data compression. An additional lighter green color
may be visible in the circumstance where the “Object Space
Reservation” (OSR) policy rule is used.

The Capacity Overview will provide visual indicators should capacity
usage exceed desired thresholds. vSAN requires free capacity to
carry out some of its internal operations. The colors on the capacity
overview may change as these thresholds are exceeded and may also
have additional threshold indicators if the operations reserve and
host rebuild reserve are enabled for the cluster. All of these visual
indicators provide boundaries to help guide the administrator to the
best operational practices. Just as with other types of storage
solutions, or even your smartphone, vSAN may not perform optimally
if storage utilization is so high that there is insufficient free capacity
to perform internal operations.

Operations reserve and Host rebuild reserve

Two optional reservation mechanisms are available when configuring
a standard vSAN cluster. The operations reserve and host rebuild
reserve do as the names imply, ensuring that sufficient capacity is
reserved for operational activities and that sufficient free space is
available if a host were to fail for a sustained period of time. They are
configurable from the Cluster > Configure > vSAN > Service page
under the Reservations and Alerts section, as shown below.

Figure 132: Reservations and Alerts

As per the description in the UI, which is displayed when the Edit
button is clicked and the Reservation and Alerts wizard is launched,
enabling operations reserve helps ensure that there will be enough
space in the vSAN cluster for internal operations to complete
successfully. Enabling host rebuild reserve allows vSAN to maintain
enough free capacity to tolerate one host failure.

When the reservation is enabled and capacity usage reaches the
limit, new workloads will not deploy on the vSAN cluster. This gives a
vSAN administrator the ability to avoid situations where the vSAN
datastore completely fills up. This has been problematic in the past
and can be a difficult situation to recover from since vSAN is not able

to carry out its own internal housekeeping operations, never mind
handle virtual machine workloads.

Figure 133: Configure Reservations

Once the operations reserve and host rebuild reserve are enabled,
the Capacity Overview is now updated to reflect these new
reservation settings. Note that Operation reserve can be enabled
without needing to enable Host rebuild reserve. However, to enable
Host rebuild Reserve, Operational reserve must first be enabled.

Figure 134: Reservations Enabled in Capacity Overview

Note that the reserved capacity feature is not supported on a vSAN
stretched cluster, vSAN clusters with fault domains, or vSAN clusters
with less than four hosts. You will see a message in the Reservations
and Alerts wizard highlighting this limitation.

What If Analysis / Thin Provisioning
Considerations

There are two very useful features in the What if analysis section of
Capacity Usage. The first allows you to see how much effective free
space is available if all workloads were provisioned with a particular
policy. For example, RAID-1 deployments would require capacity set
aside for another replica if the failures to tolerate was set to 1.
Capacity would need to be set aside for 2 full replicas if failures to
tolerate was set to 2. By selecting the appropriate policy to match
these requirements, the What If analysis can provide guidance as to
how many workloads can be provisioned with such policies on the
vSAN datastore.

Below are two examples of using the What if analysis. The first uses
the vSAN Default Storage Policy which uses RAID-1 with failures to
tolerate set to 1. The second uses a RAID-5 policy. Note the effective
free space for workloads that use those different policies.

Figure 135: What If Analysis – FTT=1, RAID-1 Policy

Figure 136: What If Analysis – FTT=1, RAID-5 Policy

One final item to highlight in the What If analysis is the
oversubscription option. vSAN will provision all objects as thin
provisioned, unless explicitly told to do otherwise via the Object
Space Reservation parameter. The advantage to using thin-
provisioned objects is that workloads are not consuming any more
capacity than is completely necessary. It is not uncommon in data
center environments to see 40% to 60% of unused capacity within
the VM. You can imagine that if a VM were thick provisioned, it would
drive up the cost, but it would also make vSAN less flexible in terms
of the placement of components.

Of course, there is an operational aspect to thin provisioning. There
is always a chance of filling up a vSAN datastore when you are
severely overcommitted and many VMs are claiming new disk
capacity. This is not different in an environment where NFS is used,
or VMFS with thin provisioned VMs.

This oversubscription view informs the administrator about the
amount of capacity that would be consumed should the thin
provisioned objects grow to their maximum size. It is also expressed
as a ratio, where “2x” would mean that a cluster would need 2 times
the amount of physical capacity currently available should the thin
provisioned objects grow to their maximum size. A ratio can be a
good value to incorporate into monitoring and design. For example, a
customer may find that perhaps a 5x oversubscription ratio provides
a good balance of workload consolidation without a high risk of
exhausting capacity resources.

When certain capacity usage thresholds are reached, vCenter Server
will raise an alarm to ensure that the administrator is aware of the
potential problem that may arise when not acted upon. By default,
this alarm is triggered when the 75% full threshold is exceeded with
an exclamation mark (severity warning), and another alarm is raised
when 85% is reached (severity critical). (Note that this issue will also
raise an alarm in the Skyline Health section).

Usage breakdown

In the lower part of the Capacity overview section, one can see a
breakdown of which objects are consuming space. These are
separated into VMs, User objects, and System usage. If the “expand
all” text is selected, a breakdown of the different objects and services
is displayed, as shown below.

Figure 137: Usage breakdown by categories – Expand All

Under the VM usage breakdown, objects include:

Virtual Machine Disk Files (includes VMDKs, linked clones,
etc.)
The usage is shown as different types such as Primary data
and its replica usage
VM home objects (VM namespace)
Swap objects
VM memory snapshots

Also included as part of the breakdown are user objects. Depending
on the data services enabled, this may display container block
volumes, ISO file storage, and other types of data. Note that the
usage ‘donut’ will only show percentages of data usage, and not free
capacity on the cluster. For new clusters with very little data stored,
this will give the visual impression of a large percentage of data used
for “system usage.” Once more data is stored on the vSAN cluster the
percentage used for “system usage” will reduce dramatically.

Finally, the System usage section highlights various vSAN overheads.
The vSAN ESA will consume additional capacity for administrative
purposes, consisting of global metadata and filesystem overheads
that are used to help process, store, and retrieve the data efficiently.
Some overheads are related to the objects themselves, while other
types of overheads are global and help vSAN store large amounts of
data efficiently. In the Usage breakdown portion of the dashboard,
they are displayed as the following.

Filesystem overhead
Performance management objects

With the new snapshot engine of the vSAN ESA, the Usage
breakdown portion of the dashboard now includes a “Usage by
Snapshots” view. This will display the total amount of data used by
snapshots, and the relative percentage that the snapshots consume
for the data written to the cluster.

Finally, there is also a Capacity History which enables administrators
to go back in time and review capacity usage charts for a given
period (default is 1 day, maximum is 30 days). From here, you can
observe the total capacity, free capacity, and used capacity of the
vSAN datastore from the last X number of days (where 30 >= X >=1)
or indeed, add their own custom data range. This is a great tool for
forecasting the future capacity requirements of the vSAN cluster, as
well as observing changes in storage policies or space reclamation
through UNMAP.

Figure 138: vSAN Capacity History

Storage Device Full Scenario

You might ask, “What happens when the vSAN datastore gets full?”
To answer that question, you should first ask the question, “What
happens when an individual storage device fills up?” because this
will occur before the vSAN datastore fills up.

Before explaining how vSAN reacts to a scenario where a storage
device is full, it is worth knowing that vSAN will try to prevent this
scenario from happening. vSAN balances capacity across the cluster
and can and will move components around, or even break up
components when this can prevent a storage device full scenario.
vSAN can relocate data to other hosts and storage devices so long as
it has a sufficient amount of free space and does not violate the
storage policy rules of the object, such as placing two of the object’s
components that help make it resilient onto a single host.

It should also be noted that the new reservation options (operations
reserve, host rebuild reserve) discussed earlier can be used to
mitigate the impact of this situation should it arise, by ensuring that
there is enough space set aside to prevent the storage device from
filling up. However, these reservations are not available to all vSAN

configurations as mentioned. It is only available on vSAN clusters
that are comprised of at least four hosts, and cannot be used with
vSAN stretched clusters, or with vSAN clusters that use fault domains.
So, it is still a possibility in some configurations.

In the event of a storage device reaching full capacity, vSAN pauses
(technically called stun) the VMs that are trying to write data and
require additional new disk space for these writes; those that do not
need additional disk space continue to run as normal. Note that
vSAN-based VMs are deployed thin by default and that this only
applies when new blocks need to be allocated to this thin-
provisioned disk.

This is identical to the behavior observed on VMFS when the
datastore reaches capacity. When additional storage capacity is
made available on the vSAN datastore, the stunned VMs may be
resumed via the vSphere Web Client. Administrators should be able
to see how much capacity is consumed on a per-device basis via the
Configure > vSAN > Disk Management view and viewing the storage
devices on a per host basis as shown in the next figure.

Figure 139: Monitoring physical disks

The usage of each device claimed by vSAN is there simply for
visibility, and one of the reasons why this is not displayed in the

“Monitor” portion of the user interface in the vSphere Client. vSAN is
responsible for the placement and of object components and the
balance of capacity utilization across storage devices.

UNMAP Support

UNMAP is a way for storage systems to reclaim space once
consumed on a volume or datastore, but no longer used. Historically
UNMAP was available on storage arrays serving VMFS datastores and
used in one of two ways. The first use case was for files on a VMFS
datastore that were deleted, the UNMAP commands associated with
the SCSI protocol could reclaim the previously used storage capacity
so it can be used elsewhere.

The second, and perhaps more common use case was for reclaiming
capacity inside guest VMs, which could vary in the amount of data
they store over time. Temporarily storing data in a thin-provisioned
VMDK will inflate the virtual disk, but it will not shrink if some of
those files are deleted. Using UNMAP commands inside the guest
can help reclaim this no-longer-used capacity, effectively shrinking
the VMDK to a size that reflects the data it is storing.

When we look at these scenarios in the context of vSAN, the first use
case is not relevant, as vSAN has an acute understanding of object
access. Thus, if a VM is moved from, or deleted from the vSAN
datastore, vSAN can reclaim and use that space.

In the vSAN ESA, UNMAP support for guest VMs is not only
supported but enabled in ESA clusters by default. The service can
now be found in the Advanced Options of the Configure > vSAN >
Services dashboard where one toggles the service on or off if
needed. The UNMAP process is completely automated, so there is
not very much to consider from an operational perspective. One
caveat to be aware of is that this is not supported by all guest OSes.

Typically, it is supported in the later versions of Microsoft Windows
and various Linux distributions. Also, note that there could be some
performance impact while the UNMAP operation is running.

There are several caveats and considerations when running UNMAP
on vSAN. This includes a reliance on the version of VM Hardware
used by the virtual machine. We would urge you to read the official
VMware documentation (https://vmwa.re/vsanesaunmap) to obtain
the full list of requirements when using this feature.

vCenter Server Management

vCenter Server is an important part of most vSphere deployments
because it is the main tool used for managing and monitoring the
virtual infrastructure. In the past, new features introduced to vSphere
often had a dependency on vCenter Server to be available, like
vSphere DRS for instance. If vCenter Server was unavailable, that
service would also be temporarily unavailable; in the case of vSphere
DRS, this meant that no load balancing would occur during this time.

Fortunately, vSAN does not rely on vCenter Server in any shape or
form, not even to make configuration changes or to create a new
vSAN cluster. Even if vCenter Server goes down, vSAN continues to
function, and VMs are not impacted whatsoever when it comes to
vSAN functionality. If needed, all management tasks can be done
through esxcli or rvc, the Ruby vSphere Console that ships with
vCenter Server.

You might wonder at this point why VMware decided to align the
vSAN cluster construct with the vSphere HA and DRS construct,
especially when there is no direct dependency on vCenter Server and
no direct relationship. There are several reasons for this, so let’s
briefly explain those before looking at a vCenter Server failure
scenario.

https://vmwa.re/vsanesaunmap

The main reason for aligning the vSAN cluster construct with the
vSphere HA and DRS cluster construct is user experience. Today,
when vSAN is configured/enabled, it takes just a handful of clicks in
the cluster properties section of the vSphere Client. This is primarily
achieved because a compute cluster already is a logical grouping of
ESXi hosts.

This not only allows for ease of deployment but also simplifies
upgrade workflows and other maintenance tasks that are typically
done within the boundaries of a cluster. On top of that, capacity
planning and sizing for compute is done at cluster granularity; by
aligning these constructs, storage can be sized accordingly.

A final reason is of course availability. vSphere HA is performed at
the cluster level, and it is only natural to deal with the new per-VM
accessibility consideration within the cluster because vSphere HA at
the time of writing does not allow you to fail over VMs between
clusters; it can only failover a VM to another host within the same
cluster. In other words, life is much easier when vSphere HA, DRS,
and vSAN all share the same logical boundary and grouping.

Running vCenter Server on vSAN

A common support question relates to whether VMware supports the
vCenter Server that is managing vSAN to run in the vSAN cluster. The
concern would be a failure scenario where the access to the vSAN
datastore is lost and thus VMs, including vCenter Server, can no
longer run. The major concern here is that no vCenter Server (and
thus no tools such as rvc) is available to troubleshoot any issues
experienced in the vSAN environment. Fortunately, vSAN can be fully
managed via esxcli commands on the ESXi hosts. So, to answer the
initial question, yes, VMware will support customers hosting their
vCenter Server on vSAN (as in it is supported), but in the rare event

that the vCenter Server is not online and you need to manage or
troubleshoot issues with vSAN, the user experience will not be as
good. This is a decision that should be given some careful
consideration.

vSAN Storage Services

As we have seen many times throughout this book, the vSAN
datastore is typically consumed by VMs deployed on the same cluster
where vSAN is enabled. However, a vSAN ESA datastore can also be
consumed remotely through several different vSAN Storage Services,
namely the iSCSI Target Service, and HCI Mesh. These services
allow vSAN datastores to be consumed from remote clients. In this
section, we will look at these storage services in further detail and
highlight operations considerations where applicable.

vSAN iSCSI Target Service

This service enables an iSCSI Target on the vSAN Cluster, which then
allows remote/external iSCSI initiators to consume storage on the
vSAN datastore.

Enable vSAN iSCSI Target Service

Configurable options for the iSCSI Target Service include the default
network (VMkernel) for the iSCSI traffic. A storage policy must also
be associated with the target, which is then used to create a VM
Home Namespace object to store iSCSI metadata. Authentication
protocols include CHAP (Challenge Handshake Authentication

Protocol), where the target authenticates the initiator, as well as
mutual (bi-directional) CHAP, where both the initiator and the target
authenticate one another. The final consideration is the TCP port on
which the initiator and target communicate. By default, this is port
3260.

Figure 140: vSAN iSCSI Target Service Setup

Information about the service is now displayed on the Cluster >
Configure > vSAN > Services page.

Figure 141: vSAN iSCSI Target Service Enabled

Create a vSAN iSCSI Target

Once the iSCSI Target Service is enabled, a new iSCSI Target
Service menu entry appears in Cluster > Configure > vSAN.

iSCSI Targets and Initiator Groups can now be created.
Administrators will need to create the target IQN (iSCSI Qualified
Name), along with a target alias and a storage policy. If the IQN is
left blank, the system will automatically generate one for you.
However, a target alias must be supplied, once again, you may add
the TCP port on which the initiator and target communicate. By
default, this is port 3260. Other settings include Authentication
(CHAP/Mutual CHAP) and the network to use for iSCSI. A network
selection is presented since the iSCSI Targets can be configured to
use different networks than that defined for the service. Note that

during the creation of the iSCSI target a storage policy can be
selected. If the Auto policy management feature is enabled, then by
default the optimal policy is shown under storage policy during both
the iSCSI target and iSCSI LUN creation.

Figure 142: vSAN iSCSI Target Create

Create a vSAN iSCSI LUN

The vSAN iSCSI Target should now be visible in the vSphere client.
From here, vSAN iSCSI LUNs can now be created. This is the step
that defines among other things, the size of the volume. The main
consideration here is to assign a LUN ID.

Figure 143: vSAN iSCSI LUN Create

Create a vSAN iSCSI Initiator Group

The final step is to grant access to the target (and any LUNs on the
target) to the remote initiators. To do this, the initiators first need to
be added to an initiator group. This can be done at various points in
the UI. One way is via the iSCSI Target Service. From there, select
the Initiator Groups view. Next, under the vSAN iSCSI Initiator
Groups, click on Add. This opens a wizard which requests you to
provide an initiator group name and add the initiator(s) IQN. The
IQN is a specifically formatted identifier, which looks something like
iqn.YYYY.MM.domain:name. Note that this IQN comes from the
remote initiator; it is not the local vSAN target initiator.

Figure 144: vSAN iSCSI Initiator Create

The initiator group must now be given access to the target. In the
Initiator Groups view, under Accessible Targets, click on Add, and
add the vSAN iSCSI target created previously. This now completes
the step of granting members of the initiator group “deepdivebook-
initiators” access to target “deepdivebook”, and thus access to LUN
ID 0 which was created on that target.

The vSAN iSCSI Target Service is intended for a very specific set of
use cases. This service is intended to provide a block-based volume
for external physical servers running Windows or Linux. It can also
provide a block-based volume for guest VMs. This helps
administrators accommodate legacy workload configurations running
on physical systems or virtual machines. The vSAN iSCSI service
does not support presenting iSCSI targets and LUNs to other ESXi
hosts, or any third-party hypervisor. Other operational considerations
include the following:

L3 Routing between initiators and targets (on the vSAN iSCSI
network) is supported
Jumbo Frames (on the vSAN iSCSI network) is supported
IPv4 and IPv6 are both supported
IPsec / IP Security supported (available on ESXi hosts using
IPv6 only)

NIC Teaming configurations (on the vSAN iSCSI network)
supported
iSCSI feature Multiple Connections per Session (MCS) not
supported

vSAN iSCSI Target Service and vSAN Stretched
Cluster

One final consideration is related to vSAN Stretched Clusters and
iSCSI. Let’s first describe a little about the iSCSI on vSAN
architecture. With the iSCSI implementation on vSAN, there is the
concept of a target I/O owner for vSAN iSCSI. The I/O owner is what
the iSCSI initiator connects to. However, the I/O owner may be on a
completely different vSAN node/host to the actual iSCSI LUN backed
by a vSAN VMDK object. This is not a problem for vSAN deployments,
as this can be considered akin to a VM’s compute residing on one
vSAN host and the VM’s storage residing on a completely different
vSAN host. This ‘non-locality’ feature of vSAN allows us to do
operations like maintenance mode, vMotion, capacity balancing, and
so on without impacting the performance of the VM. The same is true
for the vSAN iSCSI Target Service implementation; an administrator
should be able to move the I/O owner to a different host, and even
migrate the iSCSI LUNs to different hosts while not impacting iSCSI
performance. This enables the vSAN iSCSI implementation to be
unaffected by operations such as maintenance mode, balancing
tasks, and of course any failures in the cluster.

The key issue however is if the initiator is somewhere on-site A, and
the target I/O owner is on site B. In this case, the iSCSI traffic (as
well as any vSAN traffic) will need to traverse the inter-site link. In a
nutshell, there could be an additional inter-site trip for iSCSI traffic,
and this is why VMware did not support iSCSI on vSAN Stretched
Clusters for some time. A mechanism to offer some sort of locality

between the iSCSI initiator and the target I/O owner was needed.
Fortunately, this has been accounted for in recent editions of vSAN,
as described in chapter 4, and is available in the ESA.

Once the I/O owner has been placed correctly, and the iSCSI
initiator does not have to traverse the interconnect to communicate,
we can consider the behavior of iSCSI LUNs in a vSAN stretched
cluster. A scenario could arise where the I/O owner is residing on
one site in the stretched cluster, whilst the actual vSAN object
backing the iSCSI LUN (VMDK) could be on the other site. This is not
an issue. For write workloads, no matter if it is VM or iSCSI, all the
traffic between the iSCSI initiator (which has established
connectivity through the I/O owner) and the iSCSI target has to
traverse the inter-site link since write data is written to both sites
anyway (RAID-1). Thus, writes are not a concern. When it comes to
read workloads, the ability to read data from the local site for both
iSCSI and VM workloads is available, avoiding the need to traverse
the inter-site link. This means that it doesn’t matter which site the
I/O owner resides. The real concern is to be able to place the
initiator and the I/O owner on the same site, and this functionality is
now available.

vSAN File Service

The native file services capability introduced in version 7.0 of vSAN
is not supported in vSAN 8.0 or vSAN 8.0 U1 when using the ESA. If
you are interested in using vSAN File Services immediately, you can
continue to use this capability found in the vSAN OSA. Enhancements
continue to be introduced with the vSAN file services, up to and
including vSAN 8.0 U1.

vSAN HCI Mesh / Remote vSAN Datastores

vSAN HCI Mesh allows administrators to mount the datastore of
another vSAN cluster. This allows VM instances to consume compute
and memory resources on one cluster while consuming storage
resources of another cluster. The VMs in the clusters consuming the
storage resources of a vSAN cluster can be residing in a vSAN cluster
or a vSphere cluster.

One of the most significant benefits of this is the ability to consume
available datastore capacity found on another cluster, or to perhaps
use cluster-specific services on another cluster, such as data-at-rest
encryption. With HCI Mesh, a VM instance would be running on what
is referred to as a client cluster, while the data for that VM is stored
on what is referred to as a server cluster.

The hosts in a client cluster do not require any vSAN licenses to
connect to a server cluster, but they need to reside in a vSphere
cluster to allow a connection. A client cluster can be as small as a
single host, but as with other topologies, single-host vSphere clusters
give up some of the fundamental benefits of clustering, so a client
cluster of greater than one is highly recommended. As of vSAN 8.0
U1, for the ESA, the client and server clusters must be managed by
the same vCenter Server.

Mount a Remote vSAN Datastore

With the vSAN ESA in vSAN 8.0 U1, the ability to mount a remote
datastore is dependent on the fact that the datastore resides in the
same datacenter in the vCenter Server inventory. To mount the
remote datastore, navigate to one of the clusters in the data center
and select Configure > vSAN > Remote Datastores. This should

automatically provide a view of the local vSAN datastore, as shown
below if one exists.

Figure 145: HCI Mesh Remote Datastores (Local)

By clicking on the “Mount Remote Datastore” option, a list of vSAN
datastores belonging to vSAN clusters within the same datacenter is
displayed.

Figure 146: HCI-Mesh Mount Remote Datastore

When the remote datastore is selected as a mount candidate, several
compatibility checks are run to ensure that the requirements are met,
and that none of the limitations around HCI Mesh are exceeded.
Figure 147 shows the list of compatibility checks.

Figure 147: HCI-Mesh Remote Datastore Compatibility Check

There are a significant number of compatibility checks. These ensure
that neither the source nor the destinations cluster is a 2-node or
vSAN stretched cluster, both of which are currently unsupported with
HCI Mesh. It also checks licensing and ensures that none of the
mounting limits are exceeded. Also important is ensuring there are
low latency, and high bandwidth connections between the local and
remote clusters.

