

Generative AI on Kubernetes

Operationalizing Large Language Models

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write
—so you can take advantage of these technologies long
before the official release of these titles.

Roland Huß and Daniele Zonca

Generative AI on Kubernetes

by Roland Huss and Daniele Zonca

Copyright © 2026 Roland Huss and Daniele Zonca. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com .

Editors: Angela Rufino and John Devins

Production Editor: Katherine Tozer

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

http://oreilly.com/

May 2025: First Edition

Revision History for the Early Release

2025-03-12: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098171926
for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Generative AI on Kubernetes, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s) and
do not represent the publisher’s views. While the publisher and
the author(s) have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author(s) disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual

http://oreilly.com/catalog/errata.csp?isbn=9781098171926

property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.
978-1-098-17186-5

[FILL IN]

Brief Table of Contents (Not Yet Final)

Chapter 1: Introduction (available)

Chapter 2: Deploying Models (available)

Chapter 3: Model Data (available)

Chapter 4: Model Observability (available)

Chapter 5: Running In Production (unavailable)

Chapter 1. Introduction

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form
—the author’s raw and unedited content as they write—so you
can take advantage of these technologies long before the official
release of these titles.

This will be the 1st chapter of the final book. Please note that
the GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
arufino@oreilly.com.

The release of ChatGPT in 2022 was a watershed moment for
the IT world. Overnight, it seemed like everything changed—not
because of entirely new concepts, but due to the exponential
growth in both model parameters and the sheer volume of
training data. This explosion of data and model complexity
propelled AI into new territory, with capabilities that were
previously unimaginable.

In the world of physics, we describe such moments as phase
transitions - when small, gradual changes suddenly lead to
dramatic shifts in behavior. The rise of large language models
(LLMs) mirrors this idea. For years, AI had been steadily
evolving, but the leap in model size, compute power, and data
availability pushed it beyond a tipping point. These models
began exhibiting human-like text generation and
comprehension, disrupting entire industries and resetting our
expectations of what AI can do. The graph in Figure 1-1 shows
the explosive growth of these parameters and the vast data
sources that have driven AI’s evolution over the past few years.

Figure 1-1. Explosion of parameters and training data lead to a phase transition.

Beyond just data, we owe this transformation to advancements
in computational power, particularly the availability of
specialized hardware like GPUs. This combinations of more
data and faster compute created the perfect storm, enabling
rapid advancements in generative AI models.

And with these advancements came new challenges, especially
in managing the infrastructure required to handle such
massive workloads. For example, as OpenAI detailed in their

report on scaling Kubernetes to 7,500 nodes, Kubernetes
emerged as a critical tool in managing the immense
computational needs of models like GPT-3. Its ability to
autoscale clusters, dynamically adjust infrastructure, and
control costs made it an essential part of deploying these large
models efficiently.

Most of us don’t deal with clusters at the scale of OpenAI, but
the underlying principles they developed are relevant for any
Kubernetes environment, whether you’re running LLMs on a
small cluster or at “web scale.”

As Kubernetes experts working on Red Hat’s OpenShift, we
were used to support traditional workloads - stateless
applications, microservices, and databases - but running LLMs?
That was a whole new ballgame. Our first experience with these
computational monsters was both exciting and overwhelming.
These models are like “translucent” black boxes: we knew they
were huge, needed GPUs, persistent volume space, and required
health checks, but beyond that, the inner workings were
opaque.

We still remember our first attempt vividly. It was a disaster.
The models took ages to initialize, enabling GPU usage felt like
falling down a rabbit hole, and CrashLoopBack errors became

https://openai.com/research/scaling-kubernetes-to-7500-nodes

our constant companions. The response times were
embarrassingly slow. It became clear that we had to rethink
how Kubernetes was handling these workloads.

After some trial and error, we managed to get things running.
We fine-tuned our resource requests, optimized persistent
volumes, and introduced smarter scheduling strategies to
maximize GPU efficiency. Finally, the models sprang to life. It
was a steep learning curve, but it highlighted the gap between
Kubernetes’ traditional strengths and the emerging needs of AI
workloads.

Not everyone will face these exact challenges, but the lessons
we learned are applicable to any Kubernetes environment. As
the Kubernetes community continues to close the remaining
gaps to make AI workloads, especially LLMs, first-class citizen,
we invite you to join us on this journey. In this book, we’ll
explore the state of the art for running LLMs on Kubernetes
and show you how to overcome the operational challenges that
come with it.

In this introduction, we will first explore the challenges of
running large AI workloads at scale. Next, we’ll discuss why
Kubernetes is such a powerful platform for addressing these
challenges, despite a few gaps the community is actively

working to close. We’ll then take a brief detour to examine how
the processes around operationalizing generative AI workloads
have evolved, with a focus on how the DevOps paradigm has
been specialized into MLOps, aimed specifically at managing
machine learning workloads.

Finally, we’ll provide an overview of the three key areas that
will guide the rest of this book: Training, Inference, and AI-
driven Applications.

Now, let’s dive into the first critical topic: the challenges of
running generative AI at scale.

Challenges running Generative AI at
scale

As we have seen, running Generative AI models, particularly
LLMs, involves navigating a set of complex challenges that
extend beyond traditional application workloads. These
challenges demand not just powerful hardware but also
sophisticated management and orchestration of resources.

GENERATIVE AI AND LARGE LANGUAGE MODELS

In this book, we frequently use the terms “Generative AI” and
“Large Language Models” (LLMs) interchangeably. Here’s why:

Generative AI encompasses a wide range of techniques within
the field of machine learning and artificial intelligence. This
includes not only LLMs, but also models for generating images,
videos, and sound.

While LLMs are just one subset of Generative AI, they have
become the most prominent and widely recognized. To simplify
our discussion, we’ll often refer to both Generative AI and LLMs
interchangeably.

Operationally, all Generative AI models share many similarities,
though we will highlight any differences when necessary.

While most of the inner working of such models can be hidden
for the operator, there are still requirements that makes AI
workloads special:

Model Size and Resource Demands

One of the most significant challenges in running LLMs at
scale is their sheer size. LLMs consist of billions of

parameters, making them resource-intensive in terms of
both storage and memory. As these models grow in
complexity and size, the need for efficient resource
management becomes essential. The infrastructure must
be capable of handling these models’ demands without
compromising performance or reliability. This is where
the ability to dynamically allocate resources based on
load and demand becomes crucial.

Start-Up Time and Latency

Start-up time for these models can also be a bottleneck.
Unlike traditional applications, LLMs require substantial
warm-up periods, where their parameters are loaded into
memory and optimized for inference. This latency can
impact the overall responsiveness of AI-driven
applications, making it essential to have systems that can
manage start-up processes efficiently.

Hardware Requirements and Scalability

Generative AI workloads are highly dependent on
specialized hardware, particularly GPUs, which provide
the necessary computational power for training and
inference. Ensuring the right allocation of GPUs,
managing their availability, and scaling services across
multiple nodes is a challenge that requires advanced

orchestration tools. Additionally, as models evolve, the
infrastructure must support the integration of new
hardware without disrupting ongoing operations.

Security and Data Privacy

Security is another critical concern. LLMs are often
trained on sensitive data, requiring stringent security
measures to protect against unauthorized access and
ensure compliance with data privacy regulations. The
challenge is to implement security at multiple layers, from
securing the data pipeline to ensuring that the models
themselves are not vulnerable to attacks.

As you can see from this list, running Generative AI models at
scale presents a complex set of challenges. These include
managing enormous model sizes, addressing hardware
requirements, and dealing with latency and security concerns.
Each issue demands careful orchestration and robust
infrastructure to maintain performance and stability. Without
the right tools, these obstacles can become significant barriers
to success.

Fortunately, Kubernetes provides a platform capable of
handling these unique demands. In the next section, we’ll

explore how Kubernetes addresses these challenges and why
it’s an ideal fit for AI workloads.

Kubernetes for AI Workloads

We all know that Kubernetes is an open-source container
orchestration platform developed by Google originally, now
part of the Cloud Native Computing Foundation (CNCF). It was
designed to automate the deployment, scaling, and
management of containerized applications, which are packaged
as OCI-compliant container images. Kubernetes abstracts the
underlying infrastructure, allowing developers and operators to
focus on deploying and managing applications without
worrying about the complexities of the underlying hardware.

Initially, Kubernetes was optimized for distributed stateless
workloads that can scale horizontally with ease. However
Kubernetes quickly learned how to support stateful workloads,
like databases and messaging systems. This evolution made
Kubernetes a good platform for running a full stack of
applications, from simple web services to complex, state-
dependent systems.

In the context of AI, Kubernetes presents both opportunities
and challenges. Traditionally, AI workloads, especially those
involving large language models or other generative AI models,
have unique requirements that differ significantly from typical
business applications. These workloads often demand high-
performance computing resources, and specialized hardware,
such as GPUs. The challenge lies in extending Kubernetes to
handle these demands effectively while maintaining its
strengths in managing business applications.

In this book, we will explore how to leverage Kubernetes to
operationalize generative AI models, addressing the specific
challenges of running these workloads on a platform originally
designed for more traditional applications. While we assume
some basic Kubernetes skills, we will delve into how
Kubernetes’ features can be used to support AI workloads and
how additional Kubernetes addons and platforms like Kubeflow
can help fill the gaps, particularly in areas like model training
and inference.

Technology alone isn’t enough though. Successfully running AI-
driven applications on Kubernetes also requires a shift in how
we think about application operations. This new mindset will
be crucial as we integrate AI workloads into larger systems that
also include traditional business applications. In the next

section, we will discuss the evolution from DevOps to MLOps,
highlighting how practices that revolutionized software
development can be adapted to the AI domain.

DevOps and MLOps

DevOps emerged in the late 2000s as a response to the
inefficiencies and bottlenecks that plagued traditional software
development. In the past, development and operations teams
often worked in silos, leading to misaligned goals, delayed
releases, and frequent errors during deployment. DevOps seeks
to bridge this gap by bringing these teams together. Beside the
culture, DevOps is also as about best practices and tooling.

In summary, the most important aspects that are covered by
DevOps are:

Collaboration

DevOps emphasizes breaking down the barriers between
development and operations teams. By sharing
responsibility and open communication, DevOps ensures
that both teams work together to create good software
quickly and efficiently.

Automation

Automation is at the heart of DevOps. It reduces manual
errors and speeds up processes, ensuring more reliable
outcomes. Automating tasks like testing and deployments
frees up time for more creative work - and let’s face it,
writing scripts is more fun than following the same
manual process over and over again.

Continuous Integration and Continuous Deployment (CI/CD)

CI/CD is integral to the DevOps workflow. Continuous
Integration involves the automatic testing of code changes
as they are committed, while Continuous Deployment
ensures that these changes are automatically released to
production. This practice allows teams to deploy updates
frequently and reliably.

Infrastructure as Code (IaC)

DevOps promotes the management of infrastructure
through code, allowing teams to define and provision
computing resources using machine-readable
configuration files. This approach enables version control
and ensures consistency in the deployment of
infrastructure.

Observability

In a DevOps environment, continuous monitoring of
applications and infrastructure is crucial. Observability
involves implementing logging, monitoring, and tracing
systems to detect issues early and gather feedback, which
is then used to improve the system.

The fluent interplay between developer oriented tasks and
operational duties is visualized in Figure 1-2 as infinite loops
that move between planning, coding, testing, releasing,
deploying, and monitoring steps. This schema also emphasizes
the integrated approach and shared responsibilities between
previously clearly distinct roles.

Figure 1-2. The inifinite DevOps loop

As software development has evolved, so too have the
specialized practices that address the needs of new fields. One
of the most significant developments has been the rise of
MLOps (Machine Learning Ops), which extends the principles
of DevOps to the lifecycle of machine learning models.

MLOps addresses the unique challenges of deploying,
monitoring, and maintaining machine learning models in
production environments. These additional challenges include:

Cross-functional Collaboration

MLOps emphasizes the importance of collaboration
between data scientists, machine learning engineers, and
operations teams. Effective communication and clear
handover points are essential to ensure that models are
properly integrated into production environments.

Comprehensive Versioning

In addition to code, MLOps requires the versioning of data
and models to maintain consistency and reproducibility
across different environments.

Specialized CI/CD Pipelines

MLOps adapts the CI/CD pipelines used in DevOps to
accommodate the specific needs of machine learning

models. This includes automated testing and validation of
models before they are deployed to production.

Advanced Monitoring

Monitoring in MLOps goes beyond traditional
performance metrics. It involves tracking model-specific
metrics such as accuracy, latency, and data drift to ensure
that models continue to perform well over time.

Automated Model Management

MLOps also involves automating the retraining and
redeployment of models in response to changes in data
patterns or performance degradation. This ensures that
models remain accurate and relevant as they encounter
new data.

This specialization adjusts the steps in our DevOps loop as
shown in Figure 1-3: Coding involves crafting and architecting
an ML model, testing focuses on verifying the usefulness,
releasing entails packaging the model data into a suitable
format (such as an OCI image in the context of Kubernetes), and
deploying involves updating the runtime that serves the queries
the model with the released model data.

Figure 1-3. Adapting the DevOps loop for MLOps needs

The evolution from DevOps to MLOps highlights the growing
complexity of managing machine learning workloads. It
underscores the need for specialized tools and processes that
address these unique challenges, ensuring that machine
learning models in production are as reliable and efficient as
traditional software systems.

Overview

As we discussed in “Challenges running Generative AI at scale”,
running Generative AI on Kubernetes introduces a range of
unique challenges that require innovative solutions. To

effectively navigate these, we categorize the main tasks into
three distinct areas: Training, Inference, and AI-driven
Applications.

Training

Finetuning from foundational models is one of the most
resource-intensive tasks in the AI lifecycle. Kubernetes,
with its scalability and resource management capabilities,
is an ideal platform for spreading the load over many
nodes for training large language models.

Inference

Once a model is trained, the next challenge is deploying it
at scale to serve predictions or generate content in
response to queries. This involves setting up and
managing an API for querying the model in a production
environment, where performance and reliability are
critical.

AI-driven Applications

Kubernetes isn’t just a platform for running models; it’s a
versatile application platform that can integrate LLMs
into broader business applications. These applications
often consist of multiple microservices, and integrating

LLMs can enhance their capabilities—from automating
tasks to providing advanced data insights.

Let’s start with the inference phase, since even when it comes
second in the AI model lifecycle, it’s the most important and
most common use case to operate a given LLM on Kubernetes.

Inference

The most common use case for running GenAI on Kubernetes is
to offer querying the model as a servicer. This process is known
as Inference. Inference involves using the trained model to
generate predictions or outputs based on new inputs. To serve
these models to a wide range of users, they must be deployed in
a scalable and reliable manner. This is where Kubernetes
shines, offering a robust platform for operationalizing
inference at scale.

Kubernetes provides several key features that make it
particularly well-suited for running inference workloads:

Declarative Resource Management

Kubernetes allows you to define resource requirements
declaratively, such as specifying the need for GPU
acceleration or setting memory limits. Kubernetes then

automatically schedules the model services onto
appropriate nodes in the cluster.

Self-Healing Capabilities

Kubernetes continuously monitors the health of your
model services. If a service fails or becomes unhealthy,
Kubernetes can automatically restart it, ensuring high
availability and reliability.

Containerization

Containers are an ideal way to package and version
models. They provide a consistent environment for model
execution, regardless of the underlying infrastructure,
making deployment and scaling more manageable.

Fine-Grained Access Control

With Kubernetes Role-Based Access Control (RBAC), you
can implement granular policies that define who can
manage, access, or modify your model services, ensuring
security and compliance.

Extensibility with Add-ons

Kubernetes supports extensions such as KServe, which
offers a dedicated abstraction layer for serving machine
learning models. KServe simplifies the deployment and

management of model services, providing features like
autoscaling, canary rollouts, and built-in monitoring.

??? dives deeper into these topics, exploring how to leverage
Kubernetes to serve models in a production environment,
ensuring they are scalable, reliable, and secure.

Training

While deploying models for inference is crucial, creating those
models from scratch is an entirely different challenge - one that
is both resource and cost-intensive. Only the largest companies,
with the necessary financial backing, can afford to train large
language models from the ground up. The sheer volume of data
required, combined with the computational power needed,
makes this challenge nearly impossible for most organizations.

As a result, most teams turn to foundational models -
pretrained models provided by large companies. These models
serve as a starting point for further customization and are
made available under various licenses, which often include
restrictions on commercial use.

To give you an idea of the options available, Table 1-1 shows
some well-known open-source LLMs along with their sizes and

parameter counts:

Table 1-1. Sample models and their sizes

Name Vendor Parameters Size

Llama 405B Meta 405 billion ~750 GB

OPT-175B Meta 175 billion ~350 GB

Vicuna LMSYS 33 billion ~66 GB

Orca Microsoft 13 billion ~26 GB

Granite 13B IBM 13 billion ~26 GB

Falcon 2 TII 11 billion ~22 GB

LLaMA 3 Meta 8 billion ~16 GB

Mistral 7B Mistral 7 billion ~14 GB

While foundational models are powerful, they typically lack
specialized knowledge in domains that aren’t publicly
accessible. This is where fine-tuning comes into play. Fine-
tuning is the process of adapting a foundational model to your
specific needs by training it further on a targeted dataset.
Techniques like Low-Rank Adapters (LoRA) enable this process

to be more efficient, reducing the computational resources
required.