Once the mount operation completes, the remotely connected
datastores can be viewed in the same Remote Datastores view that
we just completed the mounting of the datastore, shown in the image
below. A Remote Datastores view is also available when highlighting
the vCenter Server in the vSphere Client and clicking Configure >
vSAN > Remote Datastores.

Figure 148: HCI-Mesh Local and Remote datastore

Note the VM Count column. The VM Count is only referring to virtual
machines owned by the local cluster on the remote vSAN datastore.
There could be virtual machines deployed to this datastore by the
vSAN cluster that “owns” the vSAN datastore, i.e., its local vSAN
cluster, or indeed other remote clusters that are also mounting the
datastore. They do not show up in the VM Count. Only VMs created by
this cluster appear in this column.

VMs are provisioned on remote datastores in the same way as VMs
are provisioned on local datastores. Customers select a storage
policy when provisioning a VM, and both local and remote datastores
which are compliant with the policy are shown as suitable datastores
for the deployment. In the polices chapter earlier in this book, we saw
how storage rules could be used to differentiate between multiple
vSAN datastores, including those that are encrypted, have
deduplication and compression capabilities as well as choosing
between hybrid and all-flash vSAN datastores. See the Storage rules
section in chapter 5 for further details.

HCI Mesh and vCLS

Some additional operational considerations need to be considered
when working with HCI-Mesh. The first of these relates to the
VMware vSphere Cluster Services (vCLS) virtual machines. vCLS is a
mechanism that decouples both vSphere DRS and vSphere HA from

vCenter Server. vCLS ensures the availability of critical services even
when vCenter Server is impacted by a failure.

vCLS is a consideration if the remote vSAN datastore is the only
datastore available to a compute cluster. In such a case, vCenter
Server / ESX Agent Manager (EAM) will try to provision the vCLS VMs
onto the remote vSAN datastore. The remote vSAN datastore may not
be the most optimal datastore – perhaps it is only mounted to the
cluster temporarily. In the past administrators had no control over
the placement of the vCLS VMs, but recent editions of vSAN allow
administrators to choose which datastore to use for vCLS and
prevent it from using the remote vSAN datastore. Navigate to Cluster
> Configure > vSphere Cluster Services > Datastore and click on the
‘Add’ button to choose which datastores to use for vCLS, as shown
below.

Figure 149: Selecting a vCLS datastore

Similarly, if you are using an HCI Mesh with a single ESXi node in the
vSphere cluster, then neither DRS nor HA is relevant. Thus, vCLS can
be disabled. This is achieved by enabling a feature called ‘Retreat
Mode’ for vCLS. Refer to VMware KB article 80472 for details on how
to turn on ‘Retreat Mode’.

One final consideration for administrators relates to maintenance
mode. Administrators should now be cognizant of the fact that a
vSAN datastore may be used by both the local cluster as well as
remote clusters. Any maintenance mode operation could adversely
impact the remote workloads on the shared vSAN datastore, not just
the local ones. Actions that impact availability or performance, such

https://kb.vmware.com/s/article/80472

as rebuilding and resynching of objects, will also affect objects
belonging to remote workloads. It is something administrators, who
so far have only needed to worry about local workloads, will need to
consider when doing maintenance on clusters participating in HCI
Mesh. This is especially true when doing operations such as taking a
complete cluster offline for maintenance.

HCI Mesh Requirements and Limitations

This section attempts to highlight the main requirements and
limitations of HCI Mesh as they relate to the vSAN ESA. Note that
these are accurate at the time of writing, but many may change over
time, as updated releases of vSAN appear. Once again, the authors
recommend checking the vSAN Release Notes for future releases to
see if any of these requirements/limitations have changed or been
relaxed.

HCI Mesh for vSAN ESA requires vSAN 8.0 U1 or later
running on the server cluster
Client clusters must be running vSphere or vSAN 8.0 U1 or
later
Stretched Clusters and 2-node configurations are not
supported when using HCI Mesh with vSAN ESA
A vSAN Datastore can be mounted by a maximum of 10 vSAN
client clusters
A vSAN cluster can mount a maximum of 5 remote vSAN
datastores
A vSAN Datastore can be mounted by up to 128 hosts. This
includes the “local hosts” for that vSAN Datastore
For vSAN ESA, both the mounting host/cluster and remote
cluster need to be managed by the same vCenter Server and
appear in the same Datacenter

25Gbps connectivity is required with 100Gbps preferred
L2 and L3 connectivity are both supported
RDMA is not supported
IPv6 needs to be enabled on the hosts
Network Load Balancing: LACP, Load-based teaming, and
active/standby are all supported.
Network Load Balancing: Dual VMkernel configuration / air-
gapped configurations are explicitly not supported
Data-in-transit encryption is not supported, data-at-rest
encryption is supported
VMs cannot span datastores, in other words, you cannot store
the first VMDK on the local vSAN datastore and the second
VMDK of the same VM on a remote vSAN datastore
Remote provisioning (on a mounted remote vSAN datastore)
of vSAN File Shares, iSCSI volumes, and/or CNS persistent
volumes is not supported
vSphere client clusters can mount a remote datastore
powered by vSAN ESA, or vSAN OSA, but the client cluster
can only mount one type. The client clusters cannot mount a
mixture of remote vSAN ESA and vSAN OSA clusters.

Failure Scenarios

We have already discussed some of the failure scenarios in Chapter
4, “Architectural Details,” and in Chapter 5, “VM Storage Policy and
VM Provisioning”. In those chapters, we explained the difference
between absent components and degraded components. From an
operational perspective, though, it is good to understand how a
storage device failure, network problem, or host failure impacts your
vSAN cluster. Before we discuss them, let’s first shortly recap the two
different failure states, because they are fundamental to these
operational considerations:

Absent: vSAN does not know what has happened to the
component that is missing. A typical example of this is when
a host has failed; vSAN cannot tell if it is a real failure or
simply a reboot. When this happens, vSAN waits for 60
minutes by default before new replica components are
created. This is called the CLOM delay timeout, CLOM being
shorthand for Cluster Level Object Manager.
Degraded: vSAN knows what has happened to the
component that is missing. A typical example of when this
can occur is when a storage device has failed, and it is
generating sense codes for the NVMe devices that allow
vSAN to understand that this device has failed and is never
recovering. When this happens, vSAN instantly spawns new
components to make all impacted objects compliant again
with their selected policy.

One other feature that should be mentioned here is the concept of
durability components or delta components, which are part of the
OSA, and introduced with limitations for the ESA in vSAN 8.0 U1.
Durability components provide a mechanism to maintain the required
level of resilience for vSAN objects (e.g., virtual machines) when
components go absent. If a host is placed into maintenance mode, a
durability component is created on behalf of the components stored
on that host, ensuring all recently written data remains resilient. An
ancillary benefit to durability components is that once a host exits
out of maintenance mode, the updated data can be merged quickly
into the primary components that comprise an object.

For the ESA, the support of durability components is limited to
objects using RAID-5 or RAID-6 erasure coding and is used on
during planned maintenance activities, such as entering a host into
maintenance mode.

Now that you know what the different states are, and understand the
concept of durability components, let’s look again at the different

types of failures, or at least the “most” common, and what the impact
is. Note that in all the scenarios below, durability components are
used to improve both the resync times and provide a higher level of
availability to vSAN

Storage Device Failure

A storage device failure is probably the most common failure that
can happen in any storage environment, and vSAN is no different.
The question, of course, is this: How does vSAN handle a storage
device failure? What if it is doing a write or read to or from that
device after it has failed?

The vSAN ESA has simplified the considerations of storage devices
claimed by the cluster. Since the ESA does not use the concept of
disk groups, nor discrete caching devices, we no longer need to
contemplate the failure scenarios around disk groups and the
behavior of a failure of a discrete capacity device versus a caching
device. The vSAN ESA treats all claimed devices as individual
contributors of storage. Thus, if a storage device fails, it only impacts
the data on that device.

If a read error is returned from a storage component in a RAID-1
configuration, vSAN checks to see whether a replica component
exists and reads from that instead. Every RAID-1 object is created, by
default, with failures to tolerate set to 1, which means that there are
always two identical copies of your object available.

There are two separate scenarios when it comes to reading data. The
first one is where the problem is recoverable, and the second one is
an irrecoverable situation. When the issue is recoverable, the I/O
error is reported to the Distributed Object Manager (DOM) object
owner. A component re-creation takes place to replace the failed one.
This new component is synchronized with the help of the

functioning/working component or components, and when that is
completed, the errored component is deleted. However, if for
whatever reason, no replica component exists, vSAN will report an
I/O error to the VM. This is an unlikely scenario and something an
administrator would have had to create a policy with failures to
tolerate of 0 specifically set, or there have been multiple failures or
maintenance mode operations on the cluster.

Like read errors, write failures are also propagated up to the DOM
object owner. The components are marked as degraded, and a
component re-creation is initiated. When the component re-creation
is completed, the cluster directory (cluster monitoring, membership,
and directory service [CMMDS]) is updated.

As mentioned previously, the vSphere Client provides the ability to
monitor how much data is being resynced in the event of a failure.
Selecting the vSAN cluster object in the vCenter Server inventory,
then selecting Monitor, vSAN, and then “Resyncing Objects” will show
this information. It will report on the number of resyncing objects, the
bytes left to resync, and the estimated time for the resyncing to
complete, as shown below.

Figure 150: Resyncing Objects

Storage Device Failure with Erasure Coding

As you have read in chapter 5, “VM Storage Policies and VM
Provisioning”, the vSAN ESA supports different data placement
schemes. In addition to RAID-1, vSAN supports both RAID-5 and
RAID-6 erasure coding, which allows data to be stored resiliently,
with higher levels of space efficiency than RAID-1 mirroring, and with
the ESA, no compromises in performance.

For the vSAN ESA, RAID-5 uses one of two erasure coding schemes
depending on the size of the cluster. For cluster sizes smaller than 6
hosts, it will use a 2+1 scheme, spreading the data and parity
fragments across a minimum of 3 hosts. For cluster sizes that are 6
or more hosts, it uses a 4+1 schema, spreading the data and parity
fragments across a minimum of 5 hosts. Both of these RAID-5

erasure codes can tolerate one host failure while maintaining data
availability. To tolerate two failures, one can use a RAID-6 erasure
code. It will use a 4+2 scheme, which spreads the data and parity
fragments across a minimum of 6 hosts.

To understand how failures are handled with erasure coding, it is
important to understand that it uses Exclusive OR (XOR) operations
on the data to calculate the parity. With RAID-5, let’s take the
example of a single disk failure. If it is simply the parity fragment of a
VM that is impacted, then obviously reads and writes can continue to
flow, but there is no protection for the VM until parity is rebuilt
elsewhere in the cluster. If it is one of the data fragments that is
impacted, then the missing data blocks are calculated for reads by
using the remaining data components and the XOR parity results.
With these pieces of information, the missing data blocks can be re-
calculated if an I/O request is issued prior to the data being rebuilt.
This is known as an inline functional repair.

With RAID-6, there is a double parity calculation to allow any VM with
this policy setting to tolerate a double failure. If the double failure
impacts both parity segments, then that is ok since we still have a full
copy of the data. If it impacts 2 data segments, then that is ok since
the data can be rebuilt using the remaining data and the parity. If the
double failure impacts both a data segment and a parity segment,
then this is ok as well as we simply rebuild the missing data blocks
using the remaining data blocks and the remaining parity segment,
similar to the approach described with RAID-5 erasure coding.

The advantage of erasure coding versus RAID-1 mirroring is
guaranteed levels of space savings when storing data resiliently.
Since the vSAN ESA uses a log-structured file system in a way that
always stores the data as a fully aligned, full stripe writes, it does not
have the performance penalties that were commonly associated with
erasure coding when using the OSA.

Host Failure

Assuming vSAN VM storage policies have been created with failures
to tolerate set to at least 1, a host failure in a vSAN cluster is like a
host failure in a cluster where the storage device has failed. The main
difference is that the vSAN host that has failed will have outdated
object components when the host returns.

In the case of a host failure, after 60 minutes vSAN will start re-
creating components because vSAN assumes the likelihood of the
host returning online is now slim. Most likely this is not a transient
failure. When the reconstruction of the storage objects is completed,
the cluster directory (CMMDS) is once again updated with new
information about the object. In fact, it is updated at each step of the
process, from failure detection to the start of resync, resync progress,
and when the rebuild is complete.

The ESA uses much of the same detection and repair logic found in
recent versions of the OSA. For example, if a failed host comes back
online sometime after the CLOMD repair delay timeout has expired,
vSAN will look at the amount of the data remaining for the new
component to complete rebuilding and compare it to how long it
would take to repair the component on the host that was previously
offline. It will then choose the option that will be quickest to
complete and discard the unused component after the
resynchronization completes. vSAN maintains a bitmap of changed
blocks in the event of components of an object being unable to
synchronize due to a failure on a host, network, or storage device.
This allows updates to vSAN objects composed of two or more
components to be reconciled after a failure. Let’s use a RAID-1
example to explain this. If a host with replica A of object X has been
partitioned from the rest of the cluster, the surviving components of
X have a quorum and data availability, so they continue functioning
and serving writes and reads. These surviving components of X are

the other capacity leg replica/mirror and possibly one or more of the
performance leg replicas/mirrors. While A is “absent,” all writes
performed to X are persistently tracked in a bitmap by vSAN, that is,
the bitmap is tracking the regions that are still out of sync. If the
partitioned host with replica A comes back and vSAN decides to
reintegrate it with the remaining components of object X, the bitmap
is used to resynchronize component A.

vSAN will also be able to resume resynchronization should there be
any interruption in the repair process, possibly caused by a transient
network interruption. This type of safeguard allows vSAN to recognize
data already resynchronized prior to the interruption and prevents
unnecessary reprocessing of already resynchronized data.

While the vSAN ESA uses much of the same detection and repair
logic found in recent versions of the OSA, the one exception at the
time of this writing is the use of durability components. The use of
durability components in the ESA is limited to vSAN 8.0 U1 and will
only be used during planned maintenance events such as entering a
host into maintenance mode. Whereas the OSA will use durability
components for unplanned host failures in addition to planned
maintenance events.

We’ve covered how vSAN handles data failures, but what happens to
a VM? When a host has failed, all VMs that were running on the host
at the time of the failure will be restarted by vSphere HA. vSphere HA
can restart the VM on any available host in the cluster whether or not
it is hosting vSAN components, as demonstrated in the next diagram.

Figure 151: vSAN 1 host failed, HA restart

In the event of an isolation of a host, vSphere HA can and will also
restart the impacted VMs. As this is a slightly more complex
scenario, let’s look at it in more depth.

Network Partition

A vSAN network partition could occur when there is a vSAN network
failure. In other words, some hosts can end up on one side of the
vSAN cluster, and the remaining hosts on another side. vSAN health
findings will surface warnings related to network issues in the event
of a partition. There has also been a significant enhancement to
Network in the recent version to assist with troubleshooting network
issues.

After explaining the host and disk failure scenarios in the previous
sections, it is now time to describe how isolations and partitions are
handled in a vSAN cluster. Let’s look at a typical scenario first and
explain what happens during a network partition based on this
scenario.

In the scenario depicted in the next diagram, vSAN is running a
single VM on ESXi-01. This VM has been provisioned using a VM
storage policy that has the number of failures to tolerate set to 1
using RAID-5. We will use RAID-5 erasure coding in these examples
since RAID-5 and RAID-6 will be the dominant data placement
scheme used for most clusters using the ESA.

Figure 152: vSAN I/O flow: Failures to tolerate = 1

Because vSAN has the capability to run VMs on hosts that are not
holding any active storage components of that VM, this question

arises: What happens in the case where the network is isolated? As
you can imagine, the vSAN network plays a big role here, made even
bigger when you realize that it is also used by vSphere HA for
network heart beating. For that reason, as mentioned before, vSAN
must be configured before vSphere HA is enabled, so that the vSAN
network is used. The following steps describe how vSphere HA and
vSAN will react to an isolation event:

HA will detect there are no network heartbeats received from
esxi-01 on the vSAN network.
HA primary will try to ping the secondary esxi-01.
HA will declare the secondary esxi-01 is unavailable.
VMs on esxi-01 will be restarted on one of the other hosts, as
shown in the next diagram.
The vSphere administrator, through the vSphere HA isolation
response setting, decides what happens to the original VM
on the isolated host. Options are to power off, leave powered
on, or disable. We recommend using power off.

Figure 153: vSAN partition with one host isolated: HA restart

What if something has gone terribly wrong in my network and esxi-01
and esxi-04 end up as part of the same partition? What happens to
the VMs then? Well, that is where quorum voting helps to make
decisions on what actions to take. The next diagram should make it a
bit easier to understand the behavior.

Figure 154: vSAN partition with multiple hosts in a partition

Now this scenario is indeed slightly more complex. There are two
partitions. One partition is running the VM and has a portion of the
capacity leg erasure coded stripe with parity and a performance leg
component. Another partition has the other portion of the capacity
leg erasure coded stripe with parity and a performance leg
component. Guess what happens? For RAID-5, vSAN uses the vote
count of the capacity and performance leg components in a partition
to determine if any partition has quorum, which partition that should
be. In this case, partition B has more than 50% of the
components/votes of this object and therefore is the winner. This
means that the VM will be restarted on either esxi-02 or esxi-03 by
vSphere HA. Note, however that as this is a partition scenario and not
an isolation. The isolation response will not be triggered, and as such
the VM running on esxi-01 will not be powered off! The VM running

on esxi-01 will not be able to access the vSAN datastore however, as
it has lost quorum!

We would like to stress that it is highly recommended to set the
isolation response to power off, even though it does not help in the
above scenario.

But what if esxi-01 and esxi-04 were isolated, what would happen
then? The next diagram will show this, but as expected the result
would be very similar to the partition above.

Figure 155: vSAN 2 hosts isolated: HA restart

Remember the rule we discussed earlier?

“The winner is declared based on the percentage of
components available or percentage of votes available within

that partition.”

If the partition has access to more than 50% of the components or
votes (of an object), it has won. For each object, there can be at most
one winning partition. This means that when esxi-01 and esxi-04 are
isolated, either esxi-02 or esxi-03 can restart the VM because 60%
of the components of the RAID-5 object reside within this part of the
cluster.

To prevent these scenarios from occurring, it is most definitely
recommended to ensure the vSAN network is made highly available
through NIC teaming and redundant network switches, as discussed
in Chapter 3, “vSAN Installation and Configuration.” Note that in the
above situation, as these hosts are isolated from the rest of the
network, the isolation response will be triggered and the VM running
on esxi-01 will be powered off by vSphere HA.

vCenter Server Failure Scenario

What if you would lose the vCenter Server? What will happen to vSAN,
and how do you rebuild this environment? Even though vSAN is not
dependent on vCenter Server, other components are. If, for instance,
vCenter Server fails and a new instance needs to be created from
scratch, what is the impact on your vSAN environment?

After you rebuild a new vCenter Server, you simply recreate a new
vSAN-enabled cluster and add the hosts back to the cluster. vCenter
Server is responsible for tracking the membership of hosts in a vSAN
cluster. It uses a configuration generation identification number to
continuously track the member state of the vCenter Server and the
vSAN-enabled ESXi hosts. If vCenter Server is unavailable for a
certain length of time, once it reestablishes communication with the
vSAN cluster, it compares this generation ID number with the ESXi

hosts. If they are not the same, vCenter Server realizes that changes
have taken place since it was last online, so it requests an update
from all of the hosts in the cluster to make sure its configuration is
synchronized. There is no need for any administrative action here;
this is all taken care of automatically. The latest configuration
Generation number can be viewed on the ESXi hosts via the
command esxcli vsan cluster get.

One additional consideration, however, is that the loss of the vCenter
Server will also mean the loss of the VM storage policies that the
administrator has created. SPBM will not know about the previous VM
storage policies and the VMs to which they were attached. vSAN,
however, will still know exactly what the administrator had asked for,
policy-wise, and keep enforcing it. Today, there is no way in the UI to
export existing policies, but there is an application programming
interface (API) for VM storage policies has been exposed. Using
PowerCLI, administrators can export, import, and restore policies
very quickly and easily. Refer to the official PowerCLI documentation
(https://vmwa.re/powercli) for more detail on SPBM cmdlets.

https://vmwa.re/powercli

Summary

vSAN has always provided the ability to easily accommodate change.
The ability to scale up and scale out clusters as needed and connect
to resources in other clusters all through the same UI makes many
day-2 related tasks easy. With the introduction of the ESA, the vSAN
team was able to take many of these common operational tasks, such
as disk management, even easier and more intuitive in the UI. For
those who prefer the command line, esxcli is a great alternative to
the vSphere Client. For those who prefer PowerShell, VMware has a
wide variety of PowerCLI to help automate your management tasks.

Chapter 7

Stretched Cluster Use Case

This chapter was developed to provide insights and additional
information on a very specific type of vSAN configuration, namely
stretched clusters. In this chapter, we will describe some of the
design considerations, operational procedures, and failure scenarios
that relate to a stretched cluster configuration specifically. But first,
why would anyone want a stretched cluster?

Stretched cluster configurations offer the ability to balance VMs
between datacenters. The reason for doing so could be anything, be
it disaster avoidance or, for instance, site maintenance. All of this can
be achieved with no downtime from a VM perspective since compute,
storage, and network are available across both sites. On top of that, a
stretched cluster also provides the ability to actively load balance
resources between locations without any constraints when desired.

What is a Stretched Cluster?

Before we get into it, let’s first discuss what defines a vSAN stretched
cluster. When we talk about a vSAN stretched cluster, we refer to the
configuration that is deployed when the stretched cluster workflow is
completed in the vSphere Client. This workflow explicitly leverages a

witness host, which can be physical or virtual, and needs to be
deployed in a third site. During the workflow, the vSAN cluster is set
up across two sites, with preferably an identical number of ESXi hosts
distributed evenly between the two sites and as stated, a witness
host residing at a third site. The data sites are connected via a high
bandwidth/low latency network link. The third site hosting the vSAN
witness host is connected over a network to both active/active “data”
sites. The connectivity between the data sites and the witness site
can be via lower bandwidth/higher latency network links. The diagram
below shows what this looks like from a logical point of view.

Figure 156: Stretched cluster scenario

Each site is configured as a vSAN fault domain. A maximum of three
sites (two data, one witness) is supported in a stretched cluster
configuration.

The nomenclature used to describe a vSAN Stretched Cluster
configuration is X+Y+Z, where X is the number of ESXi hosts at data
site A, Y is the number of ESXi hosts at data site B, and Z is the
number of witness hosts at site C. Data sites are where VMs are
deployed. The minimum supported configuration is 1+1+1 (3 nodes).
Starting with vSAN 7.0 U2 the maximum configuration is 20+20+1
(41 nodes).