Kubernetes excels in facilitating fine-tuning within a cluster
environment. By leveraging Kubernetes’ scalable
infrastructure, you can run the fine-tuning process efficiently,
taking advantage of distributed computing resources to handle
the intensive workload.

All the details of these processes will be explored in ???.

Chapter 2. Deploying Models

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form
—the author’s raw and unedited content as they write—so you
can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book. Please note that
the GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
arufino@oreilly.com.

Have you experimented with online models like OpenAI’s
ChatGPT, and explored prompt engineering to get useful
content from the model, but now you need to run the model
within your own cluster because your real data can’t leave it? If
so, then this chapter is for you!

There are many different models on the market, many of them
are open source and available online with a permissive license.
Hugging Face is the most famous community where you can
find not only models but also dataset and libraries.

Regardless of where you obtained the model, whether it’s open-
source or not, there are aspects of deploying the model on
Kubernetes that aren’t specific to the model itself. However,
some aspects require careful analysis of the model to determine
the best approach.

This chapter describes different approaches and patterns for
managing the lifecycle of your model at runtime, with a focus
on some of the most used runtimes for Large Language Models
(LLMs).

TRANSFORMER ARCHITECTURE AND ATTENTION MECHANISM

Generative AI is a vast field, and the maturity levels of different
model classes vary significantly, with text generation models
being the most widely used and optimized.

Text generation models are based on Transformer architecture
or a derivative (like Mixture of expert approach) and they can
cover multiple use cases (task) that involve the processing of
text: chatbot, code generation, translation, summarization, etc.

Transformer architecture is a deep learning architecture
created and introduced by Google in 2017 to be more efficient
in long-range dependencies tracking via Attention mechanisms.
The main advantage of this architecture, compared to others,
like recurrent neural networks (RNN), is that it doesn’t have
recurring units (i.e., using the output of one neuron as the input
to another). This makes it highly parallelizable during training.

Long-range dependency is a core concept in natural language
processing: the meaning of a sentence is influenced by the
context.

The attention mechanism is used to to mimic human attention
by assigning different weights (or importance) to various
components of a sentence (or vector). In particular a multi-head

attention mechanism is used to run an attention mechanism in
parallel several times to produce different outputs that are then
finally concatenated and linearly transformed.

For more information on Transformer architecture and
attention see “How do Transformers work?”

“It works on my machine”

In a nutshell, deploying a model requires both the model itself
and a runtime capable of loading and executing it. As
mentioned, Transformer-based models are the most common
Large Language Models. Therefore, you can use the
Transformer library from Hugging Face to load the model and
invoke it. This doesn’t mean that every laptop can handle a
similar workload and neither that model of every size can be
loaded: it is possible to execute some models using CPU with
very limited performance (tens of second to produce a full
sentence) thus a GPU is essentially required. Moreover memory
requirements are directly related to the size of the model: a
model with 7 billions of parameters (aka 7B) is considered a
Small Language Model (SLM) and requires a GPU with about
15GB of memory to be loaded while a 70B model requires about
140GB of memory.

https://huggingface.co/learn/nlp-course/chapter1/4

See Example 2-1 for a code snippet with illustration purposes.

Example 2-1. Load and execute locally Llama3 8B

import transformers

import torch

model_id = "meta-llama/Meta-Llama-3-8B"

pipeline = transformers.pipeline(

 "text-generation", model=model_id,

 device_map="auto"

)

pipeline("Hey how are you doing today?")

The model identifier in Hugging Face format.

Load and initialize the model.

Invoke the model with a prompt.

What’s next? We’ll want to make the prompt the user input and
expose the function through an endpoint.

Let’s go back to Example 2-1 to see how we can make it more
flexible accepting the prompt with an endpoint to make it more
similar to a real world scenario. The easiest improvement is to

avoid the download of model on the fly every time the runtime
(or a replica) is started. The pattern to download and initialize
the model is quite common during the development/experiment
phase but it is possible, and usually suggested, to make the
model available to the cluster without the need to access
internet. There are different file formats, storage options and
loading techniques, see Chapter 3, “Model Data” for more
information.

The next step is to expose the model with an endpoint so that
the prompt is dynamic and that multiple users can invoke it.
One simple way to do that is to leverage Python ecosystem and
in particular FastAPI and Pydantic. See Example 2-2.

Example 2-2. FastAPI generate endpoint

from fastapi import FastAPI

from pydantic import BaseModel

app = FastAPI()

class InputText(BaseModel)

 text: str

class OutputText(BaseModel)

 text: str

pipeline = get_pipeline() # see previous example

@app.post("/generate", response_model=OutputText

async def generate_func(prompt: InputText):

 output = pipeline(prompt.text)

 return {"text": output[0]["generated_text"]}

Can we just create a container image and deploy it on
Kubernetes?

As you can imagine it is not that simple, especially if you are
preparing your Kubernetes cluster for a production workload
where scalability/throughput, reproducibility, and monitoring
are critical.

At the same time the example is not really model specific so it
looks like we are already creating something generic and that
might be generalized even more. Essentially, we are recreating
a model server!

Model Server

A Model Server (or serving runtime) is a component that
includes one or more runtimes. It can be distributed to use

multiple GPUs at the same time, execute various types of
models exposed via an API (REST or gRPC) and is optimized to
maximize throughput (Figure 2-1)

Figure 2-1. Model Server architecture

This concept is not new or specific to Generative AI, there are
multiple existing model servers that uses the common
frameworks to serve any type of Predictive AI model and some
of them are also evolving to support Generative AI. Even if the
concept is the same the exposed API is very different. In
Predictive AI the endpoint is usually a generic /predict or
/infer because the model is considered as a black box

function while in Generative AI it is a more task oriented API
because similar models can perform different types of actions
and work with different types of modalities (multimodal): text
generation, summarization, classification, text to image, etc.

NOTE

Model Servers expose the AI model via an API that clients have to use. This API can
be specific for a particular model server implementation breaking the abstraction

that Model Server aims to provide because client applications should not be tied to a
specific implementation.

This problem is not new nor specific to Generative AI, for Predictive AI the KServe
open-inference-protocol (OIP) has been defined as specification to standardize

“infer” endpoints and it has been adopted by most of model servers and is now
expanding to include Generative AI.

The API to invoke Generative AI models are still overall experimental and very
different based on the type of model and the task it performs. OpenAI with chatGPT

API for chat completion is a standard de facto for text generation models.

https://github.com/kserve/open-inference-protocol

MULTIMODAL MODELS

Many LLMs typically work with just one modality: input and
output are text. Multimodal models are able to process a larger
set of modality like images, video, audio, mathematical
equations and so on. In particular the main goal is to mix
similar modality to perform tasks like text to image where the
input is a textual query and the output is a generated image. It’s
possible to do the opposite or to mix multiple modalities in the
same query by providing an image and a query to return a new
image or text.

From a model architecture perspective image/audio generation
models are very different compared to text generation models:
they are diffusion models and not Transformer based. This
category of models is part of the Generative AI space but it is
not a Large Language Model, they are currently adopted mainly
for specific departments like for image generator/editing for
marketing and there is less standardization around. They
usually directly integrated in other specialized product like
image editor solutions.

We assume in the book the usage of Large Language Models
Transformer based that are applicable to a larger set of use
cases. This implies that the model output is text but it doesn’t

prevent the input to include images / audio together with text
making them multimodal models.

From a platform/Kubernetes perspective every model server is
usually similar in terms of deployment topology but you should
be aware of the type of model and task because the scaling,
hardware optimization and metrics to observe are model
server specific. We’ll delve more into this content in Chapter 4,
“Model Observability”.

Now that we know what a model server is, let’s go more in
details with few examples of LLM model servers, including an
example and highlighting there main use case.

vLLM

vLLM is a LF AI & Data project for LLM inference and serving.
The project is very active, with thousands of forks, hundreds
contributors, the support of more than 50 model architectures,
end-to-end optimization techniques and the support of multiple
hardware vendors. It is a library that can be directly used in
Python (Example 2-3) but the project includes a CLI and an
OpenAI-compatible server.

https://github.com/vllm-project/vllm

Example 2-3. Load a model in vLLM and execute inference

from vllm import LLM

llm = LLM(model="meta-llama/Meta-Llama-3-8B")

results = llm.generate("LLMs are great for")

print(results[0].outputs[0].text)

Load model

Invoke the model

Extract result

Our goal is to serve the model on Kubernetes, so vLLM should
be run in a container, making a server the best option. Starting
the server requires minimal configuration. However, a key
difference to note is that in a production Kubernetes
environment, you will likely use a local copy of the model
rather than fetching it on-the-fly from Hugging Face. You’ll need
to specify the location of the local model to the server. See
Example 2-4.

Example 2-4. Use vLLM server

start the server

vllm serve \

 --port=8080 \

 --model=/mnt/models \

 --served-model-name=meta-llama/Meta-Llama-3-8B

invoke the model

curl http://localhost:8080/v1/completions \

 -H "Content-Type: application/json" \

 -d '{

 "model": "meta-llama/Meta-Llama-3-8B",

 "prompt": "LLMs are great for",

 "max_tokens": 10,

 "temperature": 0

 }'

It is equivalent to python -m
vllm.entrypoints.openai.api_server

Location (or name) of the model (local to the container)

Name of the model

Number of tokens the model should produce

https://calibre-pdf-anchor.a/#a56
https://calibre-pdf-anchor.a/#a57
https://calibre-pdf-anchor.a/#a58
https://calibre-pdf-anchor.a/#a59

Temperature controls the randomness of the sampling, 0
makes the generation deterministic

From a platform/Kubernetes perspective, many parameters are
used to configure how the runtime loads and executes the
model, but this is relatively transparent from a deployment
standpoint. Techniques such as PagedAttention, FlashAttention,
and speculative decoding are focused on efficient attention
management and faster execution. While these techniques
don’t impact deployment directly, they do affect scalability and
resource optimization.

https://calibre-pdf-anchor.a/#a60

LLM INFERENCE OPTIMIZATION

The optimization of LLM execution is a very active field with
new techniques every weeks, this is the area where academia
and engine implementation are strictly coupled.

It is almost impossible to keep up with the speed of evolution
and at the same time it takes time to properly measure/assess if
a new optimization provides the expected benefit or not.

In this scenario we already mentioned some key optimizations
like PagedAttention and Flash Attention specific to make self-
attention faster given the quadratic time and memory
complexity of this phase optimizing memory management.

Another investment area is to reduce the size of the model
minimizing performance loss using multiple quantization
techniques to reduce the floating point size of the weights of the
model.

The cost and the complexity to produce a token is not the same
for every token, in natural language there are tokens that are
very common and easy to predict so why don’t exploit this
aspect to reduce the execution cost? Speculative decoding is an
optimization techniques based on this principle.

https://huggingface.co/docs/text-generation-inference/conceptual/paged_attention
https://huggingface.co/docs/text-generation-inference/conceptual/flash_attention
https://huggingface.co/docs/text-generation-inference/conceptual/quantization
https://docs.vllm.ai/en/latest/usage/spec_decode.html

As you can see there are many different way to optimize the
execution of a LLM, this book doesn’t aim to explain all of them
but fortunately, from a MLOps engineer perspective, you don’t
need to be an expert in LLM optimization internals, it is critical
to use a Model Server that is actively developed with a large
community so that every new optimization is included. The
configuration of vLLM for example, is usually limited to
changing the startup parameters of the runtime and the project
is getting better and better to automatically detect, based on the
model to execute, which configuration to apply so most likely
the default values should work.

Some of the configuration like quantization has effect on the
quality of the model and the tuning to find the right trade off
are part of the model development/tuning so that at inference
time you should already get the configuration as part of the
deployment.

On the other hand as an MLOps engineer you should be aware
of the parameters that have larger implication on
parallelization and scaling: multi node/distributed serving has
an impact on overall topology, it usually requires additional
components to manage the coordination and makes the

deployment stateful. We will discuss running the model in more
detail in ???.

Hugging Face Text Generation Inference

Hugging Face Text Generation Inference (TGI) is another Open
Source model server implementation created by the Hugging
Face company to serve text generation models and it is used to
power their product offering. Hugging Face has been
mentioned multiple times already because it is the most active
community where you can share Generative AI models (base or
fine tuned models) but also datasets and libraries. Many of the
most used libraries used for Generative AI, like transformer ,
peft or diffusers , are incubated in this community.

Similar to vLLM it has a launcher that can be used to start the
server and load the model. See Example 2-5.

Example 2-5. Use text generation inference server

start the server

text-generation-launcher \

 --port 8080 \

 --model-id /mnt/models

invoke the model using TGI API

https://github.com/huggingface/text-generation-inference/

 curl localhost:8080/generate_stream \

 -H 'Content-Type: application/json' \

 -X POST \

 -d '{"inputs":"LLMs are great for",

 "parameters":{"max_new_tokens":10}

 }'

invoke the model using OpenAI-compatible API

curl localhost:3000/v1/chat/completions \

 -H 'Content-Type: application/json' \

 -X POST \

 -d '{

 "model": "tgi",

 "messages": [

 {

 "role": "system",

 "content": "You are a helpful assistant."

 },

 {

 "role": "user",

 "content": "LLMs are great for"

 }

],

 "max_tokens": 10

}'

Launcher command

https://calibre-pdf-anchor.a/#a69

Location (or name) of the model (local to the container)

TGI original API to invoke the model

TGI now supports also OpenAI-compatible API

One of the most common categories of fine-tuned models
is “instruct” models, which are designed to follow human
instructions. In this scenario, the system prompt defines
the role of the model.

The same comments about the parameters and their
implication on Kubernetes made to vLLM applies here.

Other model servers

llama.cpp, as the name might suggest, is a C++ implementation
that runs Llama models.

It was originally created as a full re-implementation of the
Transformer architecture in C++ specifically for Llama models.
Over time, it has evolved to support a variety of other models.
The focus has been on efficiency, making it the recommended
option for running similar models locally on a laptop. Although
it still requires a powerful machine, it is widely used by projects
such as Ollama, Ramalama, LM Studio, and InstructLab. While

https://calibre-pdf-anchor.a/#a70
https://calibre-pdf-anchor.a/#a71
https://calibre-pdf-anchor.a/#a72
https://calibre-pdf-anchor.a/#a73

it is not designed for production use cases with high
concurrency, an active community continues to reimplement
many optimizations and techniques in C++, making llama.cpp
increasingly powerful. One of the results of the development of
llama.cpp has been the creation of GGUF file format that now
has been adopted by other libraries too.

In addition to the core library, there is a python server that
exposes OpenAI compatible API similar to the other model
servers, see Example 2-6.

Example 2-6. Start llama.cpp python server

python -m llama_cpp.server \

 --model /mnt/models

Start llama.cpp server

Location of the model (local to the container)

NVIDIA is the leader provider of GPU for AI and it also provides
the necessary software to train and serve models. NVIDIA NIM
is a solution designed for Kubernetes provided by NVIDIA to
simplify the deployment and the optimization of a LLM on their
hardware. It includes a model server (NVIDIA Triton Inference
Server) but it takes a different approach with a curated

container image per model family. This means that models are
directly tested and published by NVIDIA so you need to check
the supported model list (like Llama and Mistral) in the
documentation. As you can see, this approach is less flexible.
However, NVIDIA NIM stands out as a model server due to its
opinionated design regarding model and hardware usage,
offering some notable features: local caching of the model and
hardware optimization. Local caching is supported by a
PersistedVolume` , aiming to simplify and speed up one of
the major pain points of model serving for LLMs: loading time.
The model is downloaded only once, and subsequent replica
creations or restarts do not trigger another download.
Hardware optimization is another key feature, allowing NVIDIA
NIM to detect available accelerators, select the most suitable
model for the configuration, and adjust the model server
settings accordingly. See Figure 2-2 for more details on NVIDIA
NIM Architecture

Figure 2-2. NVIDIA NIM Architecture

Model Server Controller

Now that we understand what a model server is, how to use it
to serve a model, and some of the model servers specialized for

LLMs, we are ready to introduce the final step of integration
with Kubernetes: deployment.

You need to have an image that includes the model server and
then create a deployment that integrates all components: the
model server, model, accelerator, and observability. Figure 2-3
extends the previous Model Server architecture diagram to
include the main controller components: one or more
Kubernetes CustomResourceDefinition and a Kubernetes
Controller.

Figure 2-3. Model Server Controller architecture

Each model server usually provides the images so that you
don’t need to build it but at the same time picking the right
image is not straightforward: each accelerator has different
driver/framework (i.e. NVIDIA with CUDA, AMD with ROCm,
etc) so it is necessary to pay attention to this aspect. This
concern is similar to multi-architecture containers, where you
can easily select the architecture (e.g., arm64` or i386`) and
get the appropriate container version. However, for

accelerators, the process is still quite manual, so it’s important
to pay attention to this aspect.

DIY - Do It Yourself

The DIY option is always available and sometimes necessary if
you need to customize every aspect of the deployment in a
controller environment.

Let’s assume you want to use vLLM and you already built/got
the image to use. If we look at Example 2-7 you can easily spot
most of the configuration that you need to consider in your
deployment: port to expose, path where the model is and GPU
configuration and parameters to execute the model that are
essentially model specific.

Example 2-7. Start vLLM server with GPU

specify which of the available GPUs to use

CUDA_VISIBLE_DEVICES=0,1

vllm serve \

 --port=8080 \

 --model=/mnt/models \

 --served-model-name=meta-llama/Meta-Llama-3-8B

Now that we know how to create a deployment, the name of the
model we want to use, and the GPU requirements, we are ready
to proceed. See Example 2-8 for the full Deployment spec (with
PersistenceVolumeClaim) to apply to your cluster.

Example 2-8. Deploy vLLM server with GPU

kind: Deployment

apiVersion: apps/v1

metadata:

 name: vllm

spec:

 replicas: 1

 template:

 spec:

 containers:

 - resources:

 limits:

 cpu: '4'

 memory: 12Gi

 nvidia.com/gpu: '1'

 requests:

 cpu: '2'

 name: vllm

 env:

 - name: HUGGING_FACE_HUB_TOKEN

 value: ''

 args: [

 "--port",

 "8080",

 "--model",

 "meta-llama/Meta-Llama-3-8B",

 "--download-dir",

 "/models-cache"]

 ports:

 - name: http

 containerPort: 8080

 protocol: TCP

 volumeMounts:

 - name: models-cache

 mountPath: /models-cache

 image: vllm/vllm-openai:latest

 volumes:

 - name: models-cache

 persistentVolumeClaim:

 claimName: vllm-models-cache

 tolerations:

 - key: nvidia.com/gpu

 operator: Exists

 effect: NoSchedule

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: vllm-models-cache

spec:

 accessModes:

 - ReadWriteOnce

 volumeMode: Filesystem

 resources:

 requests:

 storage: 100Gi

In addition to the traditional CPU/memory you can specify
the number of GPU the model needs

One option with vLLM is to download the model on-the-fly
from Hugging Face, which requires injecting the token as
an environment variable

The entrypoint of the vLLM image is already starting the
server so it is only necessary to specify the additional
parameters

In the scenario of download on the fly, it is suggested to
specify a persisted model cache where the model is
stored.

The port to expose (useful then to expose it via Service
and Ingress)

The volume persisted volume to use as cache

https://calibre-pdf-anchor.a/#a91
https://calibre-pdf-anchor.a/#a92
https://calibre-pdf-anchor.a/#a93
https://calibre-pdf-anchor.a/#a94
https://calibre-pdf-anchor.a/#a95
https://calibre-pdf-anchor.a/#a96

Tolerations and Taints are used to mark the nodes where
the GPUs are available and make sure Kubernetes is going
to schedule the deployment accordingly

This example is definitely not intended to be comprehensive: it
doesn’t cover the configuration of GPU in Kubernetes (more of
this will be covered in ???), restart policy, scaling and even
probes are missing. It is also limited to scenarios where the
model can be deployed to a single node and not the distributed
serving scenario. At the same time it is quite self contained and
straightforward to start with. When the size of your
organization and the configuration of the different concerns
make this solution hard to manage you can consider the
introduction of additional components like KServe or KubeRay.

KServe

KServe project is Model Inference Platform on Kubernetes
designed to manage the lifecycle and the wiring of model
servers and models leveraging Kubernetes components to
provide scalability, routing, canary rollout, density packing and
in general the possibility to compose/extend a model inference
endpoint.

https://calibre-pdf-anchor.a/#a97
https://kserve.github.io/website/

The project has been created as part of Kubeflow community as
KfServing years ago and then became independent (but still
part of Kubeflow ecosystem). The initial target has been
Predictive AI and only more recently evolved to include
Generative AI.

KServe is built as a Kubernetes native component extending
Kubernetes API providing multiple
CustomResourceDefinitions to map the different concepts
in a declarative way. We are not going to cover all the API and
concepts that KServe provides because most of them are still
mainly applicable to Predictive AI.

From a technology stack perspective there are three different
deployment mode: Serverless, RawDeployment and ModelMesh.

Serverless

Serverless is the most comprehensive stack, it uses
Knative and Istio to manage autoscaling, rolling updates,
traffic management and composition (also via Knative
Eventing). By using this mode, every model becomes a
Knative Service .

RawDeployment

https://kubeflow.org/

RawDeployment is the opposite of Serverless, with no
additional dependencies beyond what Kubernetes already
provides. Using this mode, for every model KServe creates
a new Deployment .

ModelMesh

The ModelMesh solution is specialized for high-density
deployments where you need to deploy many models—
potentially thousands—in the same cluster, and the
footprint of using separate Deployments` is too large. In
this mode the model server is dynamically loading and
unloading models based on the requests.

Figure 2-4. KServe Serverless and RawDeployment architecture

The last deployment mode is not really applicable to Generative
AI: the size and the complexity of similar models doesn’t really
give you the option to deploy multiples of them in the same
node. On the other hand, the other two deployment modes are
generally applicable to Generative AI. However, the hardware
requirements for these models are still largely managed
statically, making it challenging to leverage the dynamic
autoscaling advantages of Serverless mode for LLMs. For the
remainder of this section, we will assume RawDeployment as
the deployment mode.

The two main APIs that KServe provides to deploy a model are
ServingRuntimeime and InferenceService .

ServingRuntime

A ServingRuntime is equivalent to a template/podSpec
where a model server is declared in the Namespace . It
specifies the image of the model server to use, along with
some parameters and the type of model it can serve. This
concept aims split and simplify runtime configuration and
model configuration so that the owner of the project can
have better control of model server versions, default
configuration and overall centralize the lifecycle of the
runtime. It is also possible to use a

ClusterServingRuntime to configure a runtime that is
available for the whole cluster. See Example 2-9.

Example 2-9. ServingRuntime example

apiVersion: serving.kserve.io/v1alpha1

kind: ServingRuntime

metadata:

 name: vllm

spec:

 containers:

 - args:

 - --model

 - /mnt/models/

 - --port

 - "8080"

 name: kserve-container

 image: vllm/vllm-openai:latest

 ports:

 - containerPort: 8080

 name: http1

 protocol: TCP

 multiModel: false

 supportedModelFormats:

 - autoSelect: true

 name: pytorch

KServe includes a vLLM ServingRuntime pre-configured
named “HuggingFace Runtime” designed to serve all
HuggingFace models. It can be used as is or you can define
your own ServingRuntime using a similar specification

This is the podSpec where it is possible to configure all the
parameters necessary to run the model server

This is the image that will be used. Note: applying this
resource will not deploy the model server immediately,
but it will make it available within the Namespace for use.

vLLM, like most of the model server, uses PyTorch as
actual runtime for the model so this configuration
declares that this runtime is able to serve PyTorch models

InferenceService

An InferenceService represents the model that the
user wants to serve. This object can specify a
ServingRuntime to use or the selection can be
automatic based on the model format. The creation of this
resource is going to trigger the deployment of the model
server and the wiring of the model. In the same spec it is
possible to override the default parameters specified in

the ServingRuntime and add more configuration that
might be specific for the model. See Example 2-10.

Example 2-10. InferenceService example

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: Meta-Llama-3-8B

 annotations:

 serving.kserve.io/deploymentMode: RawDeployme

spec:

 predictor:

 model:

 modelFormat:

 name: pytorch

 runtime: vllm

 storageUri: pvc://llama/model

 containers:

 resources:

 limits:

 cpu: "4"

 memory: 50Gi

 nvidia.com/gpu: "1"

 requests:

 cpu: "1"

 memory: 50Gi

 nvidia.com/gpu: "1"

This annotation is to select the deployment mode

Declaring the type of model allows KServe to
automatically find a ServingRuntime that can handle it

It is also possible to specify the name of the runtime to
refer explicitly

This field specifies where to get the model, in this case
from a PVC local to the cluster

For each model it is possible to override the resources to
match the requirements of the model

Other concepts/API

KServe API is very flexible and includes many other
concepts that are not strictly necessary to deploy a LLM
but that enables more advanced and composable use
cases. It is possible to configure an inference logger to
forward every input/output of the model to a logger
service for auditing or training purposes, do some
pre/post processing using a “transformer” (this is not

https://calibre-pdf-anchor.a/#a117
https://calibre-pdf-anchor.a/#a118
https://calibre-pdf-anchor.a/#a119
https://calibre-pdf-anchor.a/#a120
https://calibre-pdf-anchor.a/#a121

related to Transformer architecture, it is just a name
clash) or even compose different models using an
InferenceGraph . See KServe Control Plane API for a
more comprehensive documentation.

One of the main benefits of the split between ServingRuntime
and InferenceService is a more defined ownership in terms
of management because the runtime lifecycle and model
lifecycle are very different. KServe also provides additional
benefits like the support of multiple storage options: KServe
controller inject an initContainer called storage initializer
that reads the location of the model, performs the download (if
necessary) and copies the model to a folder of the model server.
It is also possible to replace the storage initializer container
using the ClusterStorageContainer API with a custom one
to support custom protocols for centralizing catalog of available
models. We will cover more in details how to package, register
and load a model in Chapter 3, “Model Data”

Ray Serve and KubeRay

The Ray project, compared to KServe, is a newer project with a
broader scope. It is an open-source framework designed to
build and scale ML applications easily. It is very Pythonic,
making it user-friendly for those with Python experience, and

https://kserve.github.io/website/latest/reference/api/
https://www.ray.io/

allows you to configure all activities directly within your
Python codebase.

Ray is not specific for model serving but instead it defines a set
of core concepts quite generic: Task, Actor, Object, Placement
Group and Environment Dependency. These core concepts in
addition to the Ray Cluster define the execution model that is
used to build and scale all the other features.

If you need a more comprehensive foundation on Ray, we
suggest Learning Ray by Max Pumperla, Edward Oakes, Richard
Liaw (O’Reilly Media)

Figure 2-5. Ray Cluster topology

As you can see from the diagram, a Ray Cluster has not been
designed with Kubernetes in mind and indeed it has a
standalone infrastructure to manage the scheduling and
orchestration of the jobs that you can usually do with
Kubernetes API and the different worker nodes. There is the
concept of Head node that acts as entrypoint for the jobs that
are then dispatched to one or more Worker nodes where the
execution will happen.

The set of features that Ray offers covers most of the ML use
cases: Ray Train, Ray Tune and Ray Serve are just a subset of
them. Ray Serve is the component that we need to use to serve a
model, the deployment is defined in Python and same for each
endpoint to expose or the initialization of the model.
Example 2-11 is a very simplified scenario where a Transformer
model is configured and deployed, in a way very similar to the
first section of this chapter. Ray Serve given that is configured
directly in the code is very flexible, you can easily find
examples where it is integrated with FastAPI to expose the
endpoint or using a library like vLLM to deploy a full model
server.

Example 2-11. Ray Serve with a Transformer based model

from starlette.requests import Request

from typing import Dict

from transformers import pipeline

from ray import serve

@serve.deployment

class TransformerModelDeployment:

 def __init__(self):

 self._model = pipeline(

 "my-transformer-model")

 def __call__(self, request: Request) -> Dict

 return self._model(

 request.query_params["text"])[0]

serve.run(

 TransformerModelDeployment.bind(),

 route_prefix="/my-model/")

Decorator function where it is possible to configure most
of the deployment aspects like autoscaling

https://calibre-pdf-anchor.a/#a130

The init method should be used to load a model, in this
case it is a Transformer-based pipeline

This method deploys the model with a given prefix

Ray has an API that is very friendly to a Data Scientist or in
general a Python developer, but when it comes to deploy a Ray
Cluster on Kubernetes you still need some help to wire all the
components together with Kubernetes concepts like
Deployment and Ingress.

The KubeRay project has been created to make the transition
from local Ray execution to Kubernetes streamlined. This is
necessary because Ray clusters and Ray applications are not
natively designed to use Kubernetes, in particular a Ray cluster
has a head node and worker nodes that needs to be deployed
with multiple Deployments properly configured to interact each
other.

KubeRay provides multiple Ray API as Kubernetes
CustomResourceDefinition, but in particular the RayService
object is a single concept that represents a multi node Ray
Cluster and a Ray Serve application that uses that cluster.
Example 2-12 is not a full example of the spec but it highlights
the main elements of the spec.

https://calibre-pdf-anchor.a/#a131
https://calibre-pdf-anchor.a/#a132

Example 2-12. RayService CR snippet

apiVersion: ray.io/v1alpha1

kind: RayService

metadata:

 name: my-transformer-model

spec:

 serveConfigV2: |

 applications:

 - name: my-transformer-model

 import_path: my-transformer-model:deploym

 runtime_env:

 working_dir: "https://my-git-repo.com/m

 rayClusterConfig:

 rayVersion: %VERSION%

 headGroupSpec:

 ...

 template:

 spec:

 containers:

 - name: ray-head

 image: rayproject/ray-ml:%VERSION%

 ports:

 ...

 - containerPort: 8000

 name: serve

 workerGroupSpecs:

 - replicas: 1

 groupName: gpu-group

 template:

 spec:

 containers:

 - name: ray-worker

 image: rayproject/ray-ml:%VERSION%

 tolerations:

 - key: "ray.io/node-type"

 operator: "Equal"

 value: "worker"

 effect: "NoSchedule"

This field is where all the configuration of the Ray Serve
application is

The code of the application is downloaded from
working_dir location

This section of the spec is to configure head and worker
nodes of Ray Cluster

The version of Ray should specified here and in the
images to use

The head node exposes multiple components in addition
to the serving aspect, like dashboard or client

https://calibre-pdf-anchor.a/#a137
https://calibre-pdf-anchor.a/#a138
https://calibre-pdf-anchor.a/#a139
https://calibre-pdf-anchor.a/#a140
https://calibre-pdf-anchor.a/#a141

As in some previous examples, it is possible to configure
Tolerations and Taints to match GPU requirements

From a platform/Kubernetes perspective Ray is definitely less
familiar in terms of API and management compared to KServe,
but at the same time it enables data scientists and python
developers to have a full control over deployment. This
flexibility brings a lot of value especially when you need to
configure a more complex serving topology, like distributed
serving or training on multiple hosts.

Lessons learned

We are still at the beginning of the journey with Generative AI
and Kubernetes, in this chapter we covered the main
components necessary to execute a LLM on Kubernetes.

We started loading a LLM programmatically using Hugging
Face Transformer library, then introduced the concept of Model
Server and finally the Model Server Controller to manage the
integration and the lifecycle with Kubernetes.

The provided examples are not intended to be comprehensive,
each Model Server has a different configuration and supports
different models/optimizations but the approach is equivalent

https://calibre-pdf-anchor.a/#a142

so you should be able to adapt them to your needs. These
differences are even bigger if we compare KServe and KubeRay.

This field is evolving fast and new projects are created every
day, we decided to focus on the principles that are more mature
and adopted. We introduced multiple technologies in this
chapter but in the following chapters we will focus on a single
implementation per component. In the context of Model Server
to serve LLM we will default to vLLM in the rest of the book
given that it is the project that has most community adoption
while in the context of Model Server Controller we will default
to KServe because it is built natively in Kubernetes while Ray
has an approach that is alternative and partially in competition
with Kubernetes.

Chapter 3. Model Data

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form
—the author’s raw and unedited content as they write—so you
can take advantage of these technologies long before the official
release of these titles.

This will be the 3rd chapter of the final book. Please note that
the GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
arufino@oreilly.com.

As we have already seen in the previous chapters, one of the
largest challenges is to bring in the LLM data into a Kubernetes
cluster so that it can be leveraged by runtimes.

The main portion of those models consists mainly of the
parameters of the model and can be extremly large. Table 3-1
contains the number of parameters and size of some more

prominent available models that you can run yourself. There
are many more, but from this selection you can already see a
wide range of variations, ranging from large models that are
likely impractical for on-demand use to more lightweight
models that can be run on your own cluster and easily
downloaded when needed.

Table 3-1. Sample models and their sizes

Name Vendor Parameters Size

Llama 3.1 405B Meta 405 billion ~750 GB

OPT-175B Meta 175 billion ~350 GB

Vicuna LMSYS 33 billion ~66 GB

Orca Microsoft 13 billion ~26 GB

Granite 13B IBM 13 billion ~26 GB

Falcon 2 TII 11 billion ~22 GB

LLaMA 3 Meta 8 billion ~16 GB

Mistral 7B Mistral 7 billion ~14 GB

Even smaller models can pose significant challenges for
Kubernetes administrators when it comes to efficient handling

and management within a cluster. Understanding how to store
and organize these large datasets effectively is critical for a
successful LLM operation.

In this chapter, we will explore how to manage data-heavy
artifacts efficiently within a Kubernetes cluster. Most of the
time, ML models can be treated as black boxes, accessed by the
inference services described in Chapter 2. However,
understanding the package formats used to distribute these
models is still valuable for proper integration. “Model Data
Storage Formats” provides an overview of the most important
LLM storage formats.