In vSAN stretched clusters, there is one witness host in a third
location. For deployments that manage multiple stretched clusters,
each cluster must have its own unique witness host, the shared
witness deployment described in chapter 8 is not supported for a
stretched cluster configuration at the time of writing. As mentioned
before however, this witness host can be a virtual appliance, which
does not even require a vSphere or vSAN license and is our preferred
method of deployment for the witness.

By default, when a VM is deployed on a vSAN stretched cluster, it is
deployed with a RAID-1 configuration. In previous versions of vSAN
this was referred to as primary failures to tolerate. Thus, it will have
one copy of its data on site A, the second copy of its data on site B,
and a witness component placed on the witness host in site C. This
configuration is achieved through fault domains. In the event of a
complete site failure, there will be a full copy of the VM data as well
as greater than 50% of the components available in the remaining
two locations. This will allow the VM to remain available on the vSAN
datastore. If the site which fails is the site where the VM is running,
then the VM needs to be restarted on the other data site, vSphere HA
will handle this task.

Note, however, that vSAN also provides the ability to specify what the
level of protection within a site location should be. In previous
versions of vSAN, this was referred to as secondary failures to
tolerate. But before we dive further into all policy options, let’s look at
the configuration process first.

Requirements and Constraints

vSAN ESA stretched cluster configurations require vSphere 8.0.0 at a
minimum. This implies both vCenter Server 8.0 and ESXi 8.0. This is
the minimum version required for vSAN ESA stretched cluster
support. However, we strongly recommend implementing the latest
available version of vSAN, which at the time of writing is vSAN 8.0
Update 1. We have mentioned ESA a few times already, and at this
point you may wonder why? Well, when it comes to vSAN OSA and
vSAN ESA there are some differences, and even reasons why it may
make more sense to go with vSAN ESA over vSAN OSA when
deploying a stretched cluster configuration, we will explain that later
in this chapter in a bit more detail.

From a licensing point of view, vSAN Enterprise is required to create
stretched cluster configurations larger than 1+1+1. Yes, that is right,
you could theoretically create a 1+1+1 stretched cluster configuration
with the vSAN Standard or vSAN Advanced license and not breach
the license agreement. However, in order to create a vSAN ESA
cluster, at minimum the vSAN Advanced license is required. This
means that it is possible to create a vSAN ESA 1+1+1 stretched
cluster configuration with the vSAN Advanced license. Any cluster
larger than 1+1+1 requires the vSAN Enterprise license.

There are no limitations placed on the edition of vSphere used for
vSAN. However, for vSAN Stretched Cluster functionality, vSphere
DRS is very desirable. DRS will provide initial placement of the
workload and can also help with migrating VMs to their correct site
when a site recovers after a failure. Otherwise, the administrator will
have to manually carry out these tasks. Note that DRS is only
available in the Enterprise Plus edition of vSphere.

As mentioned, both physical ESXi hosts and virtual appliances
(nested ESXi host in a VM) are supported for the witness host.

VMware is providing a pre-configured witness appliance for those
customers who wish to use it. A witness host/VM cannot be shared
between multiple vSAN stretched clusters. Also, note that VMware
does not support cross hosting of Witness Appliances in a scenario
where there are multiple stretched cluster configurations across two
locations. That means that you can’t run the witness of Stretched
Cluster A on Stretched Cluster B when these two clusters are
stretched across the same two geographical locations. At all times 3
locations are required to avoid any circular dependency during failure
scenarios.

One thing we would like to point out is that SMP-FT, the enhanced
Fault Tolerant VM mechanism introduced in vSphere 6.0, is
supported on standard vSAN deployments, but at the time of writing
is not supported on stretched cluster deployment. This support
statement is true for both vSAN and vSphere Metro Storage Cluster
(vMSC) based deployments unless you contain and pin all the SMP-
FT VMs to a single location. How to do this is explained later in this
chapter. The reason for this is the bandwidth and latency
requirements associated with SMP-FT. vSAN iSCSI is fully supported
in a vSAN ESA stretched cluster configuration.

Lastly, although vSAN ESA was not supported with HCI Mesh in vSAN
8.0, it is now supported with HCI-Mesh in 8.0 U1. However, we also
want to point out that starting with vSAN Original Storage
Architecture (OSA) version 8.0 U1, HCI Mesh and Stretched Clusters
are a supported combination. Again, at the time of writing, this
applies to vSAN OSA only, and such a configuration is not supported
with vSAN ESA stretched clusters.

Now that we have discussed some of the constraints, let’s look at the
vSAN stretched cluster bandwidth and latency requirements.

Networking and Latency Requirements

When vSAN is deployed in a stretched cluster across multiple sites,
certain networking requirements must be adhered to.

Between data sites both Layer 2 and Layer 3 are supported
Layer-2 is recommended for simplicity
Between the data sites and the witness site Layer 3 is
required
This is to prevent I/O from being routed through a potentially
low bandwidth witness site
Maximum round trip latency between data sites is 5ms
Maximum round trip latency between data sites and the
witness site is 200ms
A bandwidth of 25 Gbps between data sites is required for
vSAN ESA
A bandwidth of 100 Mbps between data sites and the witness
site is recommended

Networking in any stretched vSphere deployment is always a hot
topic. We expect this to be the same for vSAN stretched
deployments. VMware has published two documents that hold a lot of
detail about network bandwidth calculations and network topology
considerations. The above bandwidth recommendations are exactly
that, recommendations. Requirements for your environment can be
determined by calculating the exact needs as explained in the
following two documents.

vSAN stretched cluster bandwidth sizing guidance -
https://vmwa.re/bandwidth
vSAN stretched cluster guide - https://vmwa.re/stretched

https://vmwa.re/bandwidth
https://vmwa.re/stretched

Witness Traffic Separation and Mixed MTU

By default, when using vSAN Stretched Clusters, the Witness
VMkernel interface tagged for vSAN traffic must have connectivity
with each vSAN data node's VMkernel interface tagged with vSAN
traffic. It is also supported to have a dedicated VMkernel interface
for witness traffic separation on stretched cluster configurations. This
allows for more flexible configurations, but also lowers the risk of
having data traffic traverse the witness network. Configuration of the
Witness VMkernel interface at the time of writing can be achieved
through the command line interface utility esxcli. Below is an
example of the command used in our lab to designate the VMkernel
interface vmk1 to witness traffic.

esxcli vsan network ip add -i vmk1 -T=witness

Note that the vSAN Witness Host will only have a VMkernel interface
tagged for “vSAN Traffic”. It will not have traffic tagged as “Witness”.

One thing to note is that even in the case of witness traffic
separation it is still required to have different networks for vSAN
traffic and witness traffic. Not doing so may lead to multi-homing
issues and various warnings in vSAN Skyline Health.

vSAN ESA Efficiency

To ensure data resilience across sites, a vSAN stretched cluster must
send writes across an inter-site link (ISL). It must do so as efficiently
as possible as the ISL is limited by bandwidth and latency. To
address this, vSAN (both OSA and ESA) uses a "proxy owner" to
minimize the use of the ISL. It lives on the opposite site of the
object owner and will receive a cloned write from the object owner so
that it can process subsequent I/O within the site. In other words, in

the situation we sketched in the next diagram, a write from the VM
located on the preferred site is sent to the proxy on secondary
location before RAID-1 is applied within the secondary location.

Figure 157: Proxy Owner and vSAN ESA efficiency

In the vSAN ESA, the method described above remains the same, but
with a twist. The vSAN ESA compresses the data once before cloning
that write across the ISL, when compression is enabled. Ultimately,
this reduces the data sent across the ISL between the two sites for
the same workloads when using vSAN ESA. This new approach will
also provide a higher effective write throughput across the ISL, as
reducing the amount of data to transmit results in a lower amount of
consumed bandwidth. This ultimately enables you to run more VMs
on the same stretched cluster.

vSAN ESA also prepares the data differently than vSAN OSA. As
explained in previous chapters, it will coalesce many small writes in
memory before persisting the data to disk. Fewer I/Os that are larger

will reduce the number of write operations, and provide a more
uniform method of data delivery across the ISL. This more efficient
approach reduces resource utilization and can improve the
performance consistency of VMs in a stretched cluster.

When using the vSAN OSA, VM performance could be affected if the
VM used a storage policy that applied a secondary level of resilience
to the VM - especially RAID-5/6 erasure coding. This was primarily
due to the read-modify-write step that occurred when committing
that RAID-5/6 stripe with parity at each site before it could send the
write acknowledgment back to the guest VM.

The ESA in vSAN 8.0 writes data using fewer resources. It eliminates
the read-modify-write step when writing data resiliently using erasure
coding. Incoming write I/Os from the guest will be coalesced and
briefly written as a 2-way or 3-way mirror (depending on the storage
policy) before sending the write acknowledgment to the VM. This
approach is also used in a vSAN ESA stretched cluster, where the
write operation is cloned to the proxy owner, and the 2-way or 3-way
mirror occurs on each site before it writes it as an efficient, fully
aligned, full stripe write. Avoiding the read-modify-write sequence
found in the OSA can lower the write latency for your VMs while
freeing up additional host resources.

Another benefit of vSAN ESA over vSAN OSA is how RAID-5 has
been implemented. With vSAN OSA when the number of hosts within
each location is limited and you want to have local protection within
a location you unfortunately are limited to RAID-1. With vSAN ESA
you have the option to go for RAID-5. Depending on the size of the
cluster, you can deploy a 2+1 configuration or a 4+1 configuration in
each location as specified within the storage policy. Where a RAID-1
configuration has a 100% capacity overhead, RAID-5 in a 2+1
configuration only has a 50% overhead, yet both can be used on a
vSAN ESA 3+3+1 Stretched Cluster configuration. Before we go to

deep, let’s look at some other new concepts that are introduced when
configuring a stretched cluster first.

New Concepts in vSAN Stretched Cluster

A common question is how a stretched cluster differs from regular
fault domains. Fault domains enable what might be termed “rack
awareness” where the components of VMs could be distributed
amongst multiple hosts in multiple racks. Should a rack failure event
occur, the VM (from a storage point of view) would continue to be
available. These racks would typically be hosted in the same
datacenter, and if there were a datacenter-wide event, fault domains
would not be able to assist with VM availability.

A stretched cluster essentially builds on the foundation of fault
domains, and now provides what might be termed “datacenter
awareness.” A vSAN stretched cluster can now provide availability for
VMs even if a datacenter, or site, suffers a catastrophic outage. This
is achieved primarily through intelligent component placement of VM
objects across sites, alongside features such as site preference, read
locality, and the witness host.

The witness host must have a connection to both the master vSAN
node and the backup vSAN node to join the cluster (the master and
backup were discussed previously in Chapter 4, “Architectural
Details”). In steady-state operations, the master node resides in the
“preferred site”; the backup node resides in the “secondary site.”

Note that the witness appliance ships with its own license, so it does
not consume any of your vSphere or vSAN licenses. Hence it is our
recommendation to always use the appliance over a physical witness
host. The Witness Appliance also has a different icon in the vSphere
Client than a regular ESXi host, allowing you to easily identify the
witness appliance as shown below. This is only the case for the

witness appliance, however. A physical appliance will show up in the
client as a regular host and also requires a vSphere license!

Figure 158: Witness appliance icon

Another added benefit of the witness appliance is the operational
aspect of the witness. If for whatever reason maintenance is needed
on the physical host, the witness appliance will enable you to do
maintenance without disruption when the appliance runs on a
vSphere cluster as vSphere provides the ability to migrate the
appliance while running. On top of that, in case the witness appliance
fails, you also can simply replace the current witness by deploying a
new one and initiating the “Change Witness Host” wizard in the Fault
Domains section of the UI as shown in the next screenshot. Now, of
course, this is also possible when you have a spare physical host, but
in our experience, customers do not have unused hardware available
for a quick replacement.

Figure 159: Change witness host

Another new term that will show up during the configuration of a
stretched cluster, and was just mentioned, is “preferred site” and
“secondary site.” The “preferred” site is the site that vSAN wishes to
remain running when there is a network partition between the sites
and the data sites can no longer communicate. One might say that
the “preferred site” is the site expected to have the most reliability.

Since VMs can run on any of the two sites, if network connectivity is
lost between site 1 and site 2, but both still have connectivity to the
witness, the “preferred site” binds itself to the witness and gains
ownership over all components. The vSAN components on the
preferred site remain active, while the vSAN components on the
secondary site are marked instantly as absent as quorum is lost. This
also means that, in this situation, any VMs running in the secondary
site will need to be restarted in the preferred site to be usable and
useful again. vSphere HA, when enabled on the stretched cluster, will
take care of this automatically for you.

In non-stretched vSAN clusters, a VM’s read operations are
distributed across all replica copies of the data in the cluster. In the
case of a policy setting of Failures to tolerate =1 using RAID-1, which
results in two copies of the data, 50% of the reads will come from
replica 1, and 50% will come from replica 2. In the case of a policy
setting of Failures to tolerate =1 using RAID-5, which results in either
a 2+1 configuration or a 4+1 configuration, the reads will be
distributed across the cluster.

However, we wish to avoid this situation with a vSAN stretched
cluster, as we do not wish to read data over the inter-site link, which
could add unnecessary latency to the I/O and waste precious inter-
site link bandwidth. Since vSAN stretched cluster supports a
maximum of (primary) Failures to tolerate = 1, there will be two
copies of the data (replica 1 and replica 2). Rather than doing 50%
reads from site 1 and 50% reads from site 2 across the site link, the
goal is to do 100% of the read IO for any given VM from the local
site, wherever possible. In previous versions of vSAN, this was a per
host setting. Starting with vSAN 6.7U1, this setting, called Site Read
Locality, has been placed into the Advanced options under vSAN >
Configure > Services. This makes it extremely simple to set cluster
wide, as shown below:

Figure 160: Site Read Locality

The distributed object manager (DOM) in vSAN, is responsible for
dealing with read locality. DOM is not only responsible for the
creation of storage objects in the vSAN cluster, but it is also
responsible for providing distributed data access paths to these
objects. There is a single DOM owner per object. There are three
roles within DOM: client, owner, and component manager. The DOM
owner coordinates access to the object, including reads, locking, and
object configuration and reconfiguration. All object changes and
writes also go through the owner. In vSAN stretched cluster, an
enhancement to the DOM owner of an object means that it will now
consider the “fault domain” where the owner runs and will read 100%
from the replica that is in the same “fault domain.”

Witness Failure Resilience

Every installation of a vSAN stretched cluster has a witness host of
some sort. As mentioned, this can be a virtual appliance or a physical
host. The question that always arises is what about the availability of
the witness host, as it plays a crucial role during failure scenarios?

Over the years we have had customers asking if it was supported to
enable vSphere Fault Tolerance (FT) on a witness appliance. Common
questions pertained to whether or not they could clone the witness
appliance, leave it on standby, and power it on when the “active”
witness appliance had failed? Similarly, they asked if they should
back up the witness appliance? The answer to all these questions is
no. It is not supported to enable FT on the appliance, it is not
supported to backup and recover the appliance, and it is not
recommended to clone the appliance either.

Starting with vSAN 7.0 U3 a new feature was introduced around
Witness failure resilience. What is this feature exactly? Let’s look at
the diagram of the stretched cluster again.

Figure 161: Stretched cluster scenario

In the diagram, we have 3 locations. In the case where Site A fails, all
VMs will be restarted in Site B. If, however, at a later stage the
witness is impacted by a failure, all VMs running would be
inaccessible. Why? Well, 2 out of 3 sites have failed and as a result,
so we have lost quorum. This is where the new witness failure
resilience feature comes into play. Starting with vSAN 7.0 U3, when a
site has failed, vSAN will recalculate the votes for all objects. This is
because it is assuming that the witness may also be impacted by a
failure over time. This recalculation of votes can take up to five
minutes, depending on the number of objects/VMs. If the witness
now fails, after the recalculation has been completed, the VMs
(running in Site B) will remain running. As votes have been
recalculated quorum will not be lost.

In the “full site failure” scenario we will demonstrate what that looks
like from a votes perspective by inspecting the objects through rvc,
the Ruby vSphere Console command line tool, in the failure scenario
section of this chapter.

Configuration of a Stretched Cluster

The installation of a vSAN stretched cluster is almost identical to how
fault domains are implemented, with a couple of additional steps.
This part of the chapter will walk the reader through a stretched
cluster configuration.

Before we get started with the actual configuration of a stretched
cluster, we will need to ensure the witness host is installed,
configured, and accessible from both data sites. This will most likely
involve the addition of static routes to the ESXi hosts and witness
appliance, which will be covered shortly. When configuring your vSAN
stretched cluster, only data hosts must be in the (vSAN) cluster
object in vCenter Server. The witness host must remain outside of
the cluster and must not be added to the vSAN cluster.

The deployment of the witness host is pretty much straightforward
and like the deployment of most virtual appliances as shown below.
One thing to point out however is that there are different virtual
appliances on vmware.com/download available, one for the OSA and
one for the ESA. Make sure to download the correct one before you
get started. Also, in our example below we have used a version pre
8.0 U1, so the build number and version you will deploy will be
different. However, the process remains the same.

https://www.vmware.com/download

Figure 162: Witness appliance deployment

The only real decisions that need to be made is regarding the
expected size of the stretched cluster configuration, and of course
where the Witness Appliance is hosted. Note, that the witness
appliance should always be hosted in a third location, and it cannot
run on any of the ESXi hosts which are part of the stretched cluster
configuration. This to ensure that in the case of a site isolation vSAN
can properly determine who has ownership of the data. We have seen
customers hosting the witness appliance in one of the two locations
where their vSAN stretched cluster is also running. If the location
which holds the witness, and a portion of the vSAN stretched cluster
hosts, goes down, then the full stretched cluster will be unavailable as
quorum is lost.

There are two options offered in terms of size for vSAN ESA. As
shown in the below screenshot, a “large” deployment can hold up to
21,000 witness components. This means that if a VM consists of four
objects, the cluster can host up to 5250 VMs, as each object requires
a witness component to be stored on the witness host. The “Extra
Large” configuration can store up to 64,000 witness components.
So, depending on the number of objects per VM, and the number of
VMs per cluster, you will have to determine which Witness Appliance
size to deploy, in general Large should suffice.

Figure 163: Configuration size

Next, the datastore where the witness appliance will need to be
stored and the network that will be used for the witness appliance will
need to be selected. Note that you will need to specify the
destination network for both witness traffic (secondary network) and
management traffic.

Figure 164: Change of networks

Next, you will have the option to customize the OVF Template by
providing networking information, such as IP address and DNS, for
the management network. On top of that, the root password for the
virtual ESXi host will need to be entered on this screen as shown in
the screenshot below.

Figure 165: Change of networks

After this has been done and the witness has been deployed it can
be added to the vCenter Server inventory where the stretched cluster
configuration is deployed as a host. But remember not to add it to
any type of vSphere or vSAN cluster; it must remain outside the
cluster as a stand-alone host. When you add it to the vCenter Server,
make sure the “Virtual SAN Witness” license is selected as
demonstrated in the next screenshot.

Figure 166: Witness License

Once the witness appliance/nested ESXi host has been added to
vCenter Server, the next step is to configure the vSAN network
correctly on the witness. When the witness is selected in the vCenter
Server inventory, navigate to Manage > Networking > Virtual
Switches. The witness has two port groups predefined called
Management Network and secondaryPG. Do not remove these port
groups, as it has a special modification to make the MAC addresses
on the network adapters match the nested ESXi MAC addresses.

Figure 167: Nested ESXi and networking

Finally, before we can configure the vSAN stretched cluster, we need
to ensure that the vSAN network on the hosts residing in the data
sites can reach the witness host’s vSAN network, and vice-versa. To
address this, there are two options:

�. Define a static route
�. Override the default gateway for the vSAN VMkernel adapter

Static routes tell the TCP/IP stack to use a different route to reach a
particular network rather than using the default gateway. We can
instruct the TCP/IP stack on the data hosts to use a different network
route to reach the vSAN network on the witness host rather than via
the default gateway, and similarly, we can tell the witness host to use
an alternate route to reach the vSAN network on the data hosts rather
than via the default gateway.

Note once again that in most situations, the vSAN network is most
likely a stretched L2 broadcast domain between the data sites, but
L3 is required to reach the vSAN network of the witness appliance.
Therefore, static routes are needed between the data hosts and the

witness host for the vSAN network but may not be required for the
data hosts on different sites to communicate with each other over
the vSAN network.

The esxcli commands used to add a static route is:

esxcli network ip route ipv4 add –n <remote

network> -g <gateway>

As mentioned, the second option is to override the default gateway
and specify a specific gateway for your vSAN environment. This
gateway will need to have a route to your witness network. Using this
method avoids the need to manually enter routes using the CLI and
is preferred for most customers. The screenshot below shows how to
override the default gateway.

Figure 168: Override default gateway

Lastly, before we create the cluster, we will need to test the network
configuration. To do so, we use the vmkping –I <vmk> <ipaddress>
command to check that the witness and physical hosts can
communicate over the vSAN network. Now that the witness is up and
accessible, forming a vSAN stretched cluster takes less than a couple
of minutes. The following are the steps that should be followed to
install vSAN stretched cluster.

Configure Step 1a: Create a vSAN Stretched
Cluster

In this example, there are thirteen hosts available. Six hosts reside in
each site of this stretched cluster. The thirteenth host is the witness
host, it is in the same virtual datacenter and is not added to the
cluster, but it has been added as an ESXi host to this vCenter Server.
Note, that physically this witness host is located in a third location.
This example is a 6+6+1 deployment, meaning six ESXi hosts at the
preferred site, six ESXi hosts at the secondary site, and one witness
host in a third location.

Depending on how you are configuring your cluster you can decide to
either create the stretched cluster during the creation of the vSAN
cluster itself or do this after the fact in the fault domain view. Both
workflows are similar and so is the result. We are going to
demonstrate how to create a vSAN stretched cluster out of an
existing cluster, simply because we have already shown the
configuration of a normal cluster using the Quickstart workflow in
chapter 3.

Configure Step 1b: Create Stretch Cluster

If your vSAN cluster has already been formed, it is easy to create a
stretched cluster configuration separately. To configure stretched
cluster and fault domains when a vSAN cluster already exists,
navigate to the cluster object followed by Configure > vSAN > Fault
Domains view as shown below, and click on the button “configure” in
the stretched cluster section, which begins the stretched cluster
configuration.

Figure 169: Start of stretched cluster creation

Depending on whether you create the vSAN cluster as part of the
workflow you may need to claim disks as well when the vSAN cluster
is set up.

Configure Step 2: Assign Hosts to Sites

At this point, hosts can now be assigned to stretch cluster sites as
shown in the figure below. Note that the names have been
preassigned. As described earlier, the preferred site is the one that
will run VMs if there is a split-brain scenario in the cluster. In this
example, hosts esxi01 - esxi06 will remain in the preferred site, and
hosts esxi07 - esxi12 will be assigned to the secondary site.