Another critical aspect of operating LLMs is discovering where
to find and how to retrieve model data. The concept of Model
Registries, discussed in “Model registry”, offers a practical
solution for model discovery and access.

Finally, the models must be downloaded into the cluster to be
usable. “Accessing model data in Kubernetes” outlines
Kubernetes-native methods for efficiently fetching and
accessing model data.

Model Data Storage Formats

The first thing we notice when working with LLMs is their
massive size, measured in billions of parameters. However,
models shared on platforms like Hugging Face contain more
than just the raw weight parameters. They also include
metadata and, in some cases, the model’s architecture, which
defines how the neural network layers and transformers are
wired together.

For operators, such distributed models often feel like black
boxes. Yet, understanding in which format they are stored is
critical because not every packaged model can run with every
runtime described in Chapter 2. Some formats are highly
flexible and can be operated by multiple runtimes, while others
are closely tied to specific runtime platforms.

At a high level, model storage formats can be grouped into two
categories:

Weights-Only Formats

These formats store only the learned parameters (weights
and biases) of a neural network. The architecture,
hyperparameters, and metadata are excluded, so the

runtime must already know how to reconstruct the
network before applying the weights.

Self-Contained Formats

Self-contained formats store both the weights and the
model architecture, along with hyperparameters and
other metadata. They allow the model to be loaded and
run without requiring prior knowledge of the network
structure, making them easier to deploy as standalone
artifacts.

The boundary between both categories is gradual. Some
formats that seem self-contained may still require external
components, such as tokenizer files for language models.

For LLMs, the trend is moving towards such mostly self-
contained formats like GGUF and Safetensors. These formats
simplify distribution but remain tightly coupled to specialized
runtimes. True runtime independence where a model could be
loaded and run in any compatible environment, regardless of
its training framework, remains a work in progress.

In an ideal world, much like OCI containers abstract application
internals, model storage formats would draw a clear boundary
between model data (produced by data scientists) and model
execution (managed by MLOps/DevOps engineers in

production). However, today’s landscape prioritizes getting
models operational quickly rather than standardizing runtime
compatibility. As the field matures, expect stronger separation
between model creation and deployment concerns.

Weight-Only Formats

Weight-only model formats store the numerical parameters
(weights and biases) of a trained neural network without
including the model’s architecture or preprocessing
components. These formats are commonly used during the
development and experimentation phases, where flexibility
and minimal overhead are more important.

Since weight-only formats lack architectural details, the
runtime must have prior knowledge of the network structure to
correctly reconstruct the model and apply the stored weights.
These formats are tightly coupled to their respective machine
learning frameworks.

Some common weight-only formats used for LLMs and other AI
models:

PyTorch State Dict (.pt , .pth)

PyTorch’s native format for serializing weight tensors
using the state_dict dictionary. It is widely used for
LLMs such as LLaMA, GPT, and BLOOM during
development and fine-tuning stages.

TensorFlow Checkpoints (.ckpt)

A format primarily used in TensorFlow’s ecosystem for
storing model weights. While it was historically used for
models like BERT, its relevance for modern LLMs has
declined as PyTorch gained some dominance in the GenAI
space.

NumPy Arrays (.npy , .npz)

NumPy’s native serialization format for numerical arrays.
While still useful for storing smaller models or individual
weight matrices, it lacks the structure and metadata
needed for modern LLM deployments.

These formats primarily store raw tensor data with minimal
metadata, making them highly compact but dependent on
external runtime code.

As illustrated in Figure 3-1, a model stored in a weight-only
format requires the same network architecture to be
reconstructed during inference. The training architecture must

be manually replicated in the inference environment, ensuring
both sides can correctly interpret the stored weight tensors.

Figure 3-1. Example of a model stored in a weight-only format

While weight-only storage formats are well suited during the
development and experimentation phase, they are very closely
coupled to the ML code that evaluates those parameters.

Self-contained Formats

A better fit for production deployments are models stored and
distributed in self-contained formats, which bundle more than
just the raw weights. These formats include critical metadata
and structural information, making models easier to share and
run across multiple runtime environments without requiring
the original codebase used during training.

Self-contained models can carry the following information:

Weights and biases: The numerical parameters of the neural
network, which make up the bulk of the model size.
Model architecture: Either as a reference to a well-known
architecture or described explicitly as a connected graph of
layers.
Tokenizer and Vocabulary Data: Often included in language
models to preprocess text before inference.
Hyperparameters: Information like learning rate, batch
size, and number of epochs used during training.

Other Metadata: Descriptive information such as model
origin, authorship, and additional context for model
discovery and reproducibility.

Some self-contained formats also support pre- and post-
processing scripts for transforming inputs before inference
and converting outputs into a usable form afterward.

Figure 3-2 illustrates a model stored in a self-contained format,
where all components are bundled together, enabling runtime
independence from the original training code.

Figure 3-2. Example of a self-contained model where the runtime is independent of

the training code.

While fully self-contained formats aim to encapsulate
everything needed for inference, mostly self-contained formats
still rely on some external components and runtime
dependencies. These formats may bundle the model weights
and partial metadata but often omit critical components like the
tokenizer or detailed model architecture. As a result, they
remain tied to specific inference runtimes or frameworks that
“understand” how to interpret the stored data correctly.

For example, Safetensors includes model weights and limited
metadata but typically requires a separate tokenizer and model
definition during inference. GGUF and GGML store quantized
weights and some runtime metadata but expect a compatible
runtime like llama.cpp for execution.

In current LLM practice, fully self-contained models do not yet
exist. No widely used format today includes all components
required for inference like the tokenizer, vocabulary data, and
the complete model architecture in a single artifact. As a result,
even the formats often described as “self-contained” are better
categorized as mostly self-contained because they still depend
on external files or runtime knowledge to some degree.

Common mostly self-contained formats for LLMs include:

Safetensors (.safetensors)

A mostly self-contained format designed for secure and
efficient weight storage, frequently used for LLMs on
platforms like Hugging Face. While it improves safety and
performance over standard PyTorch weight files,
tokenizer information (e.g., tokenizer.json) and
model architecture definitions are not embedded,
requiring additional files or runtime knowledge to fully
reconstruct the model during inference. See “Safetensors”
for more details.

GGUF/GGML (.gguf , .ggml)

Specialized self-contained formats optimized for CPU-
based inference with quantized weights. They include the
model’s weights and basic architecture metadata but
remain closely tied to runtimes like llama.cpp and vLLM,
which are designed to efficiently handle the quantized
structures. GGUF can store the tokenizer data (like
vocabulary data and special tokens) but is still connected
to specific runtimes like llama.cpp or vLLM. See “GGUF
and GGML” for more information about GGUF.

ONNX (.onnx)

A versatile, self-contained format for model
interoperability. Often described as self-contained, ONNX
stores the model’s weights, architecture, and metadata but
lacks critical components like the tokenizer and
vocabulary data, which are essential for LLMs. This
makes it mostly self-contained, requiring additional files
for complete language model inference. See “ONNX” for
more details.

TensorFlow SavedModel

A fully self-contained, directory-based format that stores
weights, architecture, and auxiliary files. While common
in TensorFlow ecosystems, it is rarely used for modern
LLMs.

HuggingFace Transformers

The “Hugging Face Transformers format” is best
described as a packaging convention rather than a
standalone model format. It organizes models into a
directory containing multiple files essential for running
language models. This convention typically includes the
model’s weights stored in formats like Safetensors
(.safetensors) or PyTorch’s state_dict (.bin)
along with two key files: tokenizer.json and

config.json . These files play a crucial role in ensuring
the model can process input data and apply the correct
architecture during inference.

TOKENIZER.JSON AND CONFIG.JSON

The tokenizer.json and config.json files are critical
components for running LLMs effectively in the Hugging Face
ecosystem and beyond. The tokenizer.json file stores the
tokenization rules and vocabulary mapping for converting raw
text into token IDs. It defines how input text is split into tokens,
using techniques like Byte Pair Encoding (BPE), and includes
special tokens used for padding, start-of-sequence, and end-of-
sequence markers. The config.json file describes the model
architecture and hyperparameters, containing information
such as the number of layers, attention heads, hidden sizes, and
feed-forward dimensions. It often specifies the model type (e.g.,
llama) and influences how the runtime reconstructs the
model graph. Together, these files ensure the model can
preprocess input correctly (tokenizer.json) and build the
required network structure (config.json). Without them, the
runtime cannot properly tokenize input text or load the model
architecture for inference.

These files have become de facto standards in the machine
learning community, extending their utility beyond the Hugging
Face ecosystem. Frameworks and tools outside of Hugging Face
often adopt these conventions for model interoperability and
consistency.

While there isn’t a formal schema specification publicly
available for these files, their consistent structure and
widespread adoption have established them as reliable
standards for model configuration.

As we have seen, most current model formats for LLMs fall into
the category of mostly self-contained, often omitting key
components such as tokenizers, vocabulary data, and
preprocessing logic. Despite these gaps, some formats have
gained significant traction due to their balance between
portability and efficiency. The most commonly used for LLM
deployments today are Safetensors and GGUF/GGML, both
optimized for efficient weight storage with metadata. While
ONNX is less frequently used for LLMs, it serves as a useful
reference for a more fully self-contained format, though it
would require additional elements like tokenizer definitions to
be truly complete. In the following sections, we will explore
ONNX, SafeTensors, and GGUF/GGML in more detail.

ONNX

The Open Neural Network Exchange (ONNX), co-developed by
Microsoft and Facebook in 2017, was designed as a framework-
independent format for representing machine learning models.

It aimed to standardize how models are shared between tools,
allowing developers to train a model in one framework and
deploy it in another without requiring framework-specific
conversions.

ONNX models are stored in a single .onnx file using Protocol
Buffers (protobuf) for compactness and platform neutrality.
Each file contains the model’s computational graph, which
defines the network’s structure and the flow of data, the
learned model parameters such as weights and biases, and
metadata describing input and output specifications, operator
sets, and versioning details. This structure makes ONNX a
promising example of a self-contained format, as it combines
architecture, weights, and operational metadata in a single
artifact.

However, ONNX falls short for LLMs because it lacks essential
components such as tokenizers, vocabulary data, and
preprocessing logic. For tasks like natural language generation,
this missing information makes it necessary to supply
additional files alongside the .onnx model. Without these
components, an ONNX model alone cannot transform raw text
into tokenized inputs, limiting its suitability for modern LLM
deployments. This gap prevents it from being fully self-
contained in the context of language models.

ONNX’s broad support across runtimes like ONNX Runtime,
TensorRT, OpenVINO, and Triton Inference Server makes it
highly portable, but compatibility depends on the set of
operations a model uses. Each runtime supports a defined
operator set (op set), which specifies the available operations
a model can use. If a model relies on operations outside a
runtime’s supported set, it may fail to load unless extended with
plugins or custom runtime extensions. This challenge further
complicates its adoption for complex architectures like those
used in LLMs, where tokenization and text preprocessing steps
are integral parts of the model’s functionality.

Despite these limitations, ONNX provides a conceptual
blueprint for what a fully self-contained model format for LLMs
could look like. If expanded with richer metadata and native
support for tokenizer definitions, it could offer a more complete
solution for the LLM use case. For now, however, ONNX
remains better suited for models in domains like computer
vision, where preprocessing is often simpler and less tightly
coupled with the model.

Next, we’ll explore Safetensors, a format more commonly used
for LLM deployment today, offering optimized weight handling
and some degree of metadata inclusion.

Safetensors

Safetensors, developed by Hugging Face in 2021, is a modern
model serialization format designed to securely store and share
machine learning model weights while addressing security
vulnerabilities and performance limitations of earlier formats
like PyTorch’s .pt and pickle . The pickle format, often used
in PyTorch, can execute arbitrary Python code when
deserializing models, posing significant security risks when
sharing models. In contrast, Safetensors prevents code
execution vulnerabilities by focusing strictly on storing tensor
data, making it a safer and more efficient choice for model
serialization.

Safetensors files follow a simple yet efficient structure, as
shown in Figure 3-3.

Figure 3-3. Internal structure of a Safetensors model.

Each .safetensors file begins with a header containing
metadata, including a serialized JSON object describing each
tensor stored in the file. The header includes details such as the
tensor’s data type, shape, and the byte offsets where the tensor
data resides within the file. This structure allows for zero-copy
loading, where tensor data can be directly mapped to memory

without unnecessary CPU overhead, improving inference speed,
especially when working with LLMs.

Safetensors supports sharding, which allows large models to be
split across multiple smaller files. Each shard contains a portion
of the model’s tensors and is accompanied by an index file (e.g.,
model.safetensors.index.json). The index file maps the
names of tensors in the different layers to their respective
shard files. For example, Llama 4.1 405B is released with 30
safetensor files named like model-0000x-of-
00030.safetensors and accompanied by a
model.safetensors.index.json file that looks like
Example 3-1.

Example 3-1. Example of a model.safetensors.index.json for
sharded safe tensor files

{

 "metadata": {

 "total_size": 141107412992

 },

 "weight_map": {

 "lm_head.weight": "model-00030-of-00030.safet

 "model.embed_tokens.weight": "model-00001-of

 "model.layers.0.input_layernorm.weight": "mod

 "model.layers.0.mlp.down_proj.weight": "model

 "model.layers.0.mlp.gate_proj.weight": "model

 "model.layers.0.mlp.up_proj.weight": "model-0

 ...

 "model.layers.1.input_layernorm.weight": "mod

 "model.layers.1.mlp.down_proj.weight": "model

 "model.layers.1.mlp.gate_proj.weight": "model

 "model.layers.1.mlp.up_proj.weight": "model-0

 ...

 }

}

Sharding is particularly useful for extremely large models
where a single file might be impractical due to storage
limitations. It also enables parallel loading, as different shards
can be fetched and processed concurrently.

While Safetensors improves the safety and performance of
model weight storage, it still falls into the category of mostly
self-contained formats rather than fully self-contained. The
primary limitation is that tokenizer information and model
architecture definitions are not included within the
.safetensors file itself. Essential files like tokenizer.json
and config.json must be supplied separately for language
model inference, which is a key reason why it remains tightly
coupled to the Hugging Face Transformers ecosystem that
offers this extra meta data.

The format’s structure and focus on secure serialization have
made it increasingly popular, especially for LLM storage and
sharing. Safetensors is now the default weight format for many
large-scale models distributed on Hugging Face.

Next, we will explore GGUF, a more specialized format for LLMs
which is optimized for CPU-based inference and designed for
efficient deployment of LLMs.

GGUF and GGML

The GGUF (GPT-Generated Unified Format) and its predecessor
GGML (GPT-Generated Model Language) are specialized
formats developed for optimizing the storage and execution of
LLMs in resource-constrained environments such as CPUs and
edge devices. Originating from the llama.cpp project led by
Georgi Gerganov, both formats focus on efficient inference with
minimal hardware requirements. While GGML was an
important first step, GGUF represents a significant refinement,
addressing many of its predecessor’s limitations.

A defining feature of GGUF and GGML is their focus on
quantization, a technique that reduces the precision of model
weights from floating-point values to lower-bit representations
such as 8-bit, 4-bit, or even 2-bit integers. By lowering precision,

both the memory footprint and computational overhead are
significantly reduced, allowing models to run effectively
without dedicated GPUs while maintaining acceptable
inference accuracy.

GGML was initially created as a lightweight single-file format
for sharing and running LLMs on CPUs. However, as models
grew more complex, GGML struggled with flexibility. Users
often needed to adjust quantization parameters and
normalization settings manually, leading to compatibility issues
with newer models and inference runtimes. GGUF, introduced
in August 2023, was designed to address these challenges while
expanding the format’s capabilities. It offers a richer metadata
structure, improved support for model architecture definitions,
and better handling of quantized weights while retaining the
lightweight characteristics that made GGML popular for CPU
inference.

A key improvement in GGUF is its focus on backward
compatibility. As LLMs evolve and their architectures become
more complex, maintaining compatibility with existing tools
can be challenging. GGUF’s modular design allows newer
models to retain compatibility with older runtime versions,
provided the core components remain unchanged. This helps
prevent the need for frequent format conversions when

updating models. The backward compatibility design also
minimizes the impact of transitions between versions. When
GGUF is updated to support new features, existing models
remain functional without requiring conversion.

Unlike ONNX, which was designed as a general-purpose format
for a wide range of machine learning tasks, GGUF is specialized
for LLM inference. It focuses on efficient CPU execution and is
widely supported by runtimes like llama.cpp, vLLM, and other
CPU-optimized frameworks.

When compared to Safetensors, GGUF attempts to bundle more
metadata directly within the model file itself, including basic
tokenizer information and runtime metadata. While
Safetensors focuses primarily on weight storage with minimal
metadata and relies on external files for tokenizer definitions
and model configurations, GGUF stores token mappings and
model parameters in a single file. GGUF still depends on specific
external runtimes for complete inference, keeping it in the
category of mostly self-contained formats.

A GGUF file consists of a structured binary layout, beginning
with a magic number and version field to identify the file type,
followed by a section containing quantized tensor data stored
with byte offsets for efficient access. The metadata section

describes the model’s architecture, quantization type, and token
mappings. The tensor information block defines the data type,
shape, and memory locations for each tensor stored in the file.
This single-file design is particularly beneficial in Kubernetes
environments, where consistent, self-contained artifacts
simplify orchestration and scaling. Figure 3-4 illustrates the
structure of a GGUF file.

Figure 3-4. Internal structure of a GGUF file.

GGUF represents a leap forward for deploying LLMs efficiently,
especially on hardware that lacks high-end GPUs. Its focus on

quantization, self-contained design, and backward
compatibility addresses many pain points of earlier formats.

What’s next ?

While ONNX stands out as a self-contained format for general
machine learning models and GGUF offers a specialized, self-
contained solution for LLMs, both formats reveal important
gaps in model portability.

ONNX provides a structured way to package models but lacks
critical components like tokenizers for LLMs, while GGUF
includes basic tokenizer metadata but remains tightly coupled
to specific runtimes like llama.cpp . A future goal should be to
achieve true model portability, where models can be distributed
and executed as self-contained artifacts, much like how Docker
revolutionized the deployment of arbitrary software workloads
across diverse environments.

Reaching this level of portability would require broader
standardization across both the model file structure and the
runtimes capable of executing them. Ideally, a model stored in a
standardized format could be loaded by any compliant runtime
without manual adjustments for tokenization, quantization, or
architecture specifics. Such a shift would empower a more

diverse set of tools and frameworks, reducing lock-in to specific
ecosystems while making model distribution as seamless as
containerized applications.

The landscape of LLM development is still evolving rapidly.
New architectures, optimization techniques, and runtime
improvements emerge frequently, each introducing specialized
configurations and breaking the idea of a universal, all-
encompassing standard. Until the dust settles and the field
matures, mostly self-contained formats like GGUF and
Safetensors will likely remain the most practical choices for
balancing performance, compatibility, and flexibility. True
standardization, much like OCI’s success, will require the
convergence of both runtime capabilities and model
representation standards, a milestone that is still some distance
away.

Understanding the structure and formats of model files helps in
selecting the right tools and runtimes, but ultimately, a LLM is
just a collection of files, whether fully self-contained or spread
across multiple artifacts. Managing these files effectively in
Kubernetes environments requires a way to index, discover,
and organize them, which is the role of a model registry which
we talk about next.

Model registry

A model registry provides a central system for managing
models, track versions, and store metadata about ML artifacts.
It plays a crucial role in the machine learning lifecycle by
bridging the gap between model experimentation and
production deployment. Serving as both a discovery
mechanism and a collaboration platform, a model registry
simplifies how models are tracked, verified, and deployed at
scale.

Unlike public registries, most model registries are deployed as
local services within a cluster. These registries are not exposed
to the outside of the cluster. They primarily manage model
metadata rather than storing the actual model weights or
artifacts. Instead, they reference external object stores like AWS
S3 buckets where the actual model data resides. This separation
of metadata and model storage ensures greater flexibility in
managing large models while keeping metadata easily
accessible within the cluster.

By providing a structured and secure interface for managing
models and their metadata, model registries become a critical

tool for operationalizing machine learning at scale, especially in
dynamic environments like Kubernetes.

A model registry stands at the intersection of the
responsibilities of data scientists and MLOps engineers. For
data scientists, it supports creating and tracking changes during
model experimentation, verifying performance and metric
tracking, packaging artifacts for reproducibility, and releasing
validated models to production. For MLOps engineers, the
model registry facilitates deploying approved models with
associated metadata while also supporting ongoing monitoring
of deployed models for performance, drift, and necessary
retraining, though this level of observability is considered an
advanced feature beyond the core functionality of a model
registry.

The following list outlines the core features that define a model
registry, providing essential capabilities for both public and
local use cases:

Metadata Management

Store information about model accuracy, dataset lineage,
performance benchmarks, and other critical metadata.

Model Discovery and Search

Search and retrieve models based on metadata such as
architecture, hyperparameters, training datasets, and
performance metrics.

Version Control

Track multiple versions of models. Versioning enables
comparison of different model iterations and rollback if
necessary.

Lifecycle Management

Manage model stages such as experimentation, staging,
production, and retirement. This feature is especially
critical as part of continuous development workflows.

Access Control

Provide fine-grained permissions for model visibility and
usage, ensuring secure collaboration across teams.

Auditing and Compliance

Maintain a record of model usage, approvals, and changes
to ensure regulatory compliance and reproducibility.

Data Pipelines

Integrate into CI/CD workflows, automating tasks like
model validation, artifact packaging, and production
rollout.

To provide a clearer understanding of how these features are
implemented in real-world tools, we will examine four
prominent model registries: Hugging Face Model Hub, MLflow
Model Registry, Kubeflow Model Registry, and OCI Registries.

Hugging Face Model Hub

The Hugging Model Face Hub is the canonical platform for
discovering and sharing open-source machine learning models,
including LLMs. As of early 2025, it hosts over 1.2 million
models in general and more than 160,000 LLMs in specific, all
publicly available. Much like GitHub serves as the primary hub
for open-source software development, Hugging Face has
established itself as the leading platform for open-source ML
models.

Each model entry in the catalog is accompanied by a Model
Card. A Model Card provides a standardized summary of a
machine learning model’s key characteristics, including its
intended use case, training datasets, performance benchmarks,
and limitations. It often contains links to the datasets used for

https://huggingface.co/models

training, evaluation metrics, and licensing information. Users
can also try out models interactively using the built-in inference
widget, which enables quick testing of the model directly from
the web interface without requiring local setup (Figure 3-5).

Figure 3-5. Hugging Face Model Card for Llama 3.1

In addition to the web interface, Hugging Face also offers a
REST API for programmatic access to its repository. This allows
developers to query models, retrieve metadata, and integrate
models directly into automated workflows and pipelines. The
API simplifies tasks such as discovering the latest version of a
model or filtering models based on specific criteria.

While the Hugging Face Hub is perfect for manual discovery
and collaboration, it may become limiting in fully automated
workflows where model versions need to be programmatically
tracked and managed. For such scenarios, a dedicated model
registry becomes essential to ensure version control,
traceability, and tighter integration into production pipelines.

MLflow Model Registry

MLflow is a comprehensive toolset designed to manage the
machine learning lifecycle, including experiment tracking,
model packaging, and model registry functionalities.

MLflow was created by Databricks in 2018 to address the
challenges of managing machine learning experiments and
model artifacts consistently across teams and environments.
Since its release as an open-source project, MLflow has become
widely adopted in the data science community for its simplicity
and integration capabilities.

The central element of MLflow is the Tracking Server, which
acts as the main hub for managing and storing all experiment
metadata, metrics, and model artifacts. It provides an interface
where data scientists can log results, compare runs, and
organize their models and expose them in the model registry. A

https://mlflow.org/

rich set of visualization allows following the change of
performance data and different hyperparamaters. The models
themselves are stored in the simplest case locally on the file-
system. For production setups, MLflow supports pushing model
artifacts to external storage systems like AWS S3 or
downloading directly from the Hugging Face Hub. MLflow
manages references to these storage locations through artifact
URIs stored in the registry’s metadata.

The MLflow Model Registry is a part of this Tracking Server,
providing a centralized repository for versioning, tracking, and
managing machine learning models. It allows data scientists to
register models with rich metadata, including version history
and performance metrics. Figure 3-6 shows the Web UI of the
Model Registry.

Figure 3-6. MLflow Registry UI

Most of the time however data scientists interact with the
MLflow model registry programmatically like in Example 3-2.

Example 3-2. Programmatically logging and registering
models with MLflow

mlflow.set_tracking_uri(uri="http://127.0.0.1:800

mlflow.set_experiment("MLflow Demo")

params = {

 "solver": "lbfgs",

 "multi_class": "auto",

 "max_iter": 2500,

}

with mlflow.start_run():

 mlflow.log_params(params)

 model_info = mlflow.sklearn.log_model(

 sk_model=model,

 artifact_path="my_model",

 input_example=X_train,

 registered_model_name="my-model",

)

Set tracking server uri for logging

Create a new MLflow Experiment

Model hyperparameters

Log those hyperparameters

Log the model itself at the tracking server. The definition
of model and X_train are not show here

For MLOps engineers, MLflow provides a REST-API that you can
leverage for discovery of models. Example 3-3 shows how you
can fetch the details of a given model.

https://calibre-pdf-anchor.a/#a175
https://calibre-pdf-anchor.a/#a176
https://calibre-pdf-anchor.a/#a177
https://calibre-pdf-anchor.a/#a178
https://calibre-pdf-anchor.a/#a179

Example 3-3. Searching for and listing of models via
MLflows REST API

$ curl http://localhost:8000/api/2.0/mlflow/regis

{

 "registered_models": [

 {

 "name": "my-model",

 "creation_timestamp": 1736523034148,

 "last_updated_timestamp": 1736524822538,

 "latest_versions": [

 {

 "name": "my-model",

 "version": "4",

 "creation_timestamp": 1736524822538,

 "last_updated_timestamp": 1736524822538

 "current_stage": "None",

 "description": "",

 "source": "mlflow-artifacts:/84948067/f

 "run_id": "f0dd25483e234400b7",

 "status": "READY",

 "run_link": ""

 }

]

 }

]

}

Accessing an MLflow server running on the local machine

Model in the registry are versioned

Reference to the model artifacts, stored locally here

MLflow provides CLI tools that interact with the Model Server
as shown in Example 3-4. An interesting option here is to create
a self-contained OCI container image that you can push to an
OCI registry for later usage in an Kubernetes cluster. However,
this feature is not optimized for large download volumes that
need to be stored locally, so it is not very well suited for LLMs.
You can push such image to an OCI registry for later usage in a
Kubernetes cluster. We describe how OCI registries can be used
for model data in “OCI Registry”.

Example 3-4. Creating a self-contained OCI container image
with MLflow and Podman

$ mlflow models generate-dockerfile \

 -m mlflow-artifacts:/84948067/f0dd25483e/artifa

... INFO mlflow.models.cli: Generating Dockerfile

 .../artifacts/my_model

https://calibre-pdf-anchor.a/#a186
https://calibre-pdf-anchor.a/#a187
https://calibre-pdf-anchor.a/#a188

... INFO mlflow.models.flavor_backend_registry: S

 for flavor 'python_function'

... INFO mlflow.models.cli: Generated Dockerfile

$ cd mlflow-dockerfile

$ podman build -t my_model .

STEP 1/12: FROM python:3.13.1-slim

STEP 2/12: RUN apt-get -y update && apt-get insta

....

Successfully tagged localhost/my_model:latest

a828556afe0d53d4728d872aa51fe07eaa1d4ef4faedb5a78

Use the mlflow CLI to generate a Dockerfile that describe
how to build an image with MLflow and the model data
included.

Use podman to create an OCI image named my_model .
Alternatively, you can also use Docker for building the
image.

While MLflow was not initially built with Kubernetes in mind, it
can be deployed effectively on a Kubernetes platform. The
standard approach is deploying it as a web service using tools
like Helm charts, where a PostgreSQL database often serves as
the backend for storing metadata. MLflow does not introduce
native Kubernetes CRDs, which means its integration with

Kubernetes requires additional automation for tasks such as
scaling and dynamic model serving.

MLflow, while feature-rich, is not perfectly suited for running
LLMs. Its metadata management and artifact handling are well-
suited for traditional ML use cases, but LLMs often require
specialized handling due to their size and complexity. MLflow
has introduced some support for working with large models
through the Transformers flavor, including memory-efficient
and storage-efficient logging techniques. For example, MLflow
provides options for logging large models without loading them
into memory and referencing external models hosted on the
Hugging Face Hub instead of storing weights locally. However,
these approaches can create challenges in production
environments, such as the risk of losing access to external
repositories or insufficient caching mechanisms for repeated
large model retrievals. As a result, MLflow’s artifact storage and
model handling techniques, though improving, remain less
suited for the specific demands of LLM management at scale.
For example, downloading large models repeatedly from a
registry can become inefficient, and MLflow’s current artifact
storage approach is not optimized for such high-volume data
handling.

https://mlflow.org/docs/latest/llms/transformers/large-models.html

In summary, MLflow is primarily focused on the data science
side of the ML lifecycle, providing a rich feature set for tracking
data science experiements. It’s biggest advantage is that it is
very accessible and can be easily installed on local machines.
The challenge is to connect it to production-ready platforms like
Kubernetes for delivering large models.

These gaps are addressed by tools like Kubeflow, which extend
the concept of a model registry with deeper Kubernetes
integration and additional observability features.

Kubeflow Model Registry

Kubeflow is a Kubernetes-native platform designed to simplify
the entire machine learning lifecycle, including model training,
serving, and model registry management. Initially developed by
Google, Kubeflow is now an open-source project under the
Cloud Native Computing Foundation (CNCF).

It consist of these loosely connected components:

Kubeflow Dashboard

A central dashboard is our hub which connects the
authenticated web interfaces of Kubeflow and other
ecosystem components.

https://www.kubeflow.org/
https://www.kubeflow.org/docs/components/central-dash/overview/

Kubeflow Notebooks

Component for running web-based development
environments like Jupyter Notebooks inside your
Kubernetes cluster by running them inside Pods. No local
installation needed.

Kubeflow Pipelines

Kubeflow Pipelines (KFP) is a platform for building then
deploying portable and scalable machine learning
workflows using Kubernetes.

Katib

Katib is a Kubernetes-native project for automated
machine learning (AutoML) with support for
hyperparameter tuning, early stopping and neural
architecture search.

Model Training

Kubeflow Training Operator is a unified interface for
model training and fine-tuning on Kubernetes. It runs
scalable and distributed training jobs for popular
frameworks like PyTorch or TensorFlow.

Model Serving

https://www.kubeflow.org/docs/components/notebooks/
https://www.kubeflow.org/docs/components/pipelines/
https://www.kubeflow.org/docs/components/katib/
https://www.kubeflow.org/docs/components/training/

KServe (previously KFServing) solves production model
serving on Kubernetes. We cover KServe in detail in
“KServe”.

Model Registry

Index and catalog for ML models. The registry is the
central hub within the Kubeflow ecosystem. The rest of
this section will focus on this registry.

Figure 3-7 gives an overview of how the Model registry
interacts with the other parts of Kubeflow.

At its core, Kubeflow takes advantage of Kubernetes principles,
with all tasks, including model registration and training,
defined as containerized workloads. Unlike MLflow, which is a
more flexible experiment tracking and model management tool,
Kubeflow offers deeper Kubernetes integration through CRDs
and native controllers for each ML lifecycle component.

Figure 3-7. Kubeflow architecture and how it interacts with its Model registry

The Kubeflow Model Registry serves as a central repository for
managing machine learning models, their versions, and related
metadata. It substantially simplifies the transition from
experimentation to production deployments.

At its core, the registry utilizes Google’s ML Metadata (MLMD)
as its backend for metadata storage and management. This
integration ensures a structured, scalable approach to storing
model lineage, metrics, and parameters. With MLMD, the
Kubeflow Model Registry can standardize metadata, enable
version control, and offer interoperability across Kubeflow
components. This allows for robust tracking of model versions
and the reuse of metadata for deployment or pipeline triggers.

https://github.com/google/ml-metadata

The registry relies on external dependencies such as MySQL for
metadata storage, with a persistent volume required for
durability. This needs to be taken into account when operating
the registry in production setups. It exposes REST APIs and a
Python SDK for interaction.

To use the registry you need to register a model first, along with
its meta data. Example 3-5 shows how you can do this from
within a Python program or a Jupyter notebook.

Example 3-5. Register a model at the Kubeflow Model
Registry

from model_registry import ModelRegistry

registry = ModelRegistry(

 server_address="http://model-registry-service

 port=8080,

 author="your name",

 is_secure=False

)

rm = registry.register_model(

 "iris",

 "gs://kfserving-examples/models/sklearn/1.0/m

 model_format_name="sklearn",

 model_format_version="1",

 version="v1",

 description="Iris scikit-learn model",

 metadata={

 "accuracy": 3.14,

 "license": "BSD 3-Clause License",

 }

Create a proxy to the Model registry running in the
cluster.

Register a model with meta data and reference to the
location of the model data

When a model is registered at the registry, you can easily access
this via a Python library call. You can also access the model via
an REST API call directly to the service, as shown in Example 3-
6.

Example 3-6. Run a curl command from within the cluster to
query the cluster-internal model registry

kubectl run -it --rm curl --image=curl --restart=

 http://model-registry-service.kubeflow.svc.clu

Run a curl inside the cluster to query the model registry

https://calibre-pdf-anchor.a/#a205

You can also access the Kubeflow Model registry with a KServe
InferenceService in order to initialize the InferenceService with
the model data that the registry points to. See Example 3-7 for
an example how to do this.

Example 3-7. Example of an InferenceService that accesses
the model data via a Kubeflow registry.

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: iris-model

spec:

 predictor:

 model:

 storageUri: "model-registry://iris/v1"

 modelFormat:

 name: "sklearn"

 version: "1"

Reference to the model id and version

Format that specifies the runtime to use

OCI Registry

An OCI (Open Container Initiative) registry is a standard
mechanism for storing and distributing container images,
commonly used in Kubernetes environments. Familiar services
like Docker Hub and Quay.io have made it easy for Kubernetes
users to store and manage images without running a registry
themselves. Some Kubernetes distributions, such as Red Hat
OpenShift, even include a built-in OCI registry.