Figure 170: Host selection and site placement

Configure Step 3: Select a Witness Host and
Claim Disks

The next step is to select the witness host. At this point, host
“witness.deepdivebook.com” is chosen. Note once again that this
host does not reside in the cluster. It is outside of the vSAN ESA
cluster.

Figure 171: Witness host selection

When the witness is selected, NVMe devices need to be chosen to
create a storage pool. This section, however, is only displayed when
not using the preconfigured Witness Appliance. We are including it in
the book for completeness sake. In our lab we used a virtual witness
but did not have the ability to test with the appliance yet, as it was
not available at the time of writing. The Witness Appliance is
available however at the time of the release of vSAN 8.0 U1.

Figure 172: Witness disk claim

Configure Step 4: Verify the Configuration

Verify that the preferred fault domain and the secondary fault
domains have the desired hosts, and that the witness host is the
desired witness host as shown below and click Finish to complete the
configuration.

Figure 173: Summary of a stretched cluster configuration

When the stretched cluster has completed configuration, which can
take several seconds, verify that the fault domain view is as expected,
as shown in the next screenshot.

Figure 174: Stretched Cluster view

Configure Step 5: Skyline Health Stretched
Cluster

Before doing anything else, use vSAN Skyline Health to ensure that
all the stretched cluster health findings have passed. Depending on
how the cluster is configured, you will potentially see various failed
health findings. This is probably because of the fact that we have just
stretched the cluster and various objects which reside on the cluster
are now stretched across the cluster incorrectly and are not adhering
to their associated policy.

Figure 175: Stretched cluster health

If we look at the “vSAN optimal datastore default policy
configuration” check first, then we immediately notice that vSAN has
recognized that the cluster is now a stretched cluster and that the
default policy is not stretched. The next screenshot demonstrates
this.

Figure 176: vSAN optimal datastore default policy configuration failed

What we will do next is change the configuration of the default policy
as suggested by the Skyline Health findings.

Figure 177: Default policy changes

After the changes are made, vSAN will inform you that the policy
(most likely) is being used by multiple objects and if you want to
apply the policy to those objects manually or now. We select now and
save the changes by clicking “Yes”. This will then automatically result
in a resync of those objects to ensure they are compliant again.

Figure 178: VM Storage Policy in Use

You can check the progress of the resync in the “Resyncing Objects”
view on your cluster object under Monitors - vSAN.

If we now click “Retest” on Skyline Health, some of our problems
should be resolved. Unfortunately, as can be seen in the next
screenshot, not all problems have been solved.

Figure 179: Skyline health findings

We still have these problems listed with various objects. Let us
inspect which objects these are in the “Virtual Objects” view under
“Monitor – vSAN”. As shown in the next screenshot, the only object
which is in a state of “reduced availability with no rebuild” is the
“Performance management object”.

Figure 180: Object Issues

The “Performance management object” is created automatically
when the vSAN cluster is formed. In order to correct this situation, we
will delete and recreate the performance management object using
rvc, the Ruby vSphere Console command line tool available on the
vCenter Server. How to use rvc is described in more depth at a later
stage, for now it is good to know that the following two commands
are available to solve this issue.

vsan.perf.stats_object_delete <cluster>

vsan.perf.stats_object_create <cluster>

Another option is to place all hosts of the “secondary” site in
maintenance mode with full data evacuation before creating the
cluster, and then click “repair object immediately” after the stretched

cluster has been created and hosts have been taken out of
maintenance mode again.

Figure 181: Repair immediately

The last step we would recommend customers to take is to validate
the latency between the hosts within the different location, and of
course we have a Skyline Health findings for that as well. We also
recommend enabling “health history” so that you have a history of
issues triggered in the past. This could potentially help with
troubleshooting or understanding certain failure scenarios and
responses better.

Figure 182: Skyline Health Stretched Cluster Latency

That is all it takes to create a stretched cluster from an existing
cluster. Note, these last couple of steps we have conducted, changing
the default policy, and repairing the object, would not have been
needed if we would have created the stretched cluster immediately
when we created the cluster itself. That may seem very easy from a
vSAN perspective, but there are some considerations from a vSphere
perspective to consider.

These are not required, but in most cases recommended to optimize
for performance and availability. The vSAN stretched cluster guide
(https://vmwa.re/stretched) outlines all vSphere recommendations in-
depth. Since our focus in this book is vSAN, we will not go into that
level of detail. Instead, you should refer to the stretched cluster
guide mentioned previously in this chapter.

We will however list some of the key recommendations for each of
the specific areas:

vSphere DRS:

Create a Host group per data site, containing each of the
hosts of a particular site.
Create VM groups per site, containing the VMs that should
reside in a particular site.

https://vmwa.re/stretched

Create a VM/Host rule to create affinity between the VM and
host groups.
Create a “should” rule for these affinity groups to ensure that
during “normal” operations, VMs reside in the correct site,
but do have the ability to failover when needed.

This will ensure that VMs will not freely roam around the stretched
cluster, it will help from an operational perspective to provide
insights around the impact of a full site failure, and it will allow you to
distribute VMs running scale-out services such as Active Directory
and DNS across both sites.

Lastly, we want to point out that starting with vSAN 7.0 U2 DRS is
tightly integrated with vSAN. In previous versions when a failure
occurred it could happen that when hosts recovered from the failure
that DRS would automatically migrate VMs back to their original
location. If a VM is moved, by DRS, to its original location before the
resync of its object had completed, vSAN would be unable to read
from the local site. Both the vMotion process, as well as the
traversing of read I/O could lead to a degradation of performance
and a prolonged resynchronization process. Starting with vSAN 7.0
U2, DRS will not migrate VMs of which objects are to be resynced.

Pre-vSAN 7.0 U2 customers would configure DRS to “manual” or
“partially automated” during these failure scenarios to avoid the
above situation. As a result of the integration between DRS and
vSAN, this is no longer needed as DRS knows which objects belong
to which VMs and which objects are being replicated!

vSphere HA:

Enable vSphere HA admission control and set it to use the
percentage-based admission control policy and to 50% for
both CPU and memory. This means that if there is a full site

failure, the remaining site has enough unreserved capacity to
power-on all of the VMs.
Make sure to specify additional isolation addresses, one in
each site using the advanced setting das.isolationAddress0
and das.isolationAddress1. The IP address needs to be on
the vSAN network. This means that in the event of a site
failure, a host in the remaining site can still ping an isolation
response IP address when needed on the vSAN network and
isolation can be validated, and when needed action can be
taken.
Configure the Isolation Response to “Power off and restart
VMs”.
Disable the default isolation address if it can’t be used to
validate the state of the environment during a partition.
Setting the advanced setting das.usedefaultisolationaddress
to false does this.
Disable the insufficient heartbeat datastore warnings, as
without traditional external storage you will not have any
datastores to use as vSAN datastores cannot be used for
datastore heart beating. Setting the advanced setting
das.ignoreInsufficientHbDatastore to true does this.

These settings will ensure that when a failure occurs, sufficient
unreserved resources are available to coordinate the failover and
power-on the VMs (admission control). These VMs will be restarted
within their respective sites as defined in the VM/host rules. In the
case of an isolation event, all necessary precautions have been taken
to ensure all the hosts can reach their respective host isolation
response IP address(es).

That is not of course where it stops, there is one important aspect of
availability in a stretched cluster that we will need to discuss first,
and this is policy settings.

Failures To Tolerate Policies

The vSphere Client uses the terminology “Site disaster tolerance”
and “Failures to tolerate” to explain the different levels of available
for a stretched cluster shown in the screenshot below.

Figure 183: vSphere Client VM storage policy for a stretched cluster

Let’s list all the different options which are available within the
vSphere Client for a stretched cluster configuration when defining a
policy:

Site Disaster Tolerance – None – standard cluster
Site Disaster Tolerance – Host mirroring – 2 node cluster
Site Disaster Tolerance – Site mirroring – stretched cluster
Site Disaster Tolerance – None – keep data on preferred
(stretched cluster)
Site Disaster Tolerance – None – keep data on secondary
(stretched cluster)
Site Disaster Tolerance – None – stretched cluster
Failures to tolerate – No data redundancy
Failures to tolerate – No data redundancy with host affinity
Failures to tolerate – 1 Failure – RAID-1
Failures to tolerate – 1 Failure – RAID-5
Failures to tolerate – 2 Failure – RAID-1

Failures to tolerate – 2 Failure – RAID-6
Failures to tolerate – 3 Failure – RAID-1

The first decision that needs to be made is the Site Disaster
Tolerance. This is the “Primary Level of Failures To Tolerate” and
specifies whether objects should be mirrored across locations. Note
that this is essentially a RAID-1 mirror. Administrators also have the
ability to specify that an object should not be replicated and should
only be made available in a specific location i.e., site. You can
imagine that this is useful in a scenario where the application is
already replicating its data to the other location natively. A good
example would be Oracle RAC or Microsoft SQL Always On, or even
Microsoft Active Directory for that matter. In this scenario,
“preferred” and “secondary” refers to the location where the data is
going to be stored. It is up to the administrator to ensure that the VM
itself runs in the same location.

Failures to tolerate then specifies how the object within each location
then needs to be protected. You could specify that you would like to
mirror objects across locations via Site Disaster Tolerance (RAID-1)
and have a RAID-5 or RAID-6 configuration within each location.
This RAID-5 or RAID-6 configuration would then allow you to survive
one (or multiple) host failures in the remaining site after a full site
failure has occurred, without losing access to the object. The diagram
below shows what this looks like logically, note that for simplicity
reasons we have only depicted the capacity leg, the performance leg
will remain a RAID-1 configuration within each location.

Figure 184: RAID-1 across locations, RAID-6 within locations

The added benefit of local protection within each location is that
when a device, or host has failed, data can now be resynced or rebuilt
locally. If only the top-level RAID-1 configuration exists, components
impacted by a failure would need to be resynced across the network
between the two locations. This lengthens the time it would take to
protect the component, and as such during that time your data is at
risk. Hence, we typically recommend customers to take advantage of
this secondary level of protection within a site.

One thing we do want to point out however is that a failure of the
witness host is considered a full site failure, meaning that it could
take out a full one-third of the available votes for all objects. Any
further failures that occur after the witness site has failed could place
data at risk if quorum is lost, depending on the number of hosts in
the cluster and the selected policy for the object of course. We

realize that this can be difficult to grasp, so let’s look at the various
failure scenarios.

Site Disaster Tolerance Failure Scenarios

There are many different failures that can occur in a datacenter. It is
not our goal to describe every single one of them, as that would be a
book by itself. In this section, we want to describe some of the
failures, and recovery of these failures, which are particular to the
stretched cluster configuration. Hopefully, these will give you a better
insight into how a stretched cluster works.

In this example, there is a 6+6+1 stretched vSAN deployment. This
means that there are six data hosts at site 1, six data hosts at site 2,
and a witness host at a third site.

A single VM has been deployed, we selected a policy that dictates
that the data needs to be stretched across locations and be
protected within each location with RAID-1. When the physical disk
placement is examined, we can see that the replicas are placed on
the preferred and secondary data site respectively as shown in the
Fault Domain column, and the witness component is placed on the
witness. This ensures that we have a quorum mechanism used for full
site failures. Note, that in a stretched cluster implementation you will
have a performance leg and a capacity leg in each of the locations.

Figure 185: VM Component placement RAID-1 within locations

When we deploy a VM that is stretched across locations and
protected within each location with RAID-5, the physical disk
placement will look as demonstrated in the next screenshot.

Figure 186: VM Component placement RAID-5 within locations

The next step is to introduce some failures and examine how vSAN
handles such events. Before beginning these tests, please ensure
that vSAN Skyline Health is working correctly, and that all vSAN
health findings have passed. This will make troubleshooting much
easier.

Skyline Health should be referred to regularly during failure scenario
testing. Note that alarms are now raised for any health finding that

fails. Alarms may also be referenced at the cluster level throughout
this testing, depending on the type of failure being triggered.

Finally, when the term site is used in the failure scenarios, it implies
a full fault domain.

Single data host failure—Secondary site

The first test is to introduce a failure of a host in one of the data
sites, either the “preferred” or the “secondary” site. The sample
virtual machine deployed for test purposes currently resides on the
preferred site and the failure occurs on the secondary site and
impacts a component as shown in the next diagram.

Figure 187: Failure scenario – host failed secondary site

In the first part of this test, the host which holds a component in the
secondary site has been powered off, simulating a temporary outage
and loss of a component.

There will be several power events, and potentially HA events, related
to the host visible in the vSphere Client. When you change to the
physical disk placement view of the impacted virtual machine in the
UI, the components that were on the secondary host will go “absent”
after a few moments, as shown in the next screenshot. The other
thing we should point out is that the VM remains accessible. One
final thing to point here is that during unplanned downtime, with
vSAN ESA, durability components are not created. At the time of
writing these are only created during planned downtime, and
specifically only for RAID-5 and RAID-6.

Figure 188: VM Component absent

As mentioned, the virtual machine continues to be accessible. This is
because there is a full copy of the data available on the hosts on the
preferred site, and there are more than 50% of the votes available.
Opening a console to the virtual machine verifies that it is still very
much active and functioning. Since the ESXi host which holds the
compute of the virtual machine is unaffected by this failure, there is
no reason for vSphere HA to act, meaning that the VM is not
restarted.

At this point, vSAN Skyline Health can be examined. There will be
several failures, as shown in the next figure, since a host in the
secondary site is no longer available, as one might expect.

Figure 189: Health findings tests failed

When examining these tests in your environment, please note that
before starting a new test, it is strongly recommended to wait until
the failed host has successfully rejoined the cluster and the resync
has been completed. All “failed” health finding tests should show OK
before another test is started. Also, confirm that there are no
“absent” components on the VMs objects and that all components
are once again active. Failure to do this could introduce more than
one failure in the cluster, and result in the VM being unavailable.

Single data host failure—Preferred site

This next test will not only check vSAN but will also verify vSphere HA
functionality. If each site has multiple hosts and host affinity rules
are defined, then a host failure on the preferred site will allow

vSphere HA to restart the virtual machine on another host on the
same site. In this test, the configuration is 6+6+1, but we have not
defined any rules, so the virtual machine will be restarted on a
random host in the cluster, in either of the two locations.

Figure 190: Failure scenario – host failed preferred site

After the failure has occurred in the preferred site there will be a few
vSphere HA related events. Like the previous scenario, if there were
any components on the host, these will show up as “absent.” In this
case the host on which a VM was running was failed. The VM has a
RAID-5 policy associated with it, as we can see below.

Figure 191: Absent components with RAID-5

Note that these components will be rebuilt fully after 60 minutes
automatically by vSAN leveraging the remaining component within
the location. However, when desired, you can manually trigger the
rebuild of these components by clicking “Repair objects
immediately” in the vSAN Skyline Health under vSAN Object Health.

Figure 192: Repair objects immediately

Since the host on which the virtual machine’s compute resides is no
longer available, vSphere HA will restart the virtual machine. If
VM/Host affinity rules are configured, then HA will restart the VM on
another host in the same site. It is important to validate this has
happened as it shows that the VM/host affinity rules are correctly
configured, and vSphere HA acts accordingly.

It should also be noted that these rules should be configured as
“should” rules and not as “must” rules in most scenarios. If “must”
rules are configured, then vSphere HA will only be able to restart the
virtual machine on hosts that are in the same host group on the
same site/fault domain and will not be able to restart the virtual
machine on hosts that reside on the other site. “Should” rules will
allow vSphere HA to restart the virtual machine on hosts that are not

in the same VM/host affinity group, i.e., in the event of a complete
site failure.

Information about the restart of the virtual machine can be found in
the vSphere Client and in the log file /var/log/fdm.log on the ESXi
host which is the vSphere HA primary. Note that it usually takes
between 30-60 seconds before a failover has occurred. If trying to
monitor these HA events via the vSphere Client, ensure that you
regularly refresh the vSphere client, or you may not see it.

Figure 193: Failure scenario – HA events in vSphere Client

Full Site Failure – Data Site

This next test in essence is very similar to a single host failure. The
big difference of course is that in a full site scenario, typically 50%
of your cluster resources are now missing. When a full site failure

occurs, it will not be possible to rebuild your components. This is
because the second fault domain is missing completely as
demonstrated in the diagram below.

Figure 194: Failure scenario – Full Site Failure

After the failure has occurred in the secondary site, all VMs will
automatically be restarted in the preferred location. Do however note
that this will only be the case when VM-Host rules were configured as
“should rules”, as already highlighted. When “must rules” have been
configured vSphere HA will not violate these. For more details on
vSphere HA and VM/Host rules please refer to the vSphere 6.7
Clustering Deep Dive book by Frank Denneman, Duncan Epping, and
Niels Hagoort.

Starting with vSAN 7.0 Update 2, DRS understands the state of
objects on vSAN. DRS will verify with vSAN the state of the
environment, and it will not migrate VMs back according to the
defined rules until the resync has completed. When the VMs are

healthy and the resync has fully completed, DRS will automatically
migrate the VMs back to comply with the specified VM/Host rules
(when DRS is configured to Fully Automated that is).

vSAN and DRS are tightly integrated starting with vSAN 7.0 U2.
As a result, it is no longer needed to change the automation
mode of DRS after a failure has occurred.

The last thing we would like to discuss as part of this failure scenario
is the witness failure resilience. We have already briefly discussed it
in a previous section, but we now want to show what the immediate
impact is of this feature using rvc. As stated, the secondary site has
failed completely. We will examine the impact of this failure through
rvc, the Ruby vSphere Console on the vCenter Server. This should
provide us with a better understanding of the situation and how the
witness failure resilience mechanism works. Let’s look at the output
of rvc for our VM directly before the failure first.

Figure 195: rvc output votes before failure

As can be seen, the witness component holds 10 votes, and each
RAID-5 configuration holds 8 votes. The RAID-1 configurations hold

3 and 2 votes respectively After the full site failure has been
detected, the votes are recalculated to ensure that a witness host
failure does not impact the availability of the VMs. Below shows the
output of rvc once again.

Figure 196: rvc output votes after failure

As can be seen, the votes for the various components have changed,
the surviving data site has an increase in votes, the witness on the
witness host went from 10 votes to 1, and on top of that, the votes for
the failed location have been decreased. Resulting in a situation
where quorum would not be lost even if the witness component on
the witness host is impacted by a failure. Do note, that the
redistribution process of the votes can take up to 5 minutes to
complete, depending on the size of the cluster. Nevertheless, a very
useful feature for stretched cluster configurations.

Witness host failure—Witness site

A common question that is asked is what happens when the witness
host has failed. This should have no impact on the run state of the
virtual machine since there is still a full copy of the data available
and greater than 50% of the votes are also available, but the witness
components residing on the witness host should show up as
“absent.”

Figure 197: Failure scenario – Witness host failed

In our environment, we’ve simply powered off the witness host to
demonstrate the impact of a failure. After a short period of time, the
witness component of the virtual machine appears as “absent” as
shown next.

Figure 198: Failure scenario – Witness component absent

However, the virtual machine is unaffected and continues to be
available and accessible. The rule for vSAN object accessibility is, as
we have discussed multiple times now, at least one full copy of the
data must be available, and more than 50% of the components that
go to make up the object are available. In this scenario both RAID
configurations of the data are available, leaving access to the VM
intact.

Network failure—Data Site to Data Site

The next failure scenario we want to describe is a site partition. If
you are planning on testing this scenario, then we highly recommend

ensuring that the host isolation response and host isolation
addresses are configured correctly before conducting the tests. At
least one of the isolation addresses should be pingable over the
vSAN network by each host in the cluster. The environment shown
below depicts our configuration and the failure scenario.

Figure 199: Failure scenario – Network failure

This scenario is special because when the inter-site link has failed,
the “preferred” site forms a cluster with the witness, and most
components (data components and witness) will be available to this
part of the cluster. The secondary site will also form its own cluster,
but it will only have a single copy of the data and will not have access
to the witness. This results in the components of the virtual machine
object getting marked as absent on the secondary site since the host
can no longer communicate to the other data site where the other
copy of the data resides, nor can it communicate to the witness. This

means that the VMs can only run on the preferred site, where most of
the components are accessible.

From a vSphere HA perspective, since the host isolation response IP
address is on the vSAN network, both data sites should be able to
reach the isolation response IP address on their respective sites, and
even more importantly, the HA agents (FDM) within each location can
still communicate with each other. Meaning that each site will elect
its own primary host, and each site will form a sub-cluster. Therefore,
vSphere HA does not trigger a host isolation response! This means
that the VMs that are running in the secondary site, which has lost
access to the vSAN datastore, cannot write to disk but are still
running from a compute perspective. It should be noted that during
the recovery, the host(s) that has lost access to the disk components
will instantly kill the impacted VM instances. This does however mean
that until the host has recovered, potentially two instances of the
same VM can be accessed over the network, of which only one is
capable of writing to disk and the other is not.

vSAN 6.2 introduced a mechanism to avoid this situation. This
feature will automatically kill the VMs on the secondary site has have
lost access to the components on the secondary site. This is to
ensure they can be safely restarted on the preferred site, and when
the link recovers there will not be two instances of the same VM
running, not even for a brief second. If you want to disable this
behavior, you can set the advanced host setting called
vSAN.AutoTerminateGhostVm to 0. We, however, recommend leaving
this setting configured to the default.

On the preferred site, the impacted VMs that were running on the
secondary site, will be almost instantly restarted. On average this
restart takes around 30-60 seconds. After the virtual machine has
been restarted on the hosts on the preferred site, use the vSphere
client to navigate to Cluster > Monitor > vSAN > Virtual Objects,
select the VM you are interested in, and click on View placement

details. This should show you that two out of the three components
are available, and since there is a full copy of the data and more than
50% of the components are available, the VM is accessible. This is
demonstrated in the screenshot below. Note that it is the secondary
fault domain that is listed as absent in this case. We have collapsed
some of the RAID configurations so that we can show both the
preferred and secondary fault domain of a single RAID-1
configuration, but the same logic would apply to the other objects as
well.

Figure 200: Preferred Site components available

Impact of multiple failures

As discussed in the policy section, vSAN had two layers of protection
in a stretched cluster. The first layer is across sites, the second layer
is within sites. One thing however that not many people realize is that
to not lose access to an object in a vSAN stretched cluster, more
than 50% of the total combined votes for that object across all
locations need to be available. What does this mean?

Let’s look at a scenario where we have a stretched cluster and a
virtual machine that is protected with RAID-1 across sites, and RAID-
1 within the site.

Figure 201: Scenario with dual-layer protection

In the above scenario, we have VM which is running in Site A. This
VM is protected across locations and within the locations with both
RAID-1. What is important in this case is to understand how the
voting mechanism works. Although it is not explicitly shown, both
data sites will have a number of votes, so will the witness component
for this particular object in the witness location. This can be

examined through rvc, the Ruby vSphere Console on the vCenter
Server, as shown in other examples. For simplicity reason we will list
the votes for each location for a single object, in this case the VMs
virtual disk.