WHAT IS OCI ?

The Open Container Initiative (OCI) standardizes how
containerized applications and artifacts are managed. Founded
in 2015 by Docker and others under the Linux Foundation, OCI
ensures interoperability and vendor neutrality in container
technologies. It evolved from Docker’s proprietary format to
avoid lock-in, in favour of an open, extensible ecosystem.

While OCI began with container images, it now supports
diverse artifacts like Helm charts and generative AI models
through its OCI Artifacts specification. This makes registries
highly versatile for modern workloads.

An OCI registry can store more than just container images. With
the introduction of OCI 1.1, the specification expanded to
support OCI artifacts, a generalization of the original image
format. OCI artifacts allow storing arbitrary data types, making
an OCI registry suitable for hosting machine learning models,
including LLMs. This means the registry can manage the entire
model file rather than merely referencing external storage.

OCI registries provide versioning, immutability, and efficient
distribution mechanisms that fit well with LLM hosting.
Compared to MLflow and Kubeflow registries, which primarily
store model metadata and references to external storage, an
OCI registry can store the full model data itself.

LLM model images are examples of “passive data images”. They
are not meant to be executed but serve as immutable packages
of model weights and configurations for inference runtimes.
You can easily create such a data image by cloning a Hugging
Face repository as shown in Example 3-8.

Example 3-8. Dockerfile for creating a container image that
holds a model

FROM alpine/git

RUN git lfs install \

 && git clone https://huggingface.co/Qwen/Qwen2.5

 && ln -s /git/Qwen2.5-0.5B-Instruct /models

ENTRYPOINT sh

This Dockerfile can be be used directly with podman or
docker as shown in Example 3-9 to create a self-contained OCI
image files that has all files needed to run the model.

Example 3-9. Build and push a model file with podman

$ podman build -f Dockerfile.model -t quay.io/rhu

STEP 1/3: FROM alpine/git

Trying to pull docker.io/alpine/git:latest...

Getting image source signatures

...

Writing manifest to image destination

STEP 2/3: RUN git lfs install

 && git clone https://huggingface.co/Qwen/Q

 && ln -s /git/Qwen2.5-0.5B-Instruct /model

Git LFS initialized.

Cloning into 'Qwen2.5-0.5B-Instruct'...

--> b437a8f78e49

STEP 3/3: ENTRYPOINT sh

COMMIT quay.io/rhuss/qwen2.5-0.5b-instruct

--> f680df7c975f

Successfully tagged quay.io/rhuss/qwen2.5-0.5b-in

f680df7c975f6bfc806783574003c2b17872e9bf767944380

$ podman push quay.io/rhuss/qwen2.5-0.5b-instruct

Build model image. It will clone the full repo from
Hugging Face Hub and might take a bit.

Push to the registry from where you can access it from the
Kubernetes cluster.

By leveraging OCI registries, you can store, version, and
distribute LLM models efficiently within Kubernetes-native
infrastructure, integrating smoothly into MLOps pipelines and
declarative workflows.

Accessing model data in Kubernetes

Now that we have seen the various model formats and solution
how to register them for tracking and ease of discovery, let’s go
into the details and learn how we can access the model data
from within a Kubernetes cluster.

Chapter 2 described several ways how GenAI models can be
served on Kubernetes. They all require the models to be
downloaded in some way. For all runtimes described in
Chapter 2 there exist similar methods for getting hold of the

https://calibre-pdf-anchor.a/#a216
https://calibre-pdf-anchor.a/#a217

model data, but for demonstration purpose let’s stick to KServe
as the prototypical example here.

In the simplest case, the storage location is specified in an
InferenceService resource as shown in Example 3-10 by
leveraging a storageUri that points to the model’s data
location.

Example 3-10. InferenceService picking up model data from
a S3 storage

apiVersion: "serving.kserve.io/v1beta1"

kind: "InferenceService"

metadata:

 name: "mnist"

spec:

 predictor:

 serviceAccountName: sa

 tensorflow:

 storageUri: "s3://kserve-examples/mnist"

Kubernetes ServiceAccount that is associated with a
Secret that holds the AWS authentication credentials.

The runtime to use, TensorFlow in this example.

Reference to a S3 bucket that holds the model data files.

The schema of this URI defines which backend and where the
model data is stored. Each schema triggers a so called storage
initializer which eventually translates into a runtime’s Pod init-
container. You can create and deploy your own storage
initializers with KServe’s ClusterStorageContainer resource. As
shown in Example 3-11, in this resource you specify a reference
to an image holding the custom storage initializer and a list of
URL schemas that should trigger that storage initializer. URL’s
that match these schemas can then be used as storageUri
specification in an InferenceService.

Example 3-11. ClusterStorageContainer resource that adds a
model-registry:// schema for storageUri usage

kind: ClusterStorageContainer

metadata:

 name: model-registry-storage

spec:

 container:

 name: storage-initializer

 image: kubeflow/model-registry-storage-initia

 supportedUriFormats:

 - prefix: model-registry://

Reference to OCI image for executing the initializer logic.

Register URL schema model-registry so that it can be
used in an InferenceService.

The storage initializer is run as an init-container before the
model runtimes start and its only purpose is to make the model
data available for the serving runtime.

INIT CONTAINERS AND SIDECARS

Init Containers and Sidecars are powerful Kubernetes patterns
for enhancing Pod behavior. Init containers run first and
perform one-time setup tasks, such as populating a shared
volume with data needed by the main container. Sidecars, on
the other hand, run alongside the main container, often
providing auxiliary functionality like logging, data processing,
or cross-container data sharing. Together, these patterns enable
a flexible and modular design for Pods. For more insights, check
out the Init Container and Sidecar patterns described
Kubernetes Patterns.

Table 3-2 shows the storage initializers that KServe supports out
of the box.

https://calibre-pdf-anchor.a/#a229
https://calibre-pdf-anchor.a/#a230
https://k8spatterns.com/

Table 3-2. KService storage initializers

Schema Description Example

gs Download from Google Cloud
Storage

gs://kfserv

ing-example

s/models/skl

earn/1.0/mod

el

s3 Download from an AWS S3
bucket

s3://kserve

-examples/mn

ist

https Download model data with
HTTP

https://`aw

esome-llms.c

om/models/ll

ama-3.2-7b

hdfs,
webhdfs

Access files from an Hadoop
Distributed File System

hdfs://pat

h/to/model

pvc Copy model data from an
PersistentVolume reference
by the given
PersistentVolumeClaim

pvc://${PVC

_NAME}/expor

t

Schema Description Example

oci Pull OCI image with model
data and access it directly via
a modelcar, see “Modelcars”.

oci://quay.

io/rhuss/kse

rving-exampl

e-sklearn:1.

0

model-
registry

Access a model registered at
the Kubeflow Registry. See
“Kubeflow Model Registry”
for more details about this
type of model registry.

model-regis

try://iris/v

1

hf Download directly from
Hugging Face Hub

hf://meta-l

lama/Llama-2

-7b-chat-hf

A common pattern in Kubernetes is sharing data among
containers using dedicated node-local volumes. Most of the
storage initializers from Table 3-2 download the model data
into a node-local directory that then is shared and mounted by
a LLM runtime so that it can access it diretly. For this purpose,
Kubernetes provides the emptyDir volume type, that is
initialized as an empty directory and mountable by all

containers within the same Pod — whether they are init
containers running first or application containers running after
the init containers. The model serving runtime then mounts
this volume to access the prepared data. For more details and
variations of this pattern, refer to the Immutable Configuration
pattern in Kubernetes Patterns.

Let’s see how we can use OCI images for transfering and storing
model data, and how we can leverage this for smoothely
accessing the model parameters with the LLM runtimes.

OCI image for storing model data

It was in 2013 when Docker invented a clever layered format
for storing container blueprints. The original and still prevalent
usage for those images is to store all the binaries and files that
make up a Linux operating system, beside the kernel. It is a
layered format so that people can create base images which can
be reused for different specialized images that e.g. contain the
applications that are to be run in a container. Layers are shared
when multiple containers are running that refer to the same
layers.

https://k8spatterns.com/

In addition to the read-only layers of an image, Docker uses a
union filesystem that adds a read-write layer on top of the
image layer stack, so that different container instances can still
share the same underlying operating system files. One key
benefit of this schema is that the read-only layers can be cached
individually, which makes working with OCI images very
efficient as only changed layers need to be distributed.

We don’t go into much details about the concrete format here as
many aspects are not relevant when we store model data in
such layers. Important for the moment is, that you can share
layers and that an OCI image is built up hierarchically, i.e.
layers are stacked. This stacking matches nicely for model
composition techniques like finetuning with LoRA adapters on
top of foundational models. These foundational models, stored
in base images, can be shared when running on th cluster
nodes, which makes it very efficient to run multiple specialized
fine-tuned models.

Figure 3-8 shows how such images are composed. At the end all
layers are packed into a tar archive that is stored at an OCI
registry.

Figure 3-8. OCI Image consists of multiple directory-layer

Docker’s success eventually lead to a standardization of the
image specification by the OCI. A full ecosystem of supporting
tools from registries for hosting OCI images to CLI tooling like
skopeo or oras for inspecting and managing OCI images has
emerged over time. By putting LLMs into OCI images piggy
backs on this existing landscape and benefits automatically
from the existing work that has been done in this area.

In “DIY - Do It Yourself” we’ve seen how to deploy a LLM model
with a vanilla Kubernetes Deployment resource. In Example 2-8
the model data is downloaded on the fly from the Hugging Face
Hub, but we could also initialize the model data directly from
an OCI container image. Example 3-12 shows a similar

Deployment, but this time we are introducing an emptyDir
volume for sharing the model data.

Example 3-12. Deployment with an init-container that copies
over model data to a local emptyDir volume

kind: Deployment

apiVersion: apps/v1

metadata:

 name: vllm

spec:

 replicas: 1

 template:

 spec:

 initContainers:

 - name: copy-model-data

 image: quay.io/meta-llama/meta-llama-3.2

 command:

 - "sh"

 - "-c"

 - "cp -a /models/. /mnt/models"

 volumeMounts:

 - name: models

 mountPath: /mnt/models

 containers:

 - name: vllm

 image: vllm/vllm-openai:latest

 args:

 - "--served-model-name",

 - "meta-llama/Meta-Llama-3-8B",

 - "--model",

 "/mnt/models"

 volumeMounts:

 - name: models

 mountPath: /mnt/models

 volumes:

 - name: models

 emptyDir: {}

(Fictive) OCI image holding the model data for Llama 3.2
in a directory /models .

Copy over the data from the image directory /models to
the mounted /mnt/models directory that is backed by
an emptyDir volume. This might take some time
depending on the size of the model to copy.

Mount the emptyDir volume to the /mnt/models in the
init container.

Run vLLM so that it access the model stored in
/mnt/models .

https://calibre-pdf-anchor.a/#a238
https://calibre-pdf-anchor.a/#a239
https://calibre-pdf-anchor.a/#a240
https://calibre-pdf-anchor.a/#a241
https://calibre-pdf-anchor.a/#a242

Mount the shared directory on /mnt/models in the
application container to access the data copied by the init-
container.

Volume declaration for an empty node-local directory .

The technique demonstrated in Example 3-12 shows how model
data is typically initialized for a deployed model, independent if
its downloaded from a S3 bucket or extracted from an OCI
image. Beside downloading the data from some source it
involves an expensive copy step that is performed everytime a
runtime Pod is started.

The following two sections demonstrates how this copying over
of gigabyte-sized amounts of data can be avoided by directly
accessing the data that is contained in an OCI model data image.

https://calibre-pdf-anchor.a/#a243

CNAI MODEL SPECIFICATION

The Cloud Native AI (CNAI) Model Specification is an emerging
effort to extend the OCI image specification for packaging and
distributing AI models. It targets an expansion of the OCI
standard to support AI model artifacts, including model
weights, metadata, and configurations. The goal is to
standardize model storage and management, ensuring better
compatibility across different runtime environments. By
leveraging OCI’s extensible architecture, it aims to simplify
model deployment and sharing. This initiative complements
OCI’s image volume mount capabilities described later in
“Modelcars” and “OCI Image Volume Mounts”. The definition of
new annotation types is also part of the specification. While still
in early stages, the initiative has already gained interest from
the community and is expected to seek CNCF adoption in 2025.
Its success will lead to a more unified approach to
operationalizing AI workloads in cloud-native environments.

Modelcars

As we have seen in Example 3-12, you can easily access model’s
stored in OCI images. However this way of copying all the
model data into an intermediate storage has some drawbacks.

https://github.com/CloudNativeAI/model-spec

Wouldn’t it be awesome if we could just directly access the
model data stored in an OCI image, withouth copying it first ?

This would not only speed up the initialization for serving
runtimes, but also is more mindful about local node space. An
image needs to be downloaded only once, but can be used
simultaneously by many Pods. Also, for an LLM model that can
benefit from the layered nature of OCI images (like LoRA
finetuned models), the overall storage space that is needed for
specialized models that are based on the same foundational
model is reduced. The image layers of the foundation model can
be shared among the specialized models, reducing the required
disk space considerably.

Kubernetes has long lacked support for this use case. Although
the feature request was already recorded more than ten years
ago in GitHub issue 831, it was not considered for
implementation for many years.

However, things have changed with the advent of LLMs and the
desire to ship model data in OCI images. Beginning with
Kubernetes 1.31 you can use now image volume mounts
directly in your Pod specs (when you enable this experimental
feature). It might take some time though until image volume

https://github.com/kubernetes/kubernetes/issues/831

mounts move out of the experimental stage and are considered
to be stable.

We talk about OCI image volume mounts in detail later, but let’s
look at how KServe uses a trick to achieve the same behaviour
for older Kubernetes versions. You might consider jumping
directly to “OCI Image Volume Mounts” if you already can
leverage OCI volume mounts, since modelcars can be
considered as a temporary solution that you can use today. OCI
image volume support will support everything that modelcars
provide, but is a much cleaner and standardized technique. You
should use OCI image volumes whenever you can, and rely on
modelcars if this is not yet possible.

Let’s see how modelcars can be used in KServe today.
Example 3-13 shows how a modelcar can be configured in
KServe. The model data that is stored in the image that is
referenced with an oci:// URL will be directly accessed
without prior copying into a volume like demonstrated in
Example 3-12. Modelcars can speed up the startup of a model
runtime considerably, expecially when working with a large
data set.

Example 3-13. Inference service that uses model data from

an OCI image

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: "sklearn-iris-oci"

spec:

 predictor:

 model:

 modelFormat:

 name: sklearn

 storageUri: "oci://rhuss/kserving-example-s

OCI registry and repository of image holding the model
data

NOTE

The remaining part of this section is a deep dive in the technical architecture and
implementation of modelcars. The level of detail is higher than the most of the rest of

the book, so feel free to skip this section and jump directly to “OCI Image Volume
Mounts”. However, we feel that the pattern behind this technique proves to be useful
in other scenarios when you have to deal with large amount of data, so we’ll keep it
here for some technical fun and eductional purposes.

The Kubernetes’ Pod specification supports a relatively
unknown property called shareProcessNamespace . By

https://calibre-pdf-anchor.a/#a253

default, containers that are started on behalf of a Pod can not
see each other. I.e. when you do a ps aux inside a container,
you will only see the processes that are started by this
container. This is great to keep containers isolated. When you
set shareProcessNamespace to true , the container “sees”
other processes of other containers. You can also access the
filesystem from all containers via the /proc filesystem.

Example Example 3-14 shows how this cross-container
filesystem access can be tested.

Example 3-14. Accessing an other container’s root file
system

$ cat spns.yaml

apiVersion: v1

kind: Pod

metadata:

 name: spns

spec:

 containers:

 - image: docker.io/httpd

 name: httpd

 - image: docker.io/busybox

 name: busybox

 command: ["sleep", "infinity"]

 shareProcessNamespace: false

$ kubectl apply -f spns.yaml

Jump into the busybox container

$ kubectl exec -it spns -c busybox -- sh

$$ ps

PID USER TIME COMMAND

 1 root 0:00 sleep infinity

 7 root 0:00 sh

 14 root 0:00 ps aux

$$ ls -d /proc [0-9]*

/proc/1 /proc/7

Root filesystem of PID 1

$$ ls /proc/1/root/

bin dev etc home lib lib64

proc root run sys tmp usr var

Jump out of the container again

$$ exit

Change `shareProcessNamespace` from false to t

$ sed 's/false/true/' spns.yml | kubectl apply

Jump into busybox container like before

$ kubectl exec -it spns -c busybox -- sh\

$$ ps

PID USER TIME COMMAND

 1 root 0:00 /pause

 7 root 0:00 httpd -DFOREGROUND

 15 www-data 0:00 httpd -DFOREGROUND

 16 www-data 0:00 httpd -DFOREGROUND

 17 www-data 0:00 httpd -DFOREGROUND

 99 root 0:00 sleep infinity

 126 root 0:00 sh

 132 root 0:00 ps

Show data from the others container

$$ head -3 /proc/7/root/usr/local/apache2/conf/ht

#

This is the main Apache HTTP server configurati

configuration directives that give the server i

Simple Pod with two containers: An Apache HTTP server
and a busybox that sleeps forever to keep the container
running. No process namespace sharing is enabled here.

Only the processes from the container’s process
namespace are visible. Note that the specified command
has PID 1 when process namespace isolation is enabled.

Root filesystem of process PID 1 (which is the same as ls
/)

When process namespace sharing is enabled, the PIDs
from the other containers can be seen, too.

Via the proc filesystem, a file specific to the httpd-
container can be accessed from the busybox container.

NOTE

Accessing other processes’ filesystem is only possible when Unix permissions allow.
Ideally the processes from all containers use the same UID, so that cross-container

filesystem access should not be an issue. However, depending on your cluster setup
additional mechanisms like SELinux might affect the abilitiy to access another
container’s filesystem, even when using the same UID or using UID 0 for the
containers.

This technique to cross-share the containers’ filesystems is
universal to Kubernetes and can be used for any deployed
workload, regardless if you have deployed the runtime yourself
or via an add-on platform.

Although it’s not necessary to understand what happens behind
the scene, its enlightening how KServe implements direct image
mounting. The technique is independent of KServe and can also

https://calibre-pdf-anchor.a/#a260

be used in other contexts where access to large datasets stored
in OCI images is required.

Figure 3-9 shows the components and structure of a modelcar
in KServe.

Figure 3-9. Modelcar components

The serving runtime and the modelcar container are starting in
parallel. During the startup, the modelcar creates a symbolic
link from its file system to a shared emptyDir volume
accessible by by both containers. Then, the modelcar goes into
an infinite sleep, to keep the container alive.

This linking operation is part of the modelcar’s startup
command and requires minimal resources — less than 10MB of
memory to maintain idle status. It’s important to emphasize
that no data is copied over; just a symbolic link is created to
allow the serving runtime container to find the model data
under a fixed location (/opt/model).

Example 3-15 shows how what a Pod definition looks like, that
results on behalf of the creation of an InferenceService .
The important part here is the creation of the link and the
mount of the shared emptyDir volume to hold the symbolic
link to follow for cross-container access.

Example 3-15. Pod with a Modelcar sidecar that creates a
symbolic link in a shared volume to point to its own image
data via /proc/<id>/root .

apiVersion: "serving.kserve.io/v1beta1"

apiVersion: v1

kind: Pod

metadata:

 name: sklearn-iris-oci-predictor-00001-deployme

 namespace: default

spec:

 shareProcessNamespace: true

 containers:

 - name: kserve-container

 image: kserve/sklearnserver

 args:

 - --model_name=sklearn-iris-oci

 - --model_dir=/mnt/models

 volumeMounts:

 - mountPath: /mnt

 name: kserve-provision-location

 - name: modelcar

 image: rhuss/kserving-example-sklearn:1.0

 args:

 - sh

 - -c

 - ln -s /proc/$$$$/root/models /mnt/models &&

 volumeMounts:

 - mountPath: /mnt

 name: kserve-provision-location

 volumes:

 - name: kserve-provision-location

 emptyDir: {}

Serving runtime that executes on the model from the
modelcar.

Mounting the shared local directory on /mnt so that the
model can be accessed from /mnt/models .

Modelcar image that holds the model data.

Creates a symbolic link /mnt/models that points into the
modelcar’s own root filesystem, accessible via the proc
filesystem. $$$$ get replaced in YAML to $$ which is the
special shell variable that holds the modelcar’s shell
process id. After the link is created the modelcar sleeps
indefinitely to keep the container alive.

Declaration of the shared empty dir volume that is
referenced in the container declaration for the serving
runtime and the modelcar.

While this technique proved to be very valuable for optimizing
the initialization of LLMs there are also a handful of drawbacks
of this Modelcar approach:

Startup Order

Serving runtime typically assume that the model data is
already present when those runtimes start up. However,

https://calibre-pdf-anchor.a/#a268
https://calibre-pdf-anchor.a/#a269
https://calibre-pdf-anchor.a/#a270
https://calibre-pdf-anchor.a/#a271
https://calibre-pdf-anchor.a/#a272

in the case of a modelcar, the modelcar container and the
runtime container are started in parallel, which can lead
to the situation that the model is not yet available when
the runtime starts. Despite the fact that modelcar
containers are starting very quickly, it will be slower in
startup when the modelcar image still needs to be pulled
from an OCI image registry. This can be mitigated by
usind the Kubernetes sidecar support that is available
since Kubernetes 1.28 as optional features, so that the
runtime only starts when the modelcar is initialized. For
setups where sidecars are not enabled you still can
minimize the risk of a race condition by pre-pulling the
modelcar image in an init-container so that it is ensured
that when the modelcar sidecar starts, that the modecal
OCI image is already present at the cluster node.

Security

Enabling shareProcessNamespace allows the access to
the process names space and filesystems of all containers
defined for a Pod. This is especially important to
remember when there are also other sidecars included. A
prominent example is the service mesh Istio that uses
sidecars to provide its functionality. Istio sidecars assume
that they are fully isolated, so they do not create any
precautions to hide sensitive information like the access

configuration to their upstream Istio daemon. As shown in
this security report the lack of additional encryption of
the local Istio configuration can be easily exploited.
Therefore its important to understand the consequences
when using tools and platform that perform sidecar
injections like Istio or Knative.

Non-Uniform Startup Times

Depending on whether the model OCI image has been
already loaded in the Kubernetes’ node OCI runtime, the
actual serving runtime can either start quickly or it might
take several minutes until a potentially large model OCI
image is downloaded from a registry. To make the startup
times more predictable, which is important especially in
scale-to-zero scenarios, optimization techniques like
image prefetching can be leveraged.

Multi-Arch Support

Modelcars require an active process to keep the sidecar
alive. This process is specific to a certain CPU architecture,
so if you want to use modelcar images in a multi-
architecture setup, then you need to create copies of
modelcars, one for each supported CPU architecture.
Those images are containing the same ML model leading
to a waste of resources.

https://www.wiz.io/blog/sapwned-sap-ai-vulnerabilities-ai-security

All those drawbacks can be overcome by real OCI image volume
mounts. Luckily, Kubernetes 1.31 introduce OCI image sources
for volumes as an experimental feature. It will still take some
time until this mount type will be generally available, in the
meantime Modelcars are a good bridging technology with a
smooth upgrade path until OCI image volume mounts
eventually arrive for everyone.

OCI Image Volume Mounts

Starting with Kubernetes 1.31, Pods can directly mount OCI
container images as volumes without the need to copy model
data first. This feature provides an efficient way to access large
model artifacts stored in OCI images, reducing both
initialization time and storage overhead.

The benefit of direct image mounts over the Modelcar approach
(see “Modelcars”) is that it avoids the need for symbolic links or
process namespace sharing. Instead, model data can be directly
read from the image layers as a mounted volume, benefiting
from the underlying OCI image layer cache.

As of early 2025 this feature is still experimental, you need to
enable it explicitly via the feature gate ImageVolume to enable
in the configuration of the Kubernetes API server. This feature

https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/

is currently supported only with cri-o container runtime and
not containerd , but containerd will catch up soon.

Example 3-16 shows how to use an OCI image volume mount to
serve a model directly with vLLM.

Example 3-16. Pod serving a locally mounted LLM via vLLM

apiVersion: v1

kind: Pod

metadata:

 name: llm-server

spec:

 containers:

 - name: main

 image: vllm/vllm-openai:latest

 args:

 - "--served-model-name"

 - "meta-llama/Meta-Llama-3-8B"

 - "--model"

 - "/mnt/models"

 volumeMounts:

 - name: model-volume

 mountPath: /mnt/models

 volumes:

 - name: model-volume

 image:

 reference: quay.io/meta-llama/meta-llama-3

 pullPolicy: IfNotPresent

Runtime image for serving the model, vLLM in this case.

Specify an absolute path to the mounted model as startup
argument for vLLM .

Mount content of OCI image into /mnt/models .

image: is the volume type for an OCI image to mount.
The usual pull semantics for images applies: If no
pullPolicy is provided, always pull the image if tag or
tag latest is specified. Otherwise Kubernetes pulls only
if the image is not present at the node.

Pull policy can be also specified explicitly.

While this alpha feature simplifies large model deployments, it
still has limitations:

Only works with cri-o as of Kubernetes 1.31.
Feature gates must be explicitly enabled.
No support for writeable layers; volumes are read-only.
No support for OCI artifacts, only OCI images are supported

The community is actively working on these limitations. This
feature will eventually become the preferred method for
serving LLMs on Kubernetes, replacing the Modelcar approach
as it matures. In the meantime, modelcars are a reliable
approach for direct access to model data stored in an OCI
image.

More Information

Safetensors vs GGUF
ONNX
Safetensors
GGUF / GGML
MLflow vs Kubeflow
OCI Image Volume Mounts

https://learningdeeplearning.com/post/safetensors-vs-gguf/
https://onnx.ai/
https://huggingface.co/docs/safetensors/index
https://huggingface.co/docs/hub/en/gguf
https://www.linkedin.com/pulse/mlflow-vs-kubeflow-in-depth-comparison-aiml-nagesh-deshmukh-1m8sf/
https://kubernetes.io/blog/2024/08/16/kubernetes-1-31-image-volume-source/

Chapter 4. Model Observability

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form
—the author’s raw and unedited content as they write—so you
can take advantage of these technologies long before the official
release of these titles.

This will be the 4th chapter of the final book. Please note that
the GitHub repo will be made active later on.

If you have comments about how we might improve the content
and/or examples in this book, or if you notice missing material
within this chapter, please reach out to the editor at
arufino@oreilly.com.

In Chapter 2 we learned how to deploy a LLM in Kubernetes
starting from scratch with a simple coding example. The full
stack included a Model Server, vLLM, to optimize the execution
of the model and a Model Server Controller, KServe, to manage
the integration with Kubernetes and the lifecycle of the
deployment.

Then in Chapter 3 we focused on LLM model data, with the
complexity and the options that are available today to manage
the size of similar models. We are getting closer and closer to a
full production setup where the LLM workload is fully managed
and automated so that it can be executed side by side to the
other workloads (i.e. traditional applications) all managed by
Kubernetes.

Kubernetes is a very powerful and complex platform to
orchestrate container execution with a clear declarative API
and with promise to self heal the workload thanks to
controllers and reconcile loop in an eventually consistent way.
Everyone that has Kubernetes experiences knows that this
approach doesn’t replace proper observability and monitoring
of the workload so that it is possible to quickly react when
something cannot be solved automatically. As you can imagine
this principle applies to LLM too, it is critical to monitor a
Model Server but, given the nature of LLM, it is not equivalent
to monitor traditional applications.

LLMs are quite different in terms of how they produce
workload, definitely different compared to a traditional
microservice with few endpoints where the workload is mainly
driven by number of requests and speed of query on data.
LLMs are different even compared to traditional ML!

In this chapter we will see why they are different, which aspect
of the execution is important to be monitored and the
corresponding available metrics.

Understanding LLM

The goal of this book is not to explain the theory behind LLMs
or the details of their implementation. However, it is necessary
to cover some aspects of a model’s processing logic to better
understand what needs to be monitored and which metrics are
available. The focus of this section is the inference pipeline,
detailing the steps performed from the moment a request
reaches our vLLM endpoint to the generation of the output.

As mentioned previously, Large Language Models are a subset
of the models under the Generative AI category, they are based
on Transformer architecture and used to process text (natural
language) to perform a number of different tasks. An example
of a task is to produce a summary of a longer text, another is to
ask the model to answer user questions or to classify some data.
The Transformer architecture describes an encoding phase and
a decoding phase, this has been used to create three different
classes of models: encoder only models, encoder-decoder models
and decoder-only models.

In general encoder models are popular for learning
embeddings used in classification tasks (i.e. Google BERT or
Meta RoBERTa), encoder-decoder models are a good fit for
generative tasks like translation / summarization where input
and output are strongly connected (i.e. Google Flan-T5), and
decoder-only models are used for generative tasks like Q&A (i.e.
OpenAI GPT-1/2/3).

In practice, today the majority of models adopted for text
generation are decoder-only and they are able to perform
translation/summarization pretty well without the need of the
encoder step. We will focus on decoder-only models, but vLLM
can also serve encoder-decoder models, and the inference
pipeline described here is analogous.

From a practical perspective, an LLM is a complex neural
network that processes and generates numbers rather than
text. Therefore it requires a conversion layer to make it more
usable. A way to perform this conversion is to create a huge
vocabulary of all possible words and use the index of this
vocabulary as an integer representation of the word. This
vocabulary has to include everything, every possible word,
from company names like O'Reilly to every possible
combination of letters because we are going to loose data every

time a word is unknown to the vocabulary. If the word is
unknown we have to skip it.

Fortunately, converting a sentence into words and then into
numbers is not a challenge unique to LLMs but is common to all
natural language processing (NLP) techniques. Years of
research in this field have led to the development of various
approaches.

The solution that LLMs use is based on the adoption of a
tokenizer which splits the sentence in tokens and then computes
the token embedding to capture the semantic meaning with a
numerical representation. This is a necessary preparation to
make the input consumable by the neural network.

From high level perspective, the end to end inference pipeline
has two steps: prefill and decode. The prefill phase tokenizes the
input, applies embedding, and generates the first token. After
that, the decode phase generates the tokens one by one and
computes the output text (Figure 4-1).

Figure 4-1. LLM processing steps

The two phases uses the model in the same way to produce a
token, but while the prefill input processing is done in parallel,
the decoding phase produces one token at time. This makes the
prefill workload compute-bound, while the decode phase is
memory-bound.

Let’s analyze the two phases in more detail.

TIP

Compute-bound and memory-bound terms refer to the computational complexity of
a particular program/algorithm.

An algorithm is compute-bound when the time to complete the task is mainly driven
by the speed of the processing unit (CPU or GPU in the this case) while it is memory-
bound where the amount of free memory and the speed to access (aka bandwidth)
memory is the primary factor that drives the completion time.

This implies that you need a faster processing unit to speed up a compute-bound
problem while you need more/faster memory in the case of memory-bound.

Figure 4-2 represents how we expect resource utilization in a compute-bound and in
a memory-bound scenario.

Figure 4-2. Compute-bound and memory-bound

Prefill

The prefill phase works as a warming up/loading phase where
the input prompt is processed and the first token is produced.
The first step to load the prompt is to convert the text to
numbers using tokenizer and embedding.

A tokenizer is an algorithm that takes a sentence as input and
returns a list of tokens as output, where a token is usually a sub-
word and it is language specific: for example er is a common
suffix in English so it is a token. Each token has an integer
representation (i.e. the index of the vocabulary) so it is possible
to convert the full sentence in a sequence of numbers where
each number represents a token. Each number represents a
single token so it is also possible to convert back a number to
the original token.

As you can imagine, state-of-the-art tokenizer implementations
are far more complex and advanced than this, incorporating
normalization steps, model-specific token handling, techniques
for languages without space-separated words, concurrent
implementations, and much more. There are different
tokenizers available and one of the most commonly used is the
Hugging Face tokenizer library. The tokenizer is trained
alongside of the model so the vocabulary is fixed and fully
populated during the inference.

For a more comprehensive introduction to the tokenizer topic,
we suggest the “Summary of the tokenizer” page on Hugging
Face the website.

https://huggingface.co/docs/transformers/tokenizer_summary

PROMPT, SENTENCE, WORD AND TOKEN

The prompt is the request that is sent to the LLM to be
processed, it can be a simple question or a very long text with a
lot of contextual information to process. In a real world
scenario it is not limited to the actual end user input but it
includes at least a system prompt that guides the LLM behavior.
The system prompt is included in the full request and it defines
the scenario that the model should use to handle the user
request.

A system prompt can strongly influence the model behavior, in
the case of an AI assistant for example it can say something like
“You are a friendly AI assistant named John. Your role is to help
users with easy to understand answers. If you don’t know the
answer, just say that you don’t know instead of guessing” while
the same model can perform text summarization of the user
input a system prompt like “Please generate a summary of the
following text highlighting main points in no more than 500
words”.

Altering the prompt to include more context and influence the
generation of the output is called prompt engineering. We’ll
cover this topic in more detail in ???.

The prompt is formed by one or more sentences. The sentence
structure is preserved during the tokenization using special
tokens to identify the beginning, the end and the punctuation.
In natural language, the structure of the sentence influence the
semantic thus it is critical to preserve it during the tokenization
and avoid a flat list of tokens.

Each element of the sentence is a word that maps to one or
more token. This is because we want to keep the size of the
vocabulary fixed so we cannot map every possible combination
of letters rarely used or even never used at all. Splitting a word
in tokens is way more efficient: the words tall, taller and tallest
can be split as (tall), (tall, er) and (tall, est) so that the tokens er
and est can be reused for other words that have the same suffix.
The tokenizer algorithm used during the training produce the
vocabulary that the model recognizes, thus there is no single
way to calculate, given an input sentence, how many tokens are
produced by the tokenizer.