Witness Site – 24 votes

Witness component – 24 votes

Data Site 1 – 23 votes in total

Perf Leg – 3 votes
Perf Leg – 2 votes
Cap Leg - RAID-1 – RAID-0 – 4 votes
Cap Leg - RAID-1 – RAID-0 – 2 votes
Cap Leg - RAID-1 – RAID-0 – 4 votes
Cap Leg - RAID-1 – RAID-0 – 4 votes
Cap Leg - RAID-1 – RAID-0 – 4 votes
Cap Leg - RAID-1 – RAID-0 – 2 votes

Data Site 2 – 24 votes in total

Perf Leg – 3 votes
Perf Leg – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes
Cap Leg - RAID-1 – RAID-0 – 3 votes

This results in a total combined number of votes of 71. For the
Witness site that is 24 votes, for Site 1 that is 24 and for Site 2 that is
23. Now if you have the Witness location fail you lose 24 votes. If now

Site 1 – Replica A fails, you will end up losing access to the object as
47 out of 71 votes would be missing. Even though the full RAID-1
configuration of Site 2 is still available, the full object becomes
unavailable. The same of course applies to RAID-5, and RAID-6.

In a previous example failure scenario, we already discussed the
witness failure resilience mechanism. This ensures that in the case of
a double failure, where first a full site fails and then the witness host
fails, the VM and its components are still available. Again, we would
like to point out that this mechanism, at the time of writing, only
works for scenarios where all components in a single location are
impacted by a failure and after the recalculation of the votes has
completed the witness fails. If the witness fails first then,
unfortunately, there’s no recalculation happening at this stage. If
simultaneous failures occur, unfortunately no recalculation would
have occurred, which means that objects will be inaccessible.

Hopefully, the above explanation makes it clear how the voting
mechanism works in vSAN stretched clusters and why in certain
failure scenarios a restart of the virtual machine may or may not
occur.

Operating a Stretched Cluster

We have discussed how to configure a stretched cluster, and how a
stretched cluster acts during certain failure scenarios. We have,
however, not discussed yet if there are any specific things to
consider when it comes to the operational aspects of a stretched
cluster. Operating vSAN is discussed in chapter 6, there are however
a few exceptions and things to know when it comes to a stretched
cluster configuration.

The first concept we want to discuss is Maintenance Mode and
Upgrades or Updates. Hopefully, everyone uses vSphere Lifecycle

Manager (vLCM) for lifecycle management of their vSphere (and
vSAN) hosts. One common question we have received over the years
is what customers should do with the witness appliance. Although we
have not discussed it yet, this also applies to witness hosts which are
part of a 2-node cluster. 2-node clusters will be discussed in the next
chapter though! Do you upgrade the witness, or do you simply deploy
a new version of the appliance and click on “Change Witness Host”
under Fault Domains, displayed in the next screenshot?

Figure 202: Changing witness for a stretched cluster

Before you decide on a strategy, it is good to know that starting with
vSAN 7.0 U3 it is now also supported to upgrade the Witness
Appliance using vLCM. This greatly simplifies the update, or upgrade
process. We do not have a preference when it comes to lifecycle
management of the appliance, we have seen customers successfully
using either the update as well as the replacement approach. It boils
down to what you feel most comfortable with. There are, however, a
few things to take into consideration.

First of all, the witness host must be a dedicated witness host, shared
witness hosts are not supported at the time of writing. Note that

shared witness hosts are also only supported for 2-node clusters.
Secondly, vLCM can only support virtual witness hosts. At the time of
writing upgrading and updating of physical witness hosts is not
supported using vLCM either.

When it comes to updating the entire cluster, we recommend using
vLCM for all hosts, and preferably integrated with your OEM’s
firmware management solution. This way both vSphere, as well as the
firmware of all components, are at the correct version. Especially for
a vSAN cluster, this is extremely important. Hence vSAN Skyline
Health validates your environment against the most current VMware
Compatibility Guide whenever it runs. Note that when vLCM is used,
the virtual witness host is always updated (or upgraded) first, after
which the hosts in the preferred and secondary site are remediated.

As mentioned, simply replacing the witness host is also a possibility
using the UI. Although we do not have a recommendation in terms of
which strategy to use, we would recommend getting familiar with
both the vLCM strategy as well as the “Change Witness Host”
procedure, in case the witness host ever needs to be replaced in a
failure scenario.

The last thing we want to mention is that, at the time of writing, there
is no option to place a full site into maintenance at once.
Maintenance happens on the host level. Administrators must work at
the host granularity, placing each host in a site into maintenance
mode individually. Additional manual steps may be required, such as
modifying the DRS affinity to ensure that all workloads are failed over
to the site that is to remain online and available. Once the workloads
have been migrated, administrators can begin placing hosts into
maintenance mode with the ‘ensure accessibility’ option. This option
should be used if there is a possibility of VMs using the failures to
tolerate set to 0. If all VMs protected by the stretched cluster are
using failures to tolerate > 0, then the ‘no data evacuation’ option
may be used when placing hosts into maintenance mode.

Documenting the existing host groups, VM groups, and VM/Host
rules in DRS prior to any modifications will help return the state of
the cluster back to its condition prior to maintenance efforts.

Another thing that is important to realize is that monitoring for disk
capacity is slightly different. Although all regular screens still provide
useful information, there is one additional section in the UI we would
recommend to regular monitor. The previous screenshot shows vSAN
capacity per fault domain, as well as per host within each fault
domain. In an environment where all VMs are replicated between
locations, the capacity consumption is typically equal between both
locations. However, we have many customers that have workloads
that do not need to be replicated between locations, and they
leverage VM Storage Policies to specify where the VM needs to be
located. In other words, using policies they specify in which fault
domain all components of the VM (or file share, etc.) need to be
stored. This can then lead to a situation where one fault domain has
less free capacity than the other, which is of course useful to know
when provisioning decisions are made.

Another aspect of managing a stretched cluster that we want to
stress is that the use of standardized VM Storage Policy names is
key. We also recommend customers to regularly validate if VMs are
associated with the correct policy. Unfortunately, we have witnessed
situations where VMs were supposed to be mirrored across locations,
but because of an incorrectly assigned policy, were not mirrored. In
normal situations this is not a problem. However, it is during an
unexpected site failure that you typically find out that some business-
critical VM was not replicated. vSAN offers a feature which can help
preventing this scenario to a certain extent, which is Auto-Policy
Management. As described in previous chapters, Auto-Policy
Management can create a default policy for your datastore based on
the number of hosts and features enabled (including Stretched
Clustering). When verifying the currently associated policies, make
sure to also verify the policy associated with the vCLS VMs. The vCLS

VMs are vSphere HA and DRS related management VMs that are
automatically deployed during the creation of a cluster, and are
typically deployed with the default storage policy associated with the
datastore. For those who want to automate the reporting process, you
can, for instance, use PowerCLI to create a report of all VMs and
their associated policies.

Another important aspect is VM/Host rules. This is a hot topic in
every stretched cluster architectural or operational discussion.
Should you create rules and specify in which location a VM should
run? We believe that this is desired. It provides you the ability to
control where a particular VM runs, and as a result, it will give you a
better understanding of what the impact is on IT services and
Applications when a (site) failure has occurred. However, it also
subsequently means that there’s another aspect to manage. You will
regularly need to validate if the rules associated to the groups are
still accurate, and if the VMs belong to the correct VM to Host group.
Of course, it is possible to automate this process with a tool like
PowerCLI.

Lastly, Skyline Health. We have already shown a few Skyline Health
findings (often referred to as health checks) in the various sections in
this chapter, but we want to stress some of them as they are
extremely valuable when troubleshooting or just for assessing the
general health of your vSAN ESA stretched cluster configuration.

The first thing we would recommend doing is to get familiar with the
various checks. Skyline Health has a long list of all the checks, but all
stretched cluster related checks fortunately are categorized
accordingly. You can simply filter on “stretched” in the column
“Category” to limit the current view to stretched cluster related
checks only, as demonstrated in the next screenshot.

Figure 203: Filtering Skyline Health

There are two pages worth of checks. We have already shown the Site
Latency Health finding. This check verifies the latency between the
two locations and will be triggered when thresholds are triggered.
Between the data sites this threshold is 5ms roundtrip latency, and
between the witness location and the data site it is 200ms. Note that
occasionally exceeding these thresholds will most likely not result in
a poor experience, we do recommend however to keep latency as low
as possible and bandwidth as high as possible. Relatively high
latency and low bandwidth will definitely impact the user experience.

There are also several checks available for issues with the Witness
Host. As the witness host plays a critical role in the availability of your
workloads it is highly recommended to investigate failed checks as
soon as possible. We have seen customers running environments
with a failed witness host for a prolonged time, without realizing that
a second failure could immediately impact a large portion of their
workloads. Replacing a Witness Appliance is a simple process, and
we would highly recommend testing this before taking the stretched
cluster into production.

Summary

A vSAN stretched cluster architecture will allow you to deploy and
migrate workloads across two locations without the need for complex
storage configurations and operational processes. On top of that, it
comes at a relatively low cost that enables most VMware users to
deploy this configuration when there are dual datacenter
requirements. As with any explicit architecture, there are various
design and operational considerations. We would like to refer you to
the official VMware documentation and https://core.vmware.com/ as
the source of the most updated and accurate information.

https://core.vmware.com/

Chapter 8

Two Host vSAN Cluster Use
Case

Two host configurations were introduced in vSAN 6.1 and are often
used by customers looking to deploy workloads into remote office or
branch office locations. Unfortunately, this configuration is often
confused with the VMware Remote Office / Branch Office license,
which is nothing more than a license key that allows you to run 25
virtual machines across several locations on as many ESXi hosts as
needed. In no shape or form is this license key associated with the
two-host configuration. It is important to make that distinction
before we begin, as it is a question that comes up time and again.

When configuring a two host vSAN cluster it quickly becomes
obvious that it is very similar to a stretched cluster configuration. The
main difference is that normally a two-host cluster would have both
hosts located in the same location, whereas in a stretched cluster
configuration, hosts would be located in different locations. Another
difference is that it is not uncommon to see a single vCenter Server
instance managing numerous two host vSAN clusters. It is quite
common to see hundreds of two host vSAN clusters registered in the
same vCenter Server. The below diagram displays what this could
look like from a logical point of view.

Figure 204: Multiple two host clusters

As mentioned earlier, a two-host configuration closely resembles a
stretched cluster configuration when it comes to the setup and
implementation. There are however some differences in functionality,
and there are some design considerations as well. Before we
investigate those, let us first look at how to configure a two host
vSAN cluster.

Configuration of a two-host cluster

Configuring a two-host cluster can simply be done through the
interface we have seen many times by now at this point in the book.
We can use the Quickstart wizard, or simply go to your cluster object
and configure vSAN there. As we have seen the Quickstart wizard
multiple times already in the book, on this occasion we will show you
how to configure vSAN using the Configure option on your cluster
object. Then select Two node vSAN cluster as depicted below.

Figure 205: Configuration of a two-host cluster

Next, enable vSAN ESA for this cluster and verify that it has passed
(or not) all the compatibility checks. As shown, in the next screenshot,
we have some failed tests. This is the result of running our lab
virtually, but fortunately it does not stop us from completing the
wizard.

Figure 206: Configuration of a two-host cluster

You will of course make sure that all compatibility checks have
passed in your production environment before proceeding. Once the
checks have passed, select all the services which you require. Note
that all services are available even though it is a two host vSAN
cluster. From a product or feature standpoint, there is no limitation.
However, with only two hosts, you will not be able to set failures to
tolerate value greater than 1, nor will you be able to select RAID-5 or
RAID-6 for availability. This is because these erasure coding features
require 3 (2+1) or 6 hosts (3+1 for RAID-5 and 4+2 for RAID-6)
respectively. What may however limit you is, of course, the vSAN and
vSphere license you have procured. In our case, we have an ESA
cluster, but we will not use any of the additional services at this point.

Figure 207: Data services

Next, we will need to claim the devices that will form the vSAN shared
datastore. This step is the same as during the creation of a normal
vSAN cluster as can be seen in the next screenshot.

Figure 208: Claim Disks

In the next step, we are going to select the host that will act as the
witness host. In our case, this is the virtual witness appliance. After
that, we will need to claim the disks for this witness host as this
witness host will store the witness components for the virtual
machines running on the two-host cluster. This again is very similar
to the configuration of a stretched cluster. The step missing however
is the creation of fault domains (preferred and secondary) and the
selection of the host that belongs to these locations. This is because
the fault domains are automatically implied; each physical host and
the witness are in their own respective fault domain, as we shall see
next.

Figure 209: Selecting the witness host

Now we can review the two-node configuration and complete the
creation by clicking finish. After we have clicked finish, we can simply
examine the configuration in the vSphere Client. One thing that
immediately stands out is that even though we did not create fault
domains and we did not specify which hosts belong to which fault
domain, faults domains have been configured and each of the two
hosts is assigned to their own unique fault domain.

Figure 210: Fault domains in a two-host configuration

That completes the configuration of a two-host cluster. In this case,
we have shown a regular two host configuration.

What is interesting to know is that when another 2-host cluster is
created, the same vSAN Witness Appliance can be selected. This
capability, shared witness host, was introduced in vSAN 7.0 U1 and
designed for customers with multiple 2-host clusters who want to
limit the number of Witness Appliances deployed.

There are some limitations and considerations for a shared witness
deployment. First and foremost, the size of the vSAN Witness
Appliance determines how many 2-host clusters the witness can be
shared. The largest vSAN Witness Appliance can support up to 64 2-
host clusters and a maximum of 64.000 components. Typically, the
component limit should not be a concern, as this means you can
store a 1000 witness components per cluster. This means you can
run easily over a hundred VMs per 2-host cluster before you hit this
limit. We have not seen any customers reaching those numbers in a
2-host cluster yet. Having said that, you could be that one customer
that does deploy a large number of VMs. Therefore, it is important to
make sure you select the correct witness appliance size and monitor
the number of components as, potentially, you could reach the
maximum limits.

It is possible to monitor the currently assigned number of
configurations to your shared witness host. Simply right click the
host, click on “vSAN” and click “assign as shared witness host”. You
will now be presented with a window that shows the currently
assigned two-host clusters.

Figure 211: Assign as shared witness host

You can look at the same information by clicking on the witness
appliance and then go to “Monitor”, Two Node Clusters”. As
demonstrated in the next screenshot, you will be presented with a list
of clusters, the witness component count, and information like the
limits.

Figure 212: Two-host Clusters information

In the above screenshot, you can also see the option “Assign to this
witness”. This option allows you to assign this shared witness to an
existing 2-host configuration. This 2-host configuration will already
have a witness assigned, but this witness is typically a non-shared
witness. Using the “Assign To This Witness” option you can migrate
from non-shared to shared, but you can also use this option to
replace a currently shared witness appliance with a new shared
witness appliance.

Figure 213: Assign shared witness to an existing cluster

There is another rather unique configuration possible as well. This is
a configuration that has started to become more and more popular
amongst customers as it lowers the cost of the deployment
significantly.

vSAN Direct Connect

When VMware first introduced the two-host cluster option, the
immediate request that we heard from customers was to cross-
connect the hosts. This is something that customers have done for
vMotion for the longest time and doing the same for vSAN with 25
GbE NICs (or higher) without the need for a 25 GbE switch (or higher)
would provide the ability to deliver great performance at a relatively
low cost. Starting with vSAN 6.5, cross-connecting two-host
configurations became fully supported. Please note that this only
works with, and only is supported for, two-host clusters.

Figure 214: vSAN Direct Connect

As demonstrated in the diagram above, this will require Witness
Traffic Separation to be configured for vSAN. We have already

described how to do this in the stretched cluster chapter as the same
functionality can be leveraged to separate witness traffic from vSAN
data traffic in a 2 host vSAN cluster configuration. If you are
considering deploying a two-host configuration with direct connect,
please make sure you are familiar with the required esxcli command.

Now that we have seen the configuration, and the two-host direct
connection option, let’s look at requirements, constraints, and two
host cluster specific support statements.

Support statements, requirements, and
constraints

In a vSAN two host configuration support, requirements and
constraints are slightly different than in a stretched cluster
configuration. Let’s start by listing all requirements and constraints,
followed by support statements that are different for two host
configurations versus a stretched cluster configuration.

500ms maximum latency is tolerated between the two-host
cluster and the witness host
Between data sites both Layer 2 and Layer 3 are supported
Layer-2 is recommended for simplicity
Between the data sites and the witness site Layer 3 is
required
Prevents I/O from being routed through a potentially low
bandwidth witness site
In the case of multiple locations, multiple witness VMs
running in a central location may share the same VLAN
When only a single VLAN is available per 2-host location, it is
supported to tag the Management Network for Witness traffic

VM Storage Policies can only be configured with Number of
Failures To Tolerate = 1 and RAID-1 (Mirroring) due to the fact
that there are only 2 hosts in the cluster
Bandwidth between vSAN Hosts hosting VM objects and the
Witness Host is dependent on the number of objects residing
on vSAN. A standard rule of thumb is 2Mbps for every 1000
components on vSAN. Because vSAN hosts have a maximum
number of 27000 components per host, the maximum
bandwidth requirement from a 2 Host cluster to the Witness
Host supporting it, is 54Mbps
SMP-FT is supported when using 2 Host configurations in the
same physical location. SMP-FT requires appropriate
vSphere licensing. The vSAN Witness Appliance managing a
2 Host cluster may not reside on the cluster it is providing
quorum for. SMP-FT is not a feature that removes this
restriction
By default, in a two-host configuration and a stretched
configuration vSAN only reads from the fault domain in which
the VM resides. This is very valuable as it lowers bandwidth
requirements. For a two-host cluster, which is located in the
same datacenter, this reading from a single host adds no
value. The vSAN “DOMOwnerForceWarmCache” setting can
be configured to force reads across hosts in a 2-host
configuration. This can be configured in the UI via “Advanced
Options”, simply disable “Site read locality”.

One major difference when comparing two host clusters with a
stretched cluster however is that, with a two-host configuration, it is
supported to cross host the witness appliance when you only have 2
locations via a special support request (RPQ). What does this exactly
mean, and what would be the use case for this? Well, the use case for
this would be when there are two locations within 500ms RTT latency
and both need some form of compute and storage for local services.
As shown in the diagram below, each remote location hosts the

witness for the other location. This way only two locations are
required, instead of 3 normally.

Figure 215: Cross host witness

Although briefly mentioned in the requirements above, we do want to
explicitly show two common network architectures for connecting
remote locations to a centralized datacenter. In our experience, in
almost all cases L3 networking is configured between the central
datacenter and the remote location. In some of the cases we have
seen multiple networks being available per remote location, and in
most cases, we see a single network available. The following
diagrams depict these two scenarios.

Figure 216: Multiple VLANs per remote location

In the above scenario, per location also two static routes will be
required to be defined. One for Management VLAN 10 to the remote
location Management VLAN, and one for the witness VLAN to the
Witness VLAN. Note that in the case where you have many remote
locations, the above scenario does not scale extremely well, and will
add a layer of complexity as a result.

Of course, as mentioned, this can be simplified by having a single
network for each location that shares both Management as well as
Witness traffic. The following diagram depicts this scenario.

Figure 217: Single VLANs per remote location

Please note that in the case of the above scenario a static route from
the management network to the remote location is still required, and
the witness appliance will need to be modified so that the
management VMkernel interface is also tagged for Witness traffic.
Although in the above examples we have shown multiple witness
appliances, of course, these architectures are also supported with a
shared witness configuration!

Nested Fault Domains in a 2-node Cluster

One thing we have not discussed yet are Nested Fault Domains in a
2-node cluster. This functionality was added in vSAN 7.0 U3 and
significantly increases the availability of workloads running on a 2-
node vSAN cluster. How does this work? Well simply said, similar to
what you can do in a stretched cluster, you can do in a 2-node
cluster. In other words, you can specify that a VM needs to be

replicated across hosts, and you can specify how the VM needs to be
protected within a host. The following screenshot demonstrates the
policy configuration required to mirror across hosts, and protect the
workload within a host with RAID-1

Figure 218: Host mirroring and RAID-1

If you then deploy a VM using this policy and inspect the objects of
the VM by going to the Monitor section of the VM and clicking on
Physical Disk Placement under vSAN then you will notice that you will
have a RAID-1 configuration for the performance leg and a RAID-1
configuration for the capacity leg in each host. Note, that a RAID-1
configuration within a host does mean that you will need to have 3
devices within each host.

At this point you may wonder if other policy configurations are also
possible. Indeed, they are. You could, for instance, also create policy
for a RAID-6 configuration, or a RAID-5 configuration. One thing we
do need to point out is that Adaptive RAID-5 is not available within a
host. Meaning that regardless of the number of devices, you will
always get a 2+1 configuration when you use a RAID-5 policy in
combination with “Host mirroring”.

Figure 219: Host mirroring and RAID-5

We realize the above screenshot only shows one of the hosts of the
host mirror, of course on the second page of the Virtual Object
Components view you would see the RAID-5 configuration of
“esxi11”, the other ESXi host in this two host vSAN cluster.

Summary

A vSAN two host configuration will allow you to deploy a limited
number of VMs in (potentially) remote locations without the need for
complex storage configurations and operational processes. On top of
that, these locations can be managed through a centralized vCenter
Server instance, lowering operational cost and overhead.

Chapter 9

Cloud-Native Applications Use
Case

Kubernetes is now the de-facto platform for cloud native applications.
However, Kubernetes continues to rely on an external provider for two
resources – production ready load balancers and persistent storage.
In this chapter, we will explore how vSAN can provide a platform not
just for virtual machine workloads, but also for the newer container-
based, cloud-native applications. We will show vSAN integration with
upstream Kubernetes distributions through the vSphere Container
Storage Interface (CSI), as well as vSAN integrations with VMware’s
own Tanzu branded Kubernetes distributions. This will not be a deep
dive into all elements of Kubernetes. Instead, we will focus on those
objects in Kubernetes that are relevant to storage, particularly vSAN.

The initial release of the vSAN ESA in vSAN 8.0 was missing the
support of Cloud Native Storage. vSAN 8.0 U1 closes the gap by now
offering CNS support with vSAN ESA.

What is a container?

It is not possible to talk about Kubernetes without first describing
what a container is. In its simplest form, a container can be
considered a very special sort of process that runs in an operating

system. This special process represents an application. These
processes are special only because they leverage operating system
features such as control groups (cgroups) and namespaces for
limiting and isolating system resources used by the container. In the
early days of containers, they were often compared to virtual
machines, and some very simplistic viewpoints described them as
virtual machines “without the need for an operating system”. In some
respects, this is correct, but since a container is a process running in
an operating system, it does still require an OS. Admittedly, many
containers run in the same operating system, since again the
container is just a process.

One additional item to mention in the context of containers is the
requirement to have a container runtime installed in the operating
system. This is sometimes called a container engine. A container
runtime knows how to run containers on the host operating system
and takes care of cgroup and namespace creation for containers. A
container runtime could be said to do operating system virtualization
rather than hypervisor hardware virtualization. It takes operating
system components like the process tree, the file system and the
network stack and carves them up into secure isolated constructs
called containers.

The really neat thing about containers is portability. Developers could
create their container-based application on their laptop, and then
deploy it to an on-premises based Kubernetes distribution such as
Tanzu Kubernetes, or to a cloud-based Kubernetes distribution, such
as Google Kubernetes Engine. While container technology had
existed for many years, it was not until Docker (the company) came
along and made it very easy for developers to package their
containers using Docker (the product) and make them portable, that
containers began to gain popularity.

Why Kubernetes?

Now you might be wondering why we need Kubernetes if containers
are so great. In a nutshell, Kubernetes allows us to manage
containers at scale, or indeed the applications running in containers.
The term container “orchestration” is used a lot, but in essence,
Kubernetes is a platform that allows us to provision, scale in and out,
update and upgrade, and generally life cycle manage container-
based applications. Of course, there is much more to Kubernetes
than just containers. Microservices, which is the splitting up of an
application into its constituent parts, is another major aspect of
Kubernetes. This separation of monolithic application functionality
into microservices brings in the concept of Service Mesh, which
deals with the partitioning or segmentation of applications at a
network and security level. However, Microservices and Service Mesh
are beyond the scope of what we wish to discuss in this chapter.
Instead, our focus will be on how applications that run in Kubernetes,
and which require persistent storage, can leverage vSAN to meet
those requirements.

Kubernetes Storage Constructs

Since this book is all about storage, the focus in this section is to
highlight just those Kubernetes objects that have some relationship
to the underlying storage. We will expand this somewhat to bring in
some other Kubernetes objects that are involved in consuming
storage, e.g., pods, but suffice to say the scope will not cover every
Kubernetes object.

Before delving into the different objects, it is interesting to note that
in the early days of containerization, not much thought was given to
persistent storage. The feeling was that you would spin up your

container, get it to do some units of work, capture the result and then
discard the container before starting the whole process over once
more. The terminology to describe this scenario is “stateless” and for
some time, containers were positioned for stateless workloads. Any
writes to disk that were needed during this work was done to
ephemeral storage. Once the container was discarded, so was the
data. However, while there was a lot of value in being able to run
stateless workloads, people soon realized the value of being able to
run “stateful” containerized workloads as well. A pressing concern
was the need to persist data in case a container crashed. Thus, a
mechanism to provide persistent storage for containers was desired.

Let’s now look at the Kubernetes storage objects in some more
detail.

Storage Class

As the name implies, this is a way for a Kubernetes cluster
administrator to define different “classes” of storage to a developer.
When Kubernetes is running on vSphere, these Storage Classes allow
different sorts of vSphere datastores to be chosen through
integration with Storage Policy Based Management (SPBM). Let’s
look at how this is achieved, as well as some of the other attributes
of a Storage Class.

One of the entries that is placed in a Storage Class manifest is
“provisioner”. This is probably a good place to expand on the
purpose of a Container Storage Interface (CSI) driver or plugin.
Essentially a CSI driver is what enables Kubernetes to provision
persistent volumes on top of different underlying infrastructures,
such as vSphere, AWS, Google Cloud, etc., and consume available
infrastructure storages. For Kubernetes clusters that are running as a
set of virtual machines on vSphere, this cluster will be consuming

vSphere datastores for persistent volumes. In this case, the
provisioner is the vSphere CSI driver, “csi.vsphere.vmware.com”. This
driver is also referred to as the vSphere Container Storage Plug-in,
and its purpose is to provision Kubernetes persistent volumes on
vSphere storage.

Note: There are many, many CSI drivers in the marketplace. Many of
the storage array vendors provide their own CSI driver to interact
directly with their own storage array. However, for vSAN, the only
supported CSI driver is the vSphere CSI driver.

When the provisioner in the Storage Class is set to vSphere CSI
driver, a parameter called “storagepolicyname” may also be defined.
This parameter is used to map a Kubernetes Storage Class to a
vSphere storage policy. Since vSAN is very much integrated with the
Storage Policy-Based Management (SPBM) feature of vSphere,
different Kubernetes Storage Classes can be created to reflect
different aspects of vSAN storage. This means that any persistent
volumes that are created using a particular storage class will be
instantiated on the vSAN datastore with the storage policy referenced
by “storagepolicyname”. If “storagepolicyname” is not defined,
vSphere datastores have a default policy associated with them, and
that is what is chosen in those cases.

Another configurable option is “allowVolumeExpansion”, which
enables the online growth of Persistent Volumes. Note that at the
time of going to print, the vSphere CSI driver only supports
expansion on block-based persistent volumes. Volume expansion is
not supported on file-based persistent volumes. The use-cases for
block and file-based persistent volumes will be discussed shortly.

One can also specify a “reclaimPolicy” in the StorageClass. This tells
Kubernetes what to do with a Persistent Volume (PV) that is bound to
a Persistent Volume Claim (PVC) when the Persistent Volume Claim
is deleted. You can think of a PVC as an ownership claim on a set of
raw disk resources that are encompassed by the PV. But as is shown

here, having a PVC distinct from a PV gives administrators more
control over the lifecycle of the storage. By default, the bound
Persistent Volume is also “Deleted” with the Persistent Volume Claim,
but the reclaim policy can be set to be “Retained” or “Recycled”. In
this case, the PV can continue to exist without the PVC, meaning it
could be reused should the need arise.

Finally, another optional parameter that one might find in the Storage
Class manifest is the filesystem type
“parameters.csi.storage.k8s.io/fstype”. This defines how a persistent
volume is formatted. Options for block volumes are “ext4”, and “xfs”.
The only format option available for file volumes is “nfs4”.

Here is an example of a simple Storage Class containing a vSAN
policy for block volumes. This is referred to as a YAML manifest,
YAML short for Yet Another Markup Language. This is how users
interact with Kubernetes. The YAML manifests are sent to the
Kubernetes API Server through a command called kubectl. The
Kubernetes API Server then validates and configures the objects that
are requested in the manifest.

Compare this to the next example of a simple Storage Class
containing a vSAN policy for file volumes. Note the only difference is
“parameters.csi.storage.k8s.io/fstype” set to “nfs4” instead of “ext4”

used above. Note also that the “allowVolumeExpansion” parameter
has been omitted from this StorageClass since this is a feature that
is only available on block volumes at the time of writing.

Persistent Volumes

A Persistent Volume, or PV for short, is an allocation of storage
resources that can be used by a containerized application to store
data. In the case of Kubernetes running on vSphere and using vSAN
as a storage platform, persistent volumes map to VMDKs on the
vSAN datastore. The VMDK that are instantiated on the vSAN
datastore to create a PV are a special virtual disk known as a First
Class Disk (FCD) or Improved Virtual Disks (IVD). These special disks
enable disk-centric operations outside of the lifecycle of the virtual
machine, e.g., the disk can have a snapshot, can be restored from a
snapshot, can be cloned, etc. Historically, these were always virtual
machine centric operations. FCDs allow these operations to occur at
the granularity of a virtual disk.

It is important to note that PVs are not tied to the lifecycle of the
containerized application which uses them. In Kubernetes, the
containerized application is called a pod. PVs can exist independent
of any pod that uses them. Indeed, a pod can be deleted and can be

recreated to use the PV without any loss of data from the PV. The
concept of a pod will be covered in more detail shortly.

Persistent Volumes can also be provisioned statically by the way, i.e.,
a virtual disk could be created manually outside of Kubernetes and
then mapped to a Persistent Volume construct. However, a much
more elegant approach to creating Persistent Volumes is to provision
them dynamically through a Persistent Volume Claim (PVC).

Persistent Volume Claim

As we have just learned, the way to dynamically create a Persistent
Volume (PV) in Kubernetes is through a Persistent Volume Claim
(PVC). Let’s take a look at some of the attributes that one might find
in a PVC manifest when dynamically creating PVs on vSphere
storage, notably vSAN.

One of the first attributes is the “spec.accessMode”. vSAN supports a
number of different access modes for volumes, but the two most
common access modes for Kubernetes PVs are read write once
(RWO) and read-write-many (RWX). RWO access mode implies that a
persistent volume can only be accessed from a single pod. RWX
access mode implies that a persistent volume can be accessed from
multiple pods. The vSphere CSI driver does not support multi-attach
RWX block volumes at the time of writing. It only supports multi-
attach RWX file volumes via vSAN File Services. RWO block volumes
are fully supported on the vSAN datastore.

Caution: At the time of writing, there is no support for file based
(RWX) persistent volumes on vSAN ESA, as vSAN File Service is not
supported yet in vSAN ESA. Only block based (RWO) volumes are
supported on vSAN ESA at this time. However, considering that
support for vSAN File Service should be available on vSAN ESA at
some point in the near future, the authors decided to include a

discussion on RWX volumes in the book. vSAN File Service continues
to be supported on vSAN OSA, and by extension, RWX volumes are
also support on vSAN OSA. In fact, the same vSAN OSA datastore
with vSAN File Service enabled can be used to provision both RWO
block volume and RWX file volumes.

With the above caveat in mind, let’s continue to look at PVCs.
Another attribute of a Persistent Volume Claim manifest is
“spec.resources.requests.storage” where the size of the Persistent
Volume is specified. Other than that, the only important entry in the
PVC YAML manifest is a reference to the Storage Class, which has
been described earlier. This maps a request for a volume to a
particular storage policy on vSphere, and this in turn guides vSphere
to create the volume on the appropriate vSphere datastore.

Here is an example of a simple PVC manifest for a 2GB RWO block
volume.

Here is an example of a simple PVC for a 2GB RWX file volume.
Notice that the only difference between the block and file PVC is the

different “spec.storageClassName” setting which requests that the
volume is formatted with a different filesystem type, and of course
the “spec.accessModes” setting.

Pod

Now that we have successfully learned how to build Kubernetes
Persistent Volumes on vSphere datastores such as vSAN, let’s look at
how an application can consume those volumes. In its simplest form,
a pod is a Kubernetes construct comprising of one or more
containers. All containers within the pod share storage and network
resources. For the purposes of this book, the only aspect of a pod
that we are interested in is how it can consume external storage.
Thus, the parts of a pod manifest that should be configured are
“spec.volumes” which references a Persistent Volume Claim (PVC),
and “spec.containers.volumeMounts” which mounts the volume into
the pods. The “spec.containers.volumeMounts.name” mounts the
volume which matches “spec.volumes.name” from the same pod
manifest.

Here is an example of a pod with a single busybox container image
that is claiming a Persistent Volume from the PVC “vsan-claim”. This
busybox container provides a number of Unix utilities in a single
executable. Referencing the PVC via “claimName” (which was created
previously), this creates a request for a 2GB read write once (RWO)
block volume matching the Storage Class “vsan-sc”. Within
Kubernetes, this volume create request is sent to the vSphere CSI
driver components since this is the provisioner that is specified in
the StorageClass. This in turn talks to another component called
CNS, short for Cloud Native Storage, in the vCenter Server. After
applying the various YAML manifest (Storage Class, PVC, and pod),
this should result in a 2GB volume being instantiated on a vSAN
datastore. It is created with a configuration that matches the default
vSAN storage policy as this is what was placed in the Storage Class.
If successful, the volume is attached to the Kubernetes worker node
where the pod resides. From there, it will be formatted as an “ext4”
filesystem and mounted onto the folder “/demo” in the busybox pod
by a Kubernetes component called the kubelet, which runs on each
Kubernetes worker nodes.

The following YAML manifest is another example of a pod
deployment. However, in this case, we are deploying 2 pods. Both
pods will attempt to mount the same read write many (RWX) file
volume. The PVC is as described in the
“volume.persistentVolumeClaim.claimName” attribute. This should
request the vSphere CSI driver to create the volume on the vSAN
datastore, as well as export it as a vSAN File Share via vSAN File
Service. If this is successful, the same volume should be mounted
onto both pods and accessible in the busybox containers on the
“/nfsvol” folder. Referencing the PVC manifest above, this should be
a 2GB file share.

Note that the following manifest creates 2 pods. Multiple manifests
can reside in the same YAML file if they are separated with “---” to
indicate a different manifest.

vSphere CSI in action – block volume

To demonstrate the creation of a block PV through a PVC, and then
accessing the resulting volume from a pod, I will use a small
Kubernetes cluster made up of 1 control plane node and 2 worker

nodes. Suffice to say that this Kubernetes cluster is deployed on
vSphere infrastructure, and already has the vSphere CSI driver
installed.

Let’s check the nodes in the cluster. One of the nodes is the control-
plane, master, as per the role. The others are the workers. The
Kubernetes version that has been deployed to this cluster is v1.23.3.
We will use the “kubectl” command to interact with the Kubernetes
cluster API server to query the state of the cluster, as well as to make
requests of the cluster to create new objects.

Next, we will show the vSphere CSI driver components. There is a
single vSphere CSI controller pod, and one vSphere CSI node pod for
each of the three nodes in the Kubernetes cluster. We will go into
further detail regarding the different CSI components that make up
the controller pod shortly. In this version of Kubernetes, which is an
upstream, vanilla, Kubernetes, the CSI driver components are placed
in the “vmware-system-csi” namespace. A Kubernetes namespace
can be thought of as simply a way of organizing resources with a
Kubernetes cluster. Therefore, we need to specify the namespace
when querying for pods. Note that vSphere CSI driver version 2.5.x,
shown here, has a total of 7 containers in the controller pod, as
shown in the READY column. Other, older versions of the vSphere
CSI driver may show fewer containers in the controller pod. Newer
versions may show more containers as new features are continually
added.

To create a sample application, we are going to work in the default
namespace. Thus, it is not necessary to specify this namespace when
we create, query, or delete the objects. Some objects, such as
Storage Class and PV, are not namespace scoped, but PVCs and
pods are. At present, there are no Storage Classes, PVCs, PVs, or
pods in the default namespace on this cluster.

Next, apply a manifest that contains a Storage Class, a RWO block
PVC, and a pod that we examined previously. As mentioned, these
can all be added to the same manifest file so long as they are
separated with “---” on its own line in the file. Thus, a single file can
create multiple Kubernetes objects.

Check if the objects were created successfully. Let’s check the
Storage Class, the PVC, the PV that should have been created with
the PVC, and finally the pod.

It would appear that all objects have been created successfully. One
final check is to open a shell to the pod and check to see if a 2GB
RWO block volume has been formatted and mounted to the busybox
container within the pod. This is done using the “kubectl exec”
command. Since the pod only contains a single container, we do not
need to explicitly specify the container within the pod, but if the pod
held more than one container, the container name would also need to
be specified on the command line.

A 2GB block volume has now been successfully attached (/dev/sdb)
as requested by the PVC manifest, formatted as ext4 as requested in
the Storage Class manifest, and mounted to /demo as requested in
the Pod manifest.

Cloud-Native Storage (CNS) for vSphere
Administrators – block volume

One of the primary goals of VMware when running Kubernetes on
vSphere is to provide as much information as possible to the
vSphere Administrator. This is to help with monitoring, capacity
planning, troubleshooting, etc. To that end, VMware added a Cloud-
Native Storage (CNS) section to the vSphere UI to provide this
visibility. Since a persistent volume has now been created in a
Kubernetes cluster running on vSphere and consuming vSAN storage,
CNS now displays information about the PV in the vSphere UI. Below

is what is visible in the UI for the volume created in the previous
steps. The information displayed includes the name of the PV,
whether it is a block or file type, any labels associated with the
volume, which datastore it is provisioned on, the storage policy used
for the volume, whether the storage policy is compliant or not, a
volume ID, volume health, which Kubernetes cluster the PV is on
(since there can be many Kubernetes clusters running on the same
vSphere infrastructure), and then the Capacity Quota of the volume.

Figure 220: Cloud-Native Storage

The second column in the output above contains a “Details” icon.
Clicking this icon reveals even more information about the persistent
volume, with several different views. The first view is the Basics view,
which provides a lot of vSphere specific information about the
volume, but of particular interest is the VM which has the volume
attached. This VM in this example is one of the Kubernetes worker
nodes. This view also provides the full path to the VMDK object on
the vSAN datastore. This is the First Class Disk (FCD) that is backing
this Persistent Volume.

Figure 221: Cloud-Native Storage Basic View

The next view gives additional information about the Kubernetes
objects, including the name of the persistent volume claim, the
namespace where the PVC was created, and any pods that are
currently using the volume. Since we did not specify any labels in the
YAML manifests of the PVC, these fields are not populated. This view
is also a great way to determine which applications are using which
volumes in Kubernetes without having to do manual mappings of
Kubernetes objects to vSphere datastore objects.

Figure 222: Cloud-Native Storage Kubernetes Objects View

The next view is of particular interest to vSphere administrators who
are also responsible for vSAN storage. It displays the physical
placement of the volume. If you recall, we placed a storage policy as
a parameter in the Storage Class. The policy chosen at the time was
the default storage policy for vSAN. Since this example uses vSAN
OSA, the default policy is a RAID-1 configuration, mirroring the data
and using a witness component for quorum. We can now see that the
volume has been built using this policy. The three vSAN components
are visible below; 2 data components (replicas) and 1 witness
component. As mentioned, this volume is deployed on vSAN OSA.
Obviously, the Physical Placement from a volume deployed on vSAN
ESA will be different, as it will show both Performance Leg and
Capacity Leg components.

Figure 223: Cloud-Native Storage Physical Placement View

The very last view is a performance view, which means you can get
visibility into the performance of individual persistent volumes. This
is invaluable for a vSphere administrator when developers begin to
complain about poorly performing applications and allows vSphere
administrators to quickly assess if the poor performance is storage
related.

Figure 224: Cloud-Native Storage Performance View

vSphere CSI in action – file volume

In this section, we turn our attention to dynamically creating a read-
write-many (RWX) file volume. As mentioned, the vSphere CSI driver
has been developed to include the ability to dynamically provision
NFS file volumes on vSAN OSA. As was also previously highlighted, at
the time of going to print, there was no support for vSAN File Service
on vSAN ESA. Focusing on the vSAN OSA then, there is a
requirement to have vSAN File Service enabled, however, and the
details on how to do this are covered elsewhere in this book. Using
standard Kubernetes manifests, requests to create a RWX persistent
volume are sent to the vSphere CSI provider. This results in a
dynamically provisioned file share that can be automatically mounted
to multiple pods simultaneously.

When creating this file volume, the previously created block volume
is left in place. Thus, when we query Kubernetes objects for this new
file volume, the block volume objects will also be displayed.

Once more, we begin by deploying a manifest that contains the
Storage Class, the PVC and the pods that will share the volume, as
defined earlier in this chapter. Again, all objects can be defined in a
single manifest and separated using the “---” divider. The difference
this time is that two pods are created that share access to the same
volume.

The Storage Class, PVC, PV and pods can be queried as before, but
now the outputs report Kubernetes objects for both block and file.
Note that the access mode for the new PVC and PV is RWX, read
write many.

On this occasion, the same volume is mounted to both pods. The
following steps will verify that the same volume is mounted on both
pods, and that both pods can read and write to the volume. First,
kubectl is used to exec into pod-a, and create a directory and file on
the file volume that is mounted on “/demonfs”. Then repeat the
operation via pod-b.

As viewed above, the files and directories created via pod-a are
visible on the same volume from pod-b, and both pods are able to
write to the volume. It seems that the read-write-many file share
volume is working as expected.

Cloud-Native Storage (CNS) for vSphere
Administrators – file volume

File volumes are also visible in the vSphere UI, providing some
detailed information about how a vSAN file share is being used by
Kubernetes. Much the same information is displayed as seen
previously, with the Basics and Physical Placement views providing
very similar information. One interesting view is the Kubernetes
Objects view. Two pods are now shown sharing the same volume.

Figure 225: Cloud-Native Storage Kubernetes Object View (RWX)

There is also a Performance view as seen with RWO block volumes.
The focus of the file volume performance charts is IOPS, Latency,
and Throughput.

Before leaving RWX volumes, the Cluster > Configure > vSAN > File
Shares view can be visited in the vSphere client UI to check that a

vSAN File Share was indeed dynamically created to provide the
backing for this Kubernetes volume.

Figure 226: vSAN File Shares – Container File Volume

If the “Details” view is opened by clicking on the icon in the second
column, much of the same information observed in the Container
Volumes view is also available in this vSAN File Shares view. One
thing to note is that there are two types of file shares; one is vSAN
File Shares and the other is Container File Volumes. If the view is left
at vSAN File Shares, dynamically created file shares that back
Kubernetes RWX persistent volumes will not be visible. That is why
the type is set to ALL in the previous screenshot, as this will show
both vSAN File Shares and Container File Volumes.

vSphere CNS CSI architecture

In this section, the major components of how Kubernetes volumes
can be backed by vSphere storage are examined. The vSphere CSI
driver has been mentioned a few times, and the CNS component that

resides on the vCenter Server has also been discussed. We also
briefly mentioned first class disks (FCDs) also known as independent
virtual disks (IVDs). It was mentioned that these are special vSphere
storage volumes that are used to back Kubernetes PVs. We can think
of the CNS component in vCenter Server as the storage control
plane, handling the lifecycle operations of container volumes, e.g.,
create, delete, grow, etc., as well as other functions around metadata
retrieval. It is this volume metadata that enables the vSphere client
UI to display such detailed information regarding Kubernetes
volumes. With the release of vSphere CSI v2.5 (March 2022), support
for CSI snapshots was added to the vSphere CSI driver. This added
an additional sidecar container to the controller pod. The purpose of
this container is to watch for snapshot requests. This brought the
total number of containers in the vSphere CSI controller to 7. At the
time of writing, version 3.0 (April 2023) is the latest version of the
vSphere CSI driver.

To put it simply, in the Kubernetes cluster, the vSphere CSI driver is
the component that communicates to vSphere and handles the
volume create and delete requests, as well as the attach and detach
of a volume to a Kubernetes node. When Kubernetes is deployed on
vSphere, this Kubernetes node is a virtual machine. The vSphere CSI
driver communicates with the kubelet (Kubernetes agent on the
worker nodes) for the formatting of the volume, as well as the
mounting and unmounting of the volume to a pod running on the
worker node. Another major component of the vSphere CSI driver is
the CSI syncer. This component is what pushes the Kubernetes
metadata regarding the volume to CNS on vCenter Server. This
allows Kubernetes persistent volume information to be displayed in
the vSphere client UI, as seen previously.

Next, let’s look at the pods that are deployed in a vanilla, upstream
Kubernetes cluster by the vSphere CSI driver. The pods that we see
deployed are the vsphere-csi-controller pod and several vsphere-csi-
node pods.

vsphere-csi-controller pod

The vSphere CSI controller pod handles multiple activities when it
comes to volume lifecycle management within Kubernetes. First and
foremost, it provides the communication from the Kubernetes Cluster
API server to the CNS component on vCenter Server for volume
lifecycle operations and metadata syncing. It listens for Kubernetes
events related to volume lifecycle, such as create, delete, attach,
detach. This functionality is implemented by several distinct
containers within the pod. Let’s take a closer look at the containers
which make up the vSphere CSI driver in Kubernetes.

As you can see, there are 7 containers (often referred to as container
sidecars) in the pod. The aim of separating distinct features of the
CSI driver into separate sidecar containers means that it simplifies
the development and deployment of CSI drivers in general. What
follows is a brief description of each container within the vSphere
CSI controller pod.

csi-snapshotter

This container enables the vSphere CSI driver to support CSI
snapshots. This container watches the Kubernetes API server for
VolumeSnapshot objects. It works hand-in-hand with the snapshot
controller which watches for Kubernetes VolumeSnapshotContent
objects.

csi-attacher

This container monitors the Kubernetes API server for
VolumeAttachment objects. If any are observed, it informs the
vsphere-csi-controller that a new volume should be attached to a
specified node. Similarly, if it observes that the object is removed,
then informs the vsphere-csi-controller that a volume should be
detached from a specified node.

csi-resizer

This container watches for online volume extend operations. Note
that volume extend operations only work for block volumes at the
time of writing. It does not provide volume extend operations for file-
based volumes.

vsphere-csi-controller

This provides the communication from the Kubernetes Cluster API
server to the CNS component on vCenter Server for persistent
volume lifecycle operations.

liveness-probe

Monitors the overall health of the vSphere CSI controller pod. The
kubelet (agent) that runs on the Kubernetes nodes uses this liveness-
probe to determine if a container needs to be restarted. This helps to
improve the availability of the vSphere CSI controller pod.

vsphere-syncer

Send metadata information back to the CNS component on vCenter
Server so that it can be displayed in the vSphere client UI in the
Container Volumes view.

csi-provisioner

Watches the Kubernetes API server for PersistentVolumeClaim
objects. If any are observed, it informs the vsphere-csi-controller that
a new volume should be created. Similarly, if it observes that the PVC
is removed, then it informs the vsphere-csi-controller that the volume
should be deleted (depending on the reclaimPolicy in the Storage
Class).

vsphere-csi-node pod

Each node gets its own vsphere-csi-node pod. Within each pod are 3
containers.

node-driver-registrar

This container establishes communication with the worker node’s
kubelet (which can be thought of as the Kubernetes agent that runs
on the worker node). Once established, the kubelet can make volume
operation requests, such as mount, unmount, format, etc.

vsphere-csi-node

This container performs volume operations associated with pod
access, e.g., operations such as format, mount, unmount.

liveness-probe

Monitors the overall health of the vSphere CSI node pod. The kubelet
(agent) that runs on the Kubernetes nodes used this liveness-probe
to determine if a container needs to be restarted. This helps to
improve the availability of the vSphere CSI node pod.

Tanzu Kubernetes Considerations

So far in this chapter, we have been discussing the upstream
vSphere CSI driver. This is the vSphere Container storage plug-in
that runs in a native, vanilla, Kubernetes cluster, deployed on vSphere

infrastructure. For the most part, we can also think of VMware’s
Kubernetes offering, Tanzu Kubernetes Grid (TKG), as an upstream
Kubernetes cluster. When referring to TKG here, I am referring to the
standalone / multi-cloud version of Kubernetes from VMware which is
deployed via the Tanzu command line or UI. This distribution is often
referred to TKGm (m for multi-cloud), and while not an official name,
we can use it here to differentiate it from other Tanzu offerings. The
difference between TKGm and upstream Kubernetes is that our
Tanzu team selects components from the plethora of open-source
products that are available for Kubernetes. The team tests this
Kubernetes stack, validates it, then offers VMware support for
customers who purchase it. In other words, the team chooses the
vSphere CSI drivers for storage, the various CNI drivers for
networking, various Load Balancers, IAM components for identity
management, and so on. Once deployed into production, VMware can
now support this Kubernetes platform and your vSphere platform
end-to-end. Thus, what we have read so far about the upstream
vSphere CSI driver applies to TKGm. Note however that there may be
a gap between the feature being made available in upstream
Kubernetes, and the feature appearing in TKGm. This is because the
Tanzu team have to complete their testing processes before
releasing it with a TKGm build/version.

But VMware offers more than just TKGm. VMware also offers a
product called vSphere with Tanzu. vSphere with Tanzu has the
concept of a Supervisor cluster which is deployed when vSphere with
Tanzu is enabled on a vSphere cluster. While workloads can be
deployed directly onto the Supervisor cluster using Native Pods (also
known as PodVMs), the Supervisor cluster is not considered a
general-purpose Kubernetes cluster. General purpose Kubernetes
clusters are provisioned using a TKG Service, one of many services
available in vSphere with Tanzu. The TKG Service, or TKGS for short,
can provision fully formed Kubernetes “guest” or “workload” clusters
on vSphere through some simple YAML manifest files which describe
the cluster configuration. Using Supervisor Namespaces, a vSphere

administrator can allocate a certain amount of vSphere resources to
a particular development team. Within these namespaces,
development teams can provision their own TKG clusters, but never
use more resources than the vSphere administrator has allocated.
Teams can then develop and test their own applications, and indeed
bring applications to production, in a controlled manner from a
resource management perspective. The idea is that multiple different
development teams can operate in an isolated manner on the same
vSphere infrastructure using Supervisor Namespaces via vSphere
with Tanzu.

This is important as this flavor of Tanzu Kubernetes does not use the
upstream vSphere CSI driver. Let’s try to explain the reason why this
is the case. TKG clusters created by the TKG Service are placed on
their own virtual workload networks which are not designed to have
access to the management network where vCenter Server resides.
This means that if the upstream vSphere CSI driver is deployed on a
TKGS workload cluster in vSphere with Tanzu, it would be unable to
reach the vCenter Server, nor would it be able to communicate to its
associated CNS component for persistent volume lifecycle
management. So how are persistent volumes created in TKGS
provisioned clusters you might ask?

The creation of persistent volumes is achieved through a paravirtual
CSI (pvCSI) running in the workload clusters that have been
provisioned by the TKG Service. This is a modified version of the
upstream CSI driver. The reason it is called pvCSI is that it “proxies”
requests from the Tanzu Kubernetes workload cluster to the
Supervisor cluster which in turn communicates to vCenter Server and
CNS to create persistent volumes on the appropriate vSphere
storage. The Supervisor cluster control plane nodes are multi-homed
with one network interface on the vSphere management network and
the other network interface on the workload network (the one used by
the TKG workload clusters). In this way, PV operations from TKG

workload clusters are sent to the Supervisor cluster, which in turn
sends it to CNS in vCenter Server.

Note that the CNS views of the persistent volumes in vSphere with
Tanzu reveal this proxying of volumes. For a PV created in a TKGS
guest cluster, a vSphere administrator will be able to see the
relationship between it and the volume that is created on the
Supervisor cluster on its behalf, as well as information about which
TKGS guest cluster it was created for.

Figure 227: Paravirtual CSI Driver in vSphere with Tanzu

The reason why the pvCSI driver is called out as a consideration is
that new CSI features typically get developed for the upstream CSI
driver for vanilla Kubernetes distributions before filtering down to
vSphere with Tanzu. Examples of this would be the support for CSI
snapshots which has been in the upstream version of the vSphere
CSI driver for some time but is still not available in vSphere with
Tanzu pvCSI driver at the time of this book going to press.

Thus, it is extremely important to check whether a particular CSI
driver capability is specifically available in the Kubernetes
distribution that you are planning to use. This is not only true for TKG
or vSphere with Tanzu, but also for other Kubernetes distributions
that use the vSphere CSI driver, such as Rancher, OpenShift and
Google Anthos. When you see that a feature is supported in the
upstream vSphere CSI driver, do not assume that it is automatically
available in all other Kubernetes distributions.

Supervisor Services & Data Persistence platform
(DPp)

VMware continuously enhances vSAN. A primary goal is to build a
platform for both container workloads and virtual machine workloads.
Data Persistence platform (DPp) is another step on the journey
towards enabling “cloud-native” applications to be deployed
successfully on vSAN.

Many cloud-native applications implement what is known as a
“shared nothing” architecture. These applications do not require
shared storage as they are designed with built-in
replication/protection features. Thus, we need vSAN to be able to
cater for this. At the same time, these applications need to be vSAN
and vSphere aware. Applications deployed to DPp have the built-in
smarts to understand what action needs to be taken when there is an

event on the underlying vSphere infrastructure, e.g., maintenance
mode, upgrade, patching, etc.

Since these applications have built-in protection, it implies that vSAN
does not need to provide protection at the underlying layer.
Therefore, the storage objects for the cloud-native application may
be provisioned with no protection. vSAN can hand off storage
services to the application if the application already has those
capabilities built-in (replication, encryption, erasure-coding, etc.).
This means that vSAN does not duplicate these features at the
infrastructure layer and avoids consuming more storage capacity
than necessary. However, if these features are not available in the
application, vSAN may still be leveraged to provide these capabilities.

There is also another deployment option from a storage perspective.
To facilitate a high-performance data path for these cloud-native
applications, the Data Persistence platform also introduces a new
construct for storage called vSAN-Direct. vSAN-Direct allows
applications to consume the local storage devices on a vSAN host
directly. However, these local storage devices are still under the
control of HCI management, so that health, usage, and other
pertinent information about the device is bubbled up to the vSphere
client. The primary goal here is to allow cloud-native applications to
be seamlessly deployed onto vSAN whilst leveraging the native
device speed with minimum overhead, but at the same time have
those applications understand infrastructure operations such as
maintenance mode, upgrades, and indeed host failures. Note that at
the time of writing, if a decision is reached to use vSAN-Direct for
DPp, then the whole of the vSAN cluster must be dedicated to vSAN-
Direct. It is not supported to run traditional vSAN workloads and
vSAN-Direct workloads side-by-side. As per the official
documentation from VMware, “Use vSAN Direct if you are creating a
dedicated hardware cluster for the shared nothing cloud-native
services“.

This is another option if considering the vSAN Data Protection
platform for cloud-native applications. You may opt to use DPp
without vSAN-Direct and implement vSAN objects with failures to
tolerate set to 0 since the application is handling the replication.
This option is also fully supported but may not deliver on the
performance and speed that can be achieved with vSAN-Direct.

Figure 228: Data Persistence Platform

As mentioned, we have partnered with several cloud-native
application vendors who have created bespoke Kubernetes operators
that will work with the Data Persistence platform. Partners can define
how their application should behave (e.g., re-shard, evacuate, delete
and reschedule Pods, etc.) when a vSphere operation is detected.
Partners can also create their own vCenter Server UI plugins so that
operations (e.g., resize, scale in and out) that are specific to their
particular Supervisor Service can be added to vCenter.

DPp Requirements

vSAN Data Persistence platform was first introduced in VMware
Cloud Foundation (VCF) 4.2 in early 2021. The reason for requiring
VCF was that there were a number of requirements to enable DPp.
Obviously, vSAN is a requirement, with or without the vSAN-Direct
configuration. vSphere with Tanzu is also needed. And since
Supervisor Services are deployed as a set of PodVMs on vSphere
with Tanzu, NSX was also necessary. This is because PodVMs
required network overlays for secure Pod-to-Pod communication, and
the only product that could achieve this was NSX. Thus, while VCF
was not a hard and fast requirement for DPp, it did have all the
necessary components to enable it.

With the release of vSphere 8.0 U1, a significant enhancement was
made to DPp requirements. DPp and Supervisor Services are now
available without NSX and can be implemented using a vSphere
Distributed Switch (VDS). An environment no longer needs to use
VMware NSX to support the network connectivity requirements by
applications that use the DPp. This enhancement applies to both the
vSAN OSA and vSAN ESA.

PodVM network traffic will now use the user-configured VDS. A
significant change to PodVMs is that they will no longer be exposed
to the supervisor cluster internal network. Thus, PodVMs that back
Supervisor Services and which wish to use the VDS will need to use
either the “Load Balancer” or “Headless” service types. They cannot
continue to use “ClusterIP” service type which may have been used
previously.

Partners who already offer a certified Supervisor Service solution
may need to update their partner/service operator and service
instances to avoid using the ClusterIP service type. As we will see
next, vSAN 7 U3 introduced the ability for partners using the DPp to

decouple their offering from the vCenter Server version. This should
make it relatively easy for partners to update their operators.

DPp deployment changes

When DPp first released, several services were embedded directly in
vSphere. With the release of vSphere 7.0U3, the way in which
vSphere administrators install, upgrade, and manage DPp services
has changed. Now vSphere administrators need to retrieve the YAML
manifests for the partner product and register the service with
vCenter Server. After this step is complete, the service can be
installed into vCenter, making them available to developers who wish
to use the service in Kubernetes workloads.

The partner manifests are available in the following JFROG
repository: https://vmwaresaas.jfrog.io/. Simply navigate to the
appropriate partner folder under Artifactory > Artifacts > vDPP-
Partner-YAML and select a YAML file to download. The path to the
Velero Service is shown below:

https://vmwaresaas.jfrog.io/

Figure 229: Data Persistence Platform Service Manifests

vSAN Stretched Cluster support

A frequently requested topology on which to deploy a Kubernetes
cluster is a vSAN Stretched Cluster. This requires some careful
consideration since a vSAN Stretched Cluster has only two
availability zones/data sites and Kubernetes always has an odd
number of control plane nodes, either 1, 3, 5, or 7. Thus you will
always have a situation where one of the vSAN Stretched Cluster
sites has more control plane nodes than the other. If the site with the

most control plane nodes fails, then the control plane will not be
available until vSphere HA has had time to restart the failed nodes on
the remaining site and the control plane components such as the
Kubernetes key-value store (etcd) has recovered. Thus, vSAN
Stretched Cluster may provide highly available Kubernetes clusters,
but not continuously available Kubernetes clusters. This is a major
consideration if you plan to deploy a Kubernetes cluster on vSAN
Stretched Cluster.

The official VMware documentation provides additional guidance on
vSAN Stretch Clusters, such as enabling vSphere HA, DRS, Host and
VM Affinity Groups, etc. However, when it comes to PV provisioning,
the advice given in the official documentation is that the same
storage policy should be used for all node VMs, including the control
plane and worker, as well as all Persistent Volumes (PVs). This single,
standardized storage policy in vSphere equates to the Kubernetes
administrator creating a single, standard Storage Class for all storage
objects in the Kubernetes cluster.

Readers should also pay attention to the fact that while it might be
possible to deploy native, upstream Kubernetes clusters on vSAN
Stretched Clusters, there is still no support for vSphere with Tanzu
and the TKG Service to use vSAN stretched clusters at the time of
writing. In the VMware Tanzu for Kubernetes Operations
documentation, the following reason is given for this lack of support:

Deployment on a stretched cluster is not supported by
VMware, as the vSphere with Tanzu layer does not distinguish
between stretched and non-stretched vSphere clusters and
provisions VMs randomly across the two sites. As a result,
vSphere with Tanzu may provision VMs in a way that does not
allow enough resources to your applications, resulting in
downtime. There is also a known issue in upstream ETCd
which VMware has found can cause corruption of one or more

ETCd replica. This can result in a cluster being unable to
schedule pods, requiring significant time and effort to recover.

It is the authors understanding that much of the ETCd brittleness
referenced above should be addressed in Kubernetes version 1.25.
However, this was not available with Tanzu Kubernetes at the time of
writing. Once this version is released, we may see some new support
statements around Kubernetes and vSAN Stretched Clusters.

The other major limitation at the time of writing is that currently only
block based read-write-once (RWO) volumes are supported on vSAN
Stretched Cluster. There is no support for dynamic read-write-many
(RWX) vSAN File Service based file volumes in vSAN Stretched
Cluster, either for vSAN OSA or vSAN ESA. Although, since there is
currently no support for vSAN File Service on vSAN ESA at this time,
this point is a little moot.

Other CSI driver features

Throughout this chapter, several different features of the vSphere
CSI driver have been mentioned. Listing every CSI feature is beyond
the scope of this book, but a feature that is supported at the time of
writing in the vSphere CSI driver is the ability to hot extend block
volumes while the pods remain online. Note however that this feature
is currently not available for file volumes. CSI snapshots are also
supported using the vSphere CSI driver, which should allow partner
backup vendors to be able to take backups of applications that use
persistent volumes on Kubernetes running on the vSphere platform.
There are also several different topologies that are being
investigated for support, such as a single Kubernetes cluster
deployed across multiple vSphere clusters, often referred to as a
multi-AZ deployment.

This GitHub page, maintained by the vSphere CSI engineering team,
is a good starting point for details about vSphere CSI driver versions
and supported features: https://github.com/kubernetes-sigs/vsphere-
csi-driver

Summary

vSAN lends itself very nicely as a platform for both traditional virtual
machine workloads and newer cloud-native workloads. Through the
upstream vSphere CSI driver and the pvCSI driver for vSphere with
Tanzu, vSAN can be used for block based read-write-once volumes.
With upstream Kubernetes, vSAN OSA can also be used for file based
read-write-many volumes, but this functionality will not be available in
the vSAN ESA until vSAN File Service is first supported. We have also
seen that VMware also have a number of different Kubernetes
offerings. This does highlight a consideration that many vSphere CSI
driver features are first developed for upstream and later
implemented in pvCSI. Care must be taken when validating whether
or not the Kubernetes distribution you are using does indeed have
the vSphere CSI driver features you are looking for.

One other significant development in this space is the vSAN Data
Persistence platform, or vSAN DPp for short. It allows our partners to
create Supervisor Services for the vSphere with Tanzu platform.
Traditionally, as mentioned, there were a considerable number of
requirements around using previous versions of DPp which had to be
considered. With the release of vSAN 8.0 U1 and vSphere 8.0 U1,
these have been relaxed considerably, especially the requirement to
use NSX. These less restrictive requirements for Supervisor Service
and vSAN DPp should allow for easier adoption .

https://github.com/kubernetes-sigs/vsphere-csi-driver

Chapter 10

Command Line Tools

This chapter will look at some of the command line interface (CLI)
tools that are available outside the vSphere client for examining
various parts of the vSAN cluster. Some tools are available on the
ESXi host, others are available via the vCenter Server command line.
The vCenter Server command line tool is called the Ruby vSphere
Console, or rvc for short. Administrators should familiarize
themselves with both the esxcli toolset, as well as exploring various
capabilities of rvc. Both will be discussed in this chapter.

CLI vSAN Cluster Commands

There is a namespace in esxcli for vSAN. Here, administrators will
find several commands for managing and displaying the status of a
vSAN cluster. An effort will be made to describe each of the sub-
namespaces, but for the most part what the command does is self-
explanatory. In places, where it makes sense to do so, sample
command outputs will be provided.

esxcli vsan cluster

Using the esxcli vsan cluster commands, you can enable the host on
which the command is run to join or leave a cluster, as well as display
the current cluster status and members. This can be very helpful in a
scenario where vCenter Server is unavailable and a particular host
needs to be removed from the vSAN cluster. The restore functionality
is not intended for customer invocation and is used by ESXi during
the boot process to restore the active cluster configuration from
configuration file.

esxcli vsan datastore

This command allows administrators to do certain operations on the
vSAN datastore. Note the guidance that many of these commands
are not expected to be run at the host level, but rather at the cluster
level. By default, the vSAN datastore name is vsanDatastore. If you do
plan on changing the vsanDatastore name, do this at the cluster level
via the vSphere client. It is highly recommended that if you are
managing multiple vSAN clusters from the same vCenter Server that
the vSAN datastores are given unique, easily identifiable names.

esxcli vsan debug

This command provides a lot of the functionality that administrators
would historically have found only in rvc, especially the ability to
query the status of objects. However, the command also has options
to look at physical disks, and controllers, as well as displaying resync
status, storage device information, evacuations of hosts/disk
groups/storage pools, and individual virtual machine disk status.

Most of these namespaces only provided a single command, either
list or get. The only namespace that differs is mob, which allows

administrators to start and stop the vSAN Managed Object Browser
Service.

Again, the output is quite self-explanatory, but what is good to see
from this output is the congestion values, and where they might
occur. All other aspects as green as well, including operational and
space, so quite a useful troubleshooting command to have available
for physical disks. Also note that with vSAN 8.0 ESA the storage
devices are now listed as being part of a “singleTier” Disk Tier.

We shall provide one additional example from the debug namespace,
and that is looking specifically at an object. In this case, the last field
is the object ID. This might be gleaned from the vSphere UI, either in
the task view or in an event or log message. You can use the CLI to
get further detail on a particular object, as shown here. You can see
the health of the object, which policy it is using, the state of its
components, and which object on the vSAN datastore the UUID
corresponds to. Quite a useful command.

esxcli vsan faultdomain

Fault domains were introduced to allow vSAN to be rack, room, or
site aware. What this means is that components belonging to objects
that are part of the same virtual machine can be placed not just in
different hosts, but in different racks. This means that should an
entire rack fail (e.g., power failure), there is still a full set of virtual
machine components available, so the VM remains accessible.

Probably not a useful command for generic vSAN deployments but
could be useful when Rack Awareness or Stretched Cluster has been
implemented since both of those require the use of Fault Domains to
group multiple hosts into a single fault domain. If you are using any
of those features, then you could use this command to determine
which hosts are in which fault domain.

For standard vSAN deployments, each host is in its own fault domain,
so the command will return a unique fault domain for every host.

esxcli vsan health

This is a very useful command to see the overall health of the system.

As you can see, there is only a single available namespace, cluster.

However, it is also useful as administrators can use it to run
individual health checks. For example, if an administrator ran the
following command: esxcli vsan health cluster list -w.

As well as displaying the status of the vSAN health, this command
would return the short name of all of the health checks. This short
name could now be used to get a specific health check and its
details.

In this example, we will look at the status of a single test called vSAN
Storage Space, or in shorthand, diskspace.

esxcli vsan iscsi

This command allows us to query the configuration and status of
iSCSI home namespaces, iSCSI targets and LUNs on vSAN.

In the commands that follow, we will first query whether or not the
iSCSI service is enabled?

Next, we list the initiator groups. This will display the name of the
initiator group, what the IQN of the initiator is, and then the IQNs of
any targets that have been added to the initiator groups.

Now that we have seen things from the initiator side, let us turn our
attention to the target side. Here we can list the target information,
and correlate these to any that have been added to the initiator
group shown above. Unfortunately, due to the length of the command
output, it is not easy to display, but hopefully, you can see the
relevant detail.

The last example we have for iSCSI is to display which LUNs have
been mapped to which target. From the output above, we have seen
several targets listed. Here we can list the LUN information and
correlate any LUNs that have been mapped to a particular target
shown above. Again, the way the command is displayed doesn’t
easily lend it to being reproduced in an easily readable format for the
book, but hopefully, you can see that this target has 2 LUNs mapped.

esxcli vsan maintenancemode

maintenancemode is an interesting command option. You might
think this would allow you to enter and exit maintenance, but it
doesn’t. All this option allows you to do is to cancel an in-progress
vSAN maintenance mode operation. This could still prove very useful,
though, especially when you have decided to place a host in
maintenance mode and selected the Full Data Migration option and
want to stop this data migration process (which can take a very long
time) and instead use the Ensure Access option.

This command does not allow you to enter or exit maintenance
mode. Note that you can place a node in maintenance mode
leveraging esxcli system maintenanceMode set -e true -m noAction
where “-m” specifies the data evacuation option, and if components
need to be moved from the host entering maintenance mode or not.

esxcli vsan network

This command will display details about the VMkernel interface used
for the vSAN network by this host.

In this example, it can clearly be seen that vSAN is using vmk2. Note
also that there is a considerable amount of multicast information
included here. This is historic information, and if you are using a
version of vSAN that is later than 6.6, most likely this information is
unused. However, there is a corner case scenario where a cluster may
revert from multicast to unicast, and therefore the information is still
displayed.

The first IP address, 224.2.3.4 is used for the master/backup
communication, whereas the second address, 224.1.2.3, is used for
the agents. esxcli vsan network list is a useful command to view the
network configuration and status should a network partition occur.

esxcli vsan policy

This command allows you to query, clear and set the default policy of
the vSAN datastore. However, as has been mentioned a few times
already in this book, we would strongly recommend not changing the
default policy, but instead creating a new policy, and setting that as
the default on the vSAN datastore.

Here we can see the different VM storage objects that make up a VM
deployed on a vSAN datastore, and we can also see the default policy
values. Although the policy value is called host failures to tolerate, it
actually is the equivalent to the failures to tolerate in the vSphere
client. All the objects will tolerate at least one failure in the cluster
and remain persistent. The class vdisk refers to VM disk objects
(VMDKs). The class vmnamespace is the VM home namespace where
the configuration files, metadata files, and log files belonging to the
VM are stored. The vmswap policy class is, of course, the VM swap.
One final note for vmswap is that it also has a forceProvisioning
value. This means that even if there are not enough resources in the
vSAN cluster to meet the requirement to provision both VM swap
replicas to meet the failures to tolerate requirement, vSAN will still
provision the VM with a single VM swap instance. The final entry is
vmem. This is the snapshot memory object when a snapshot is taken
of a VM, and there is a request to also snapshot memory.

These policy settings, and the reasons for using them, are explained
in detail in chapter 5, VM Storage Policies and VM Provisioning.

If you do want to change the default policy to something other than
these settings, there is a considerable amount of information in the

help file about each of the policies. The command to set a default
policy is as follows:

However, as stated earlier, VMware recommends avoiding
configuring policies from the ESXi host. This is because you would
have to repeat all of the steps on each of the hosts in the cluster.
This is time-consuming, tedious, and prone to user error. The
preferred method to modify policies is via the vSphere web client, or
if that is not possible, via rvc, the Ruby vSphere Console.

esxcli vsan resync

The bandwidth and throttle commands can be used to get to first
examine whether the resync bandwidth is too large for the cluster,
and is possibly impacting workloads, and if it is, to throttle the
bandwidth.

Outputs are displayed in Megabits per second (Mbps). However,
considering the number of changes that have been made to the
Quality of Service around VM traffic and resync traffic, modifying
these parameters should hopefully be a last resort in the current
versions of vSAN.

esxcli vsan storage

This command looks at all aspects of vSAN storage, from disk group
configurations, to adding and removing storage devices to/from disk
groups. Which also means that for vSAN ESA this command does not
provide a lot of insights.

esxcli vsan storagepool

This command looks at all aspects of vSAN ESA storage, from
individual devices to the pool of storage itself. This command
enables you to add devices to a pool, but also to mount and unmount
devices from a pool.

To see which devices are currently part of the storagepool on the
option “list” can be used. As shown in the output below, it provides
information about the state of the devices, whether it is encrypted,
the disk type (singleTier refers to vSAN ESA) and when the device
was added to the storagepool.

esxcli vsan trace

This command allows you to configure where vSAN trace files are
stored, how much trace log to retain, when to rotate them and if they
should also be redirected to syslog.

To see what the current trace settings are, you can use the get
option.

Additional Non-esxcli Commands for vSAN

In addition to the esxcli vsan namespace commands, there are a few
additional CLI commands found on an ESXi host that may prove
useful for monitoring and troubleshooting.

vsantop

vsantop is a relative new command. Most of you are probably familiar
with esxtop, and as expected vsantop provides performance details
of vSAN on a host level. The tool works very similar to esxtop. You
can use the the “?” character for help, add and remove fields using
“fF”, change the order using “oO” and select entities via “E”. When
you run vsantop you get presented with the following.

As mentioned, “E” can be used to look at various entities, and there
is a significant amount of detail provided by vsantop, below you find
the list of entities that can be inspected.

The question arises, what should you be monitoring with vsantop, and
the answer is simple, nothing. This tool is not intended for day-to-day
operations. It should only be used during performance

troubleshooting, and only in the situation where the required data
can’t be found via the vSphere Client. To completely honest, we (the
authors) have not encountered a situation ourselves where we need
vsan-top to troubleshoot a particular situation.

osfs-ls

osfs-ls is more of a troubleshooting command than anything else. It
is useful for displaying the contents of the vSAN datastore. The
command is not in your search path but can be found in the location
shown in the example output below. In this command, we are listing
the contents of a VM folder on the vSAN datastore. This can prove
useful if the datastore file view is not working correctly from the
vSphere client, or it is reporting inaccurate information for some
reason or other:

cmmds-tool

cmmds-tool is another useful troubleshooting command from the
ESXi host and can be used to display lots of vSAN information. It can
be used to display information such as configuration, metadata, and
state about the cluster, hosts in the cluster, and VM storage objects.
Many other high-level diagnostic tools leverage information obtained
via cmmds-tool. As you can imagine, it has a number of options,
which you can see by just running the command.

The find option may be the most useful, especially when you want to
discover information about the actual storage objects backing a VM.
You can, for instance, see what the health is of a specific object. In

the below example, we want to find additional information about a
DOM object represented by UUID 3577f463-7621-e35a-15ca-
005056b69337. As you can see, the output below is not the most
human-friendly, as is possibly only useful when you need to work on
vSAN from an ESXi host. Otherwise, esxcli or rvc is the recommended
CLI tool of choice as the command outputs are far more readable.

Looking at the output we realize that most of the information for
administrators may not be very useful, which is not strange as this
tool is mainly intended for troubleshooting purposes and is most
often used by VMware Global Support Services. There is however one
setting we want to emphasize as it could be useful for administrators
as well. In Chapter 5 we described how to disable compression on a
per VM/VMDK basis with vSAN ESA. In the vSphere Client it is,
however, not very apparent if compression has been disabled or not.
Well, except when you verify the capabilities configured through the
associated policy of course. Using CMMDS you can also identify the
objects which have compression disabled. The next output has this
highlighted, “’compressionState”. Do note, that this will only be
shown when compression is disabled explicitly.

There are, of course, many other options available to this command
that can run. For example, a -o <owner> will display information
about all objects of which <owner> is the owner. This can be a
considerable amount of output.

Type is another option and can be specified with a -t option. From
the preceding output, types such as DISK, HEALTH_STATUS,
DISK_USAGE, and DISK_STATUS can be displayed. Other types
include DOM_OBJECT, DOM_NAME, POLICY, CONFIG_STATUS,
HA_METADATA, HOSTNAME, and so on.

As you can see, this very powerful command enables you to do a lot
of investigation and troubleshooting from an ESXi host. Again,
exercise caution when using this command. Alternatively, use only
under the guidance of VMware support staff if you have concerns.

vdq

The vdq command serves a few purposes and is really a great
troubleshooting tool to have on the ESXi host. The first option to this
command tells you whether disks on your ESXi host are eligible for
vSAN, and if not, what the reason is for the disk being ineligible.

The second option to this command is that once vSAN has been
enabled, you can use the command to display disk mapping
information, which is essentially which devices are grouped together
in a storage pool. The third option of this command which we want to
highlight is that you can use it to verify the diskFormatVersion of the
devices.

Let’s first run the option to query all disks for eligibility for vSAN use.
The next example is from a host that already has vSAN enabled:

The second useful option to the command is to dump out the vSAN
disk mappings; in other words, which flash devices and/or which
magnetic disks are in a disk group. The next example shows a
sample output:

Lastly, you can also display information about each individual device
from a metadata perspective. One useful aspect here is that you can
verify the on-disk format version of each individual device.

Although some of the commands shown in this section may prove
useful to examine and monitor vSAN on an ESXi host basis,
administrators ideally need something whereby they can examine the
whole cluster. VMware recognized this very early on in the
development of vSAN, and so introduced extensions to the rvc to
allow a cluster-wide view of vSAN. The next topic delves into rvc.

Ruby vSphere Console (rvc) Commands

The previous section looked at ESXi host-centric commands for
vSAN. These might be of some use when troubleshooting vSAN, but
with large clusters, administrators may find themselves having to run
the same set of commands repeatedly on the different hosts in the
cluster. In this next section, we cover a tool that enables you to take
a cluster-centric view of vSAN called the Ruby vSphere Console (rvc).
It is also included in the VMware vCenter Server Appliance (VCSA).
As mentioned in the introduction, rvc is a programmable interface
that allows administrators to query the status of vCenter Server,
clusters, hosts, storage, and networking. For vSAN, there are quite a
number of programmable extensions to display a considerable
amount of information that you need to know about a vSAN cluster.
This section covers those vSAN extensions in rvc.

It provides a significant set of very useful commands that enable the
monitoring, management, and troubleshooting of vSAN from the CLI.

You can connect rvc to any vCenter Server. On the vCenter Server,
you log in via Secure Shell (SSH) and run rvc <user>@<vc-ip>. In our
lab we leverage root to login to SSH and then use
administrator@vsphere.local to login to rvc. This looks as follows:

After you log in, you will see a virtual file system, with the vCenter
Server instance at the root. You can now begin to use navigation
commands such as cd and ls, as well as tab-completion to navigate
the file system. The structure of the file system mimics the inventory
items tree views that you find in the vSphere client. Therefore, you
can run cd <vCenter Server>, followed by cd <datacenter>. You can
use ~ to refer to your current datacenter, and all clusters are in the
“computers” folder under your datacenter. Note that when you
navigate to a folder/directory, the contents are listed with numeric
values. These numeric values may also be used as shortcuts. For
example, in the vCenter Server shown in the output below there is
only one datacenter, and it has a numeric value of 0 associated with
it. We can then cd to 0, instead of typing out the full name of the
datacenter. It also provides tab completion of commands.

The full list of commands, at the time of writing, is shown here.
However, this list of commands, as well as their functionality, is
subject to change in future releases. You can use the <tab> key to do
command completion in rvc, as shown below.

The names of the commands describe pretty well what the command
is used for. However, a few examples from some of the more popular
commands are shown later for your information.

To make this output easier to display, for certain commands we have
separated out each of the columns and displayed them individually.

Deleting the Performance Statistics Database

When configuring our stretched cluster configuration, one of the
issues we encountered was the fact that the new optimal vSAN
storage policy wasn’t properly applied to the vSAN Performance
Statistics Database. Now, unfortunately, it is impossible to disable
and enable the performance service from the UI to solve this
problem. However, it is possible to simply use rvc to delete the
database and recreate it. We used the following two command to
achieve this, and to solve the issues we encountered with our
performance statistics database.

The output of vsan.check_limits

This command takes a cluster as an argument. It displays the limits
on the cluster, on a per host as-is. These limits include network limits
as well as disk limits, not just from a capacity perspective but also
from a component perspective.

The output of vsan.host_info

This command can be used to display specific host information. It
provides information about what the role of the host is (master,
backup, agent), what its UUID is, and what the other member UUIDs
are (so you can see how many hosts are in the cluster) and of course
information about networking and storage. It displays the adapter
and IP address that the host is using to join the vSAN network, and
which devices have been claimed for both the cache tier and
capacity tier.

Summary

As you can see, an extensive suite of tools is available for managing
and monitoring a vSAN deployment. With this extensive suite of CLI

tools, administrators can drill down into the lowest levels of vSAN
behavior.

The End

You have made it to the end of the book. Hopefully, you now have a
good idea of how vSAN works and what vSAN can provide for your
workloads in a VMware-based infrastructure.

We have tried to simplify some of the concepts to make them easier
to understand. However, we acknowledge that some concepts can
still be difficult to grasp. We hope that after reading this book
everyone is confident enough to design, install, configure, manage,
monitor, and even troubleshoot vSAN based hyperconverged
infrastructures.

If there are any questions, please do not hesitate to reach out to
either of the authors via Twitter or LinkedIn. We will do our best to
answer your questions. Another option we would like to recommend
for vSAN related questions is the VMware VMTN Community Forum.
It is monitored by dozens of vSAN experts, and answers to questions
are typically provided within hours. (https://vmwa.re/vsanvmtn)

Thanks for reading,

Cormac, Duncan, and Pete

https://vmwa.re/vsanvmtn

	Title Page
	Copyrights and disclaimer
	Dedication
	Preface
	About the authors
	Acknowledgements
	Foreword
	Contents
	1. Introduction to VMware vSAN
	Software-Defined Datacenter
	Software-Defined Storage
	Hyperconverged/Server SAN Solutions
	Introducing VMware vSAN
	What is vSAN?
	What does vSAN look like to an administrator?
	Summary

	2. vSAN Prerequisites and Requirements
	VMware vSphere
	ESXi
	Capacity devices
	ESXi boot considerations
	VMware Hardware Compatibility Guide
	vSAN ReadyNode
	NVMe
	Storage Controllers
	Storage Pools
	Network Requirements
	Network Interface Cards
	Supported Virtual Switch Types
	NSX Interoperability
	Layer 2 or Layer 3
	VMkernel Network
	vSAN ESA Network Traffic
	Jumbo Frames
	NIC Teaming
	NIC Teaming - Performance vs. Availability
	Network I/O Control
	Firewall Ports
	vSAN Stretched Cluster
	vSAN 2-Node Remote Office/Branch Office (ROBO)
	vSAN Fault Domains
	vSAN ESA Requirements
	Summary

	3. vSAN Installation and Configuration
	Cluster Quickstart
	Cluster Quickstart Wizard
	Networking
	VMkernel Network for vSAN
	VSS vSAN Network Configuration
	VDS vSAN Network Configuration
	Port Group Port Allocations
	TCP/IP Stack
	IPv4 and IPv6
	Network Configuration Issues
	Network I/O Control Configuration Example
	Network I/O Control
	Design Considerations: Distributed Switch and Network I/O Control
	Scenario 1: Redundant 25GbE Switch Without “Link Aggregation” Capability
	Explicit Failover Order
	Scenario 2: Redundant 25 GbE Switch with Link Aggregation Capability
	vSAN over RDMA
	vSphere High Availability
	vSphere HA Communication Network
	vSphere HA Heartbeat Datastores
	vSphere HA Admission Control
	vSphere HA Isolation Response
	Key Takeaways
	Proactive HA support
	vSphere HA VM Component Protection (VMCP)
	Storage Pool
	vSAN Datastore Properties
	Summary

	4. Architectural Details
	Distributed RAID
	Objects and Components
	Component Limits
	Virtual Machine Storage Objects
	Namespace Object
	Virtual Machine Swap Object
	VMDKs
	Witnesses and Replicas
	Performance Stats DB Object
	Object Layout
	vSAN Object Formats
	vSAN Software Components
	Component Management
	Data Paths for Objects
	Object Ownership and Interaction
	Placement and Migration for Objects
	Cluster Monitoring, Membership, and Directory Services
	Host Roles
	Reliable Datagram Transport
	On-Disk Formats and Disk Format Changes (DFC)
	On-Disk Formats in the vSAN OSA
	On-Disk Formats in the vSAN ESA
	vSAN I/O Flow
	Data Caching and Buffering Concepts
	Data Caching and Buffering in the vSAN OSA
	Data Caching and Buffering in the vSAN ESA
	Anatomy of a vSAN Read on the vSAN ESA
	Anatomy of a vSAN Write on the vSAN ESA
	Adaptive Write Paths
	Data Compression
	Data Integrity through Checksum
	vSAN Encryption
	vSAN Encryption vs vSphere VM Encryption
	Encryption Key Providers
	Data Locality
	Content Based Read Cache
	Data Locality in vSAN Stretched Clusters
	Data Locality in Shared Nothing Applications
	Recovery to Regain Levels of Compliance
	Degraded Device Handling (DDH)
	vSAN Storage Services
	iSCSI Targets and LUNs
	vSAN File Service
	vSAN HCI Mesh
	Summary

	5. VM Storage Policies and VM Provisioning
	Introducing Storage Policy-Based Management in a vSAN Environment
	Storage rules
	Failures to tolerate
	Recommended Practice for Failures to Tolerate
	RAID-5 and RAID-6
	Number of Disk Stripes Per Object
	RAID-0 used when no Striping is specified in the Policy
	Stripe Width Maximum
	Stripe Width Configuration Error
	IOPS Limit for Object
	Flash Read Cache Reservation
	Object Space Reservation
	Force Provisioning
	Disable Object Checksum
	VM Home Namespace
	VM Swap Revisited
	Snapshot Changes
	VASA Vendor Provider
	An Introduction to VASA
	Storage Providers
	vSAN Storage Providers: Highly Available
	Assigning a VM Storage Policy during VM Provisioning
	Virtual Machine Provisioning
	Policy Setting: Failures to Tolerate = 1, RAID-1
	Policy Setting: RAID-5
	Policy Setting: RAID-6
	Default Policy
	Failure Scenarios
	Example 1: Failures to Tolerate = 1, RAID-1
	Example 2: Failures to Tolerate = 1 and RAID-5
	Changing VM Storage Policy On-the-Fly
	Summary

	6. vSAN Operations
	Skyline Health
	Skyline Health Engine
	Skyline Health Dashboard
	Weighted Health Findings
	Cluster Health Score and Health Score Trend
	Health Alerting and Remediation
	Health History and Data Retention
	In-Product versus Online Health Findings
	Skyline Health and CEIP
	Proactive Tests
	Performance Service
	Performance Diagnostics
	Network Monitoring
	vSAN IOInsight
	I/O Trip Analyzer
	Host Management
	Adding Hosts to the Cluster
	Removing Hosts from the Cluster
	Maintenance Mode and Host Locality
	Default Maintenance / Decommission Mode
	Maintenance Mode for Updates and Patching
	Maintenance Mode and vSphere Lifecycle Manager
	Multiple hosts in Maintenance Mode simultaneously
	Maintenance Mode Pre-Check
	Stretched Cluster Site Maintenance
	Shutting down a cluster
	Upgrade Considerations
	Storage Device Management
	Adding Storage Devices for use by vSAN
	Removing Storage Devices used by vSAN
	Erasing a Storage Device
	Turn on the LED on an NVMe device
	vSAN Capacity Monitoring and Management
	Capacity Overview
	Operations reserve and Host rebuild reserve
	What If Analysis / Thin Provisioning Considerations
	Usage breakdown
	Storage Device Full Scenario
	UNMAP Support
	vCenter Server Management
	Running vCenter Server on vSAN
	vSAN Storage Services
	vSAN iSCSI Target Service
	Enable vSAN iSCSI Target Service
	Create a vSAN iSCSI Target
	Create a vSAN iSCSI LUN
	Create a vSAN iSCSI Initiator Group
	vSAN iSCSI Target Service and vSAN Stretched Cluster
	vSAN File Service
	vSAN HCI Mesh / Remote vSAN Datastores
	Mount a Remote vSAN Datastore
	HCI Mesh and vCLS
	HCI Mesh Requirements and Limitations
	Failure Scenarios
	Storage Device Failure
	Storage Device Failure with Erasure Coding
	Host Failure
	Network Partition
	vCenter Server Failure Scenario
	Summary

	7. Stretched Cluster Use Case
	What is a Stretched Cluster?
	Requirements and Constraints
	Networking and Latency Requirements
	Witness Traffic Separation and Mixed MTU
	vSAN ESA Efficiency
	New Concepts in vSAN Stretched Cluster
	Witness Failure Resilience
	Configuration of a Stretched Cluster
	Configure Step 1a: Create a vSAN Stretched Cluster
	Configure Step 1b: Create Stretch Cluster
	Configure Step 2: Assign Hosts to Sites
	Configure Step 3: Select a Witness Host and Claim Disks
	Configure Step 5: Skyline Health Stretched Cluster
	Failures To Tolerate Policies
	Site Disaster Tolerance Failure Scenarios
	Single data host failure—Secondary site
	Single data host failure—Preferred site
	Full Site Failure – Data Site
	Witness host failure—Witness site
	Network failure—Data Site to Data Site
	Impact of multiple failures
	Operating a Stretched Cluster
	Summary

	8. Two Host vSAN Cluster Use Case
	Configuration of a two-host cluster
	vSAN Direct Connect
	Support statements, requirements, and constraints
	Nested Fault Domains in a 2-node Cluster
	Summary

	9. Cloud-Native Applications Use Case
	What is a container?
	Why Kubernetes?
	Kubernetes Storage Constructs
	Storage Class
	Persistent Volumes
	Persistent Volume Claim
	Pod
	vSphere CSI in action – block volume
	Cloud-Native Storage (CNS) for vSphere Administrators – block volume
	vSphere CSI in action – file volume
	Cloud-Native Storage (CNS) for vSphere Administrators – file volume
	vSphere CNS CSI architecture
	vsphere-csi-controller pod
	csi-snapshotter
	csi-attacher
	csi-resizer
	vsphere-csi-controller
	liveness-probe
	vsphere-syncer
	csi-provisioner
	vsphere-csi-node pod
	node-driver-registrar
	vsphere-csi-node
	liveness-probe
	Tanzu Kubernetes Considerations
	Supervisor Services & Data Persistence platform (DPp)
	DPp Requirements
	DPp deployment changes
	vSAN Stretched Cluster support
	Other CSI driver features
	Summary

	10. Command Line Tools
	CLI vSAN Cluster Commands
	esxcli vsan cluster
	esxcli vsan datastore
	esxcli vsan debug
	esxcli vsan faultdomain
	esxcli vsan health
	esxcli vsan iscsi
	esxcli vsan maintenancemode
	esxcli vsan network
	esxcli vsan policy
	esxcli vsan resync
	esxcli vsan storage
	esxcli vsan storagepool
	esxcli vsan trace
	Additional Non-esxcli Commands for vSAN
	vsantop
	osfs-ls
	cmmds-tool
	vdq
	Ruby vSphere Console (rvc) Commands
	Deleting the Performance Statistics Database
	The output of vsan.check_limits
	The output of vsan.host_info
	Summary

	The End