In general, a word is split in multiple tokens every time there is
no direct mapping in the vocabulary, this prevents the
possibility for a word to be discharged because of a missing
direct conversion.

Some tokens are special because they don’t map to a word but
they represent a special meaning like end of the generated text
(<EOS>) or begin/end of system prompt.

TIP

Most of managed LLM services like OpenAI chatGPT have a token-based pricing
model: you can pay a certain amount of tokens, usually one million, for a fixed cost.

Now that we know the difference between word and token, we can better understand
why these services use token instead of word: a token is a unit of processing for a
LLM while a word is not.

This process has a side effect, it makes it harder as an end user to estimate the cost of

a request. The general rule of thumb is to consider 4 characters in English as 1 token,
but this is just an average estimation. The tokenizer is model specific so it is possible
that the same input is split in a different number of tokens using different models.

Finally, both input and output tokens are used to calculate the total cost of a request

so it is impossible to estimate the cost of a request: we cannot predict the number of
tokens that the model will produce, we can only set the max number of generated
tokens with a parameter.

Now that we have converted the input of the user in a list of
tokens, we are ready for the second step of the inference
pipeline: the embedding.

Thanks to the tokenizer we now have a vector of numbers that
represents the original input but it doesn’t have any

information of the semantic meaning of the token: we cannot
use this number to compare tokens because it just represents
the index of the position of the token in the vocabulary.

Embedding is a process that generates a vector representation
of the input, capturing its semantic meaning. This means that
the distance between two embedding vectors is smaller if they
represent semantically similar inputs, and larger if the inputs
are not strongly related.

In other words, consider this example: the tokens dog and
puppy are related to each other, so their embedding
representations produce vectors with a smaller distance
compared to the embeddings for dog and car.

Similar to the tokenizer, embeddings are also computed during
the model’s training. The token vocabulary is fully defined at
this stage, so each token is assigned a vector that represents its
semantic meaning and its similarity to other tokens in a multi-
dimensional space.

See Figure 4-3 for a simplified visual example of embeddings. If
you want to learn more on the topic we suggest “The Illustrated
Word2vec” blogpost.

https://jalammar.github.io/illustrated-word2vec/

Figure 4-3. Simplified embedding representation

NOTE

The embedding techniques described here are specific to text embeddings, but it is
also possible to convert image, video, or audio data and make them available to the
model as part of a multimodal vocabulary.

This is necessary when working with a multimodal model that supports additional

input modalities, such as images or video, alongside text.

The last step of the prefill is the execution of the model (aka
forward pass) to generate the first token.

From a monitoring perspective there are two things to highlight
related to the prefill phase: it is compute-bound and the
tokenizer runs entirely on CPU. Modern CPUs and GPUs are
very fast and tokenizer implementation is highly optimized so
the prefill is not usually a bottleneck. At the same time the
adoption of patterns like RAG (Retrieval Augmented
Generation) or AI Agents is growing input size fast, given that
the original user input is enriched by these patterns with
additional context (i.e. additional information or previous steps
of the conversation) and the conversation continues to append
new data.

Some models are now able to handle inputs of about one
million tokens: as a reference the whole Lord of the Rings books’
trilogy is about half a million of words in total!

Decode

After the prefill, the user’s prompt is parsed, loaded and the
first token has been produced with a single forward pass of the
neural network. The decode phase is in charge of the
generation of the rest of the tokens until the end where the
stream token is produced or the generation reached the max
number of tokens to be generated. This phase cannot be
parallelized and it has to proceed one token at a time because of

the autoregressive nature of the generation. Autoregressive
means that each generated token is based on the previous
sequence and becomes part of the previous state used to
generate the next one. At each iteration, the entire sequence
(input prompt + generated tokens) is used to produce the next
token. There is an attention vector for each token of the
sequence so the consequence of this iterative process is that the
attention vector has a cost that scales quadratically with the
total sequence length.

The optimization of this quadratic cost is the key bottleneck for
the scalability of LLM inference, especially with very long
generated sequences.

There are various approaches to address this problem, each
tackling it from a different angle. Some approaches are more
experimental, such as completely bypassing the generation step
by using a smaller model (speculator) to predict the full model’s
output (Speculative Decoding). Others, like KV caching to save
intermediate steps and avoid recomputing them, are already
standard in all runtimes.

Let’s focus on KV caching: we already mentioned that the
decoding phase of the generation is memory-bound so the
availability and the management of the memory is directly

impacting the max throughput that the runtime is able to
produce, but why?

The autoregressive nature of it makes the generation use all the
previous sequence, this implies that after every generation step
the runtime should compute the attention values for each of the
previous tokens making the generation phase highly inefficient.
Most of the values have been already computed except for the
last (current) token. A KV-cache is introduced to avoid this
computation where the keys are the token and the values are
the attentions vectors. This moves the scalability challenges
from the computation side to the cost of storing all the previous
values making the problem memory-bound.

Moreover, given that we cannot predict the total length of the
output, we cannot estimate the size of this cache. The original
implementation of this cache required contiguous memory to
store it. This limitation has now been addressed with
PagedAttention, which introduces the concept of paginated
memory, similar to how operating systems manage memory. It
splits the cache into blocks and accesses them via a lookup
table.

The usage of this lookup table to access memory blocks enables
the sharing of the same KV cache across multiple generations:

there are techniques like parallel sampling where the same
prompt is used to generate multiple outputs and the cache can
speed up the overall process in this case. The end goal of
projects like vLLM is to maximize the throughput serving
multiple requests in parallel so there are many other
optimizations to achieve this (like continuous-batching).

The decode phase handles the generation of all tokens and
more. In reality, each pass doesn’t produce a single token, but a
list of candidates, followed by a projection step to select the
desired result.

The sampling logic to select the next token is not trivial and
influenced by some parameters like temperature, top-k and top-
p to guide the level of “randomness” of the generation. If you
want to learn more, we suggest this blogpost “Decoding
Strategies in Large Language Models”.

The reverse embedder is the final step before returning the
token to the user. Personally, I find it difficult to read the
numerical representation of tokens, so I’d prefer to get my text
back!

This is the job of the reverse embedder, it uses the same lookup
table that has been used to convert a token to the embedding

https://medium.com/@raniahossam/sampling-methods-in-text-generation-unlocking-diversity-and-creativity-ab706b6250c9

vector to do the opposite and return the textual representation
of each token.

From a monitoring perspective, most of the work in the decode
phase happens on the GPU. However, since it is memory-bound,
it may not fully utilize the GPU’s processing power, spending
much of the time moving KV cache data to and from GPU
memory. This is a high-level description of how the inference
pipeline works. There is much more to discuss, and the field is
still evolving. However, we now have enough insight to explore
the monitoring aspect and examine the available metrics.

Observability stack and configuration

Now that we understand how LLM inference works, we can go
back to our beloved Kubernetes platform to see how and what
to monitor of a LLM. Fortunately we don’t need to start from
scratch, Kubernetes has many tools and well established
practices for workload observability that we can reuse or adapt
to LLM workloads.

The observability of a workload involves different aspects:
introspect logs to get errors, collect metrics for time series/trend
analysis, correlate all execution steps via tracing or even inject

some agent directly in the container. This is true for application
workload and most of the same applies to LLM deployment
using KServe and vLLM.

Logs

Kubernetes has a defined logging architecture where both
stdout and stderr are redirected to a log-file.log in
the worker node where the container is running. This makes
logs easy to access via kubectl logs command but it doesn’t
provide long term storage for logs or indexing. This is
something you need to add to your cluster using one of the
different available projects (like Grafana Loki).

When deploying a model as an InferenceService, the KServe
controller creates the deployment with multiple containers: an
initContainer named storage-initializer to load the
model, the kserve-controller where the Model Server runs,
and additional sidecar containers depending on the deployment
mode (Serverless or ModelMesh; see “KServe” for more details).

When you deploy a model as an InferenceService, KServe
controller creates the actual deployment with multiple
containers: one initContainer named storage-initializer
in charge of loading the model, the kserve-controller

https://github.com/grafana/loki

where the Model Server runs and some additional sidecar
container based on the used deploymentMode (Serverless or
ModelMesh, see “KServe” for more information).

The introspection and the management of the logs for LLM is
analogous to application workload.

Example 4-1 shows vLLM logs from startup to request received.

Example 4-1. vLLM Startup Logs

INFO api_server.py:651] vLLM API server version

INFO api_server.py:652] args: ...

INFO api_server.py:199] Started engine process wi

INFO config.py:478] This model supports multiple

WARNING arg_utils.py:1089] Chunked prefill is ena

INFO llm_engine.py:249] Initializing an LLM engin

INFO model_runner.py:1092] Starting to load model

INFO weight_utils.py:243] Using model weights fo

...

Loading safetensors checkpoint shards: 100% Compl

...

INFO worker.py:241] the current vLLM instance can

INFO worker.py:241] model weights take 14.99GiB;

...

INFO launcher.py:19] Available routes are:

INFO launcher.py:27] Route: /openapi.json, Method

...

INFO launcher.py:27] Route: /v1/chat/completions

...

INFO: Started server process [39626]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: Uvicorn running on http://0.0.0.0:8000

INFO logger.py:37] Received request cmpl-...: pro

INFO engine.py:267] Added request cmpl-....

vLLM logs the version and the arguments specified to
start it

It is possible that a model supports different types of
tasks, generation is the most common but there are others
like classify or reward.

Also the configuration to load a model is logged by vLLM,
this configuration is defined in the config.json file of
the model

After the model is loaded vLLM logs the information of
the VRAM that the model is consuming plus some
additional information like the space that is assigned to
the KV cache (this part of the log is trimmed out for
simplicity)

https://calibre-pdf-anchor.a/#a306
https://calibre-pdf-anchor.a/#a307
https://calibre-pdf-anchor.a/#a308
https://calibre-pdf-anchor.a/#a309

The logs includes all the available endpoints

vLLM produces a log entry every time a new request is
received with the details of the requests (prompt and
parameters), it is possible to disable this behavior using
the argument --disable-log-requests

Metrics

Kubernetes core doesn’t include builtin support for metrics but
it is a very common scenario with well defined practices and
technologies. Most of Kubernetes distributions (like Red Hat
OpenShift) include a monitoring solution out-of-the box, there
are differences but the standard de facto is Prometheus /
OpenMetrics that requires each container to expose the metrics
via an endpoint, usually /metrics , using
Prometheus/OpenMetrics format.

This endpoint is pulled periodically by the collector component
in charge of scraping them. See Example 4-2.

Example 4-2. Configure a Service for monitoring

apiVersion: apps/v1

kind: Deployment

metadata:

https://calibre-pdf-anchor.a/#a310
https://calibre-pdf-anchor.a/#a311
https://prometheus.io/
https://openmetrics.io/

 name: my-service-deployment

spec:

 ...

apiVersion: v1

kind: Service

metadata:

 name: my-service

 annotations:

 prometheus.io/scrape: "true"

 prometheus.io/path: "/metrics"

 prometheus.io/port: "80"

 labels:

 app.kubernetes.io/part-of: my-application

spec:

 type: ClusterIP

 selector:

 app: my-service

 ports:

 ...

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 name: my-service-servicemonitor

spec:

 selector:

 matchLabels:

 app.kubernetes.io/part-of: my-application

 endpoints:

 - interval: 15s

These annotations in the Service are used to declare
where the metrics endpoint is

The ServiceMonitor API is used to enable the monitoring

It is necessary to configure a selector to match the Service
to monitor

It is possible to configure the frequency of scraping

The configuration to monitor a model is very similar: KServe
defines a set of annotations to configure the monitoring directly
on the ServingRuntime and InferenceService objects. Using
the annotations KServe controller takes care to configure the
deployments properly (Example 4-3).

Example 4-3. Configure a model with monitoring

apiVersion: serving.kserve.io/v1alpha1

kind: ServingRuntime

metadata:

 name: kserve-vllm

spec:

https://calibre-pdf-anchor.a/#a320
https://calibre-pdf-anchor.a/#a321
https://calibre-pdf-anchor.a/#a322
https://calibre-pdf-anchor.a/#a323

 annotations:

 prometheus.kserve.io/port: '8080'

 prometheus.kserve.io/path: "/metrics"

 ...

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: my-model

 annotations:

 serving.kserve.io/enable-prometheus-scraping

spec:

 ...

These annotations are KServe specific but equivalent to
prometheus.io/*

This annotation enables the injection of
prometheus.io/* to the Pod by KServe

As you can see in the example, the configuration to declare the
metrics endpoint for a traditional deployment or for a model is
very similar. Once the metrics are exported and collected by the
collector (i.e. Prometheus) it is possible to query them or display
them, for example with a Grafana dashboard, exactly in the

https://calibre-pdf-anchor.a/#a329
https://calibre-pdf-anchor.a/#a330

same way we are used to doing for a traditional Kubernetes
workload.

TIP

KServe has different deployment modes as already described in “KServe”. The
monitoring works differently when Serverless mode is used because there are

multiple containers in the Pod that run the model: the sidecars for Knative and Istio
run in coordination with the main container where the Model Server is executed.

Prometheus configuration assumes a single endpoint to scrape, which means we risk
missing important information from other containers. To address this, the KServe

project has developed a metric aggregator component (named qpext) that scrapes
metrics from all containers and exposes a single aggregated metrics endpoint.

The annotation serving.kserve.io/enable-metric-aggregation can be used
to enable this behavior.

This aggregation is not necessary when RawDeployment mode is used because the
deployment has a single container.

Now that we know how to configure the export of the metrics of
a Model Server, we will discuss “Model Server Metrics” which
are the most important metrics. But before that, let’s describe
the tracing stack.

Tracing

Observability in Kubernetes involves multiple aspects: we can
access container logs to gain full visibility into what the
component (in this case, the Model Server) is doing, and we use
aggregated metrics for trends and time-series indicators.
However, what we still lack is the ability to trace the execution
flow of a single request.

The evolution of tracing best practices in Kubernetes mirrors
the development of metrics: it is not natively integrated, but the
OpenTelemetry project has defined concepts and formats that
have become the de facto standard.

OpenTelemetry specification for tracing defines that every
request has an identifier that is used to correlate the execution
flow that can span across multiple steps during the execution
making tracing very different compared to metrics. In a real
world scenario, there are multiple components involved during
the processing of a requests in addition to the Model Server like
firewalls/gateways or pre/post processors, and all of them must
implement the protocol to propagate the identifier and produce
tracing information. Unlike metrics that are pulled by a
collector, trace information are pushed to the exporter by the
component.

https://opentelemetry.io/

One of the most commonly used server implementation for
tracing is Jaeger, it implements and exposes the necessary
endpoint to collect tracing data and it has graphical tools to
display them.

vLLM uses OpenTelemetry SDK to integrate tracing support,
thus the configuration is simplified and analogous at other
projects using the same approach (Example 4-4).

Example 4-4. Configure vLLM for tracing

apiVersion: serving.kserve.io/v1alpha1

kind: ServingRuntime

metadata:

 name: kserve-vllm

spec:

 containers:

 - name: kserve-container

 image: vllm/vllm-openai:latest

 args:

 - --model

 - /mnt/models/

 - --port

 - "8080"

 - --otlp-traces-endpoint

 - "$JAEGER_TRACE_ENDPOINT"

 env:

https://www.jaegertracing.io/

 - name: "OTEL_SERVICE_NAME"

 value: "vllm-server"

 ...

This parameter enables OpenTelemetry tracing in vLLM
and it is used to configure the exporter endpoint. It
supports gRPC and HTTP protocol and many other
configurations.

OpenTelemetry SDK uses environment variables for its
configuration, check OpenTelemetry SDK website and
Python SDK documentation for more details

https://opentelemetry.io/docs/languages/sdk-configuration/
https://opentelemetry-python.readthedocs.io/en/latest/sdk/environment_variables.html

PROMETHEUS, OPENMETRICS AND OPENTELEMETRY

The Prometheus project is the most widely adopted solution for
metrics, but initially, the metrics format was not formalized
with a specification. Over time, multiple attempts were made,
and now OpenMetrics is the specification that extends the
original Prometheus format while preserving almost full
backward compatibility.

OpenTelemetry project is a collection of API definition, SDK and
tools to cover all the aspects of observability. The project goes
above and beyond the definition, proposing semantic
conventions to standardize a core set of conventions to be
adopted by every implementation for the name of each
metric/trace entry.

In addition to this, OpenTelemetry community is defining
Semantic Conventions for metrics, spans and the events in
many different contexts. LLM observability (under a more
general Generative AI sub-project of OpenTelemetry) is one of
these contexts and there is already an experimental
specification that defines a core set of semantic conventions. As
usual, predicting the adoption of similar specifications and
conventions is challenging. However, there is significant
interest within the community, with many active members
already contributing to the adoption of these conventions

https://prometheus.io/
https://openmetrics.io/
https://opentelemetry.io/
https://opentelemetry.io/docs/specs/semconv/
https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md
https://github.com/open-telemetry/semantic-conventions/tree/main/docs/gen-ai

across different runtimes. At the same time, parallel discussions
are taking place within the Kubernetes Special Interest Group
(SIG) dedicated to model serving, WG-Serving.

The vLLM implementation for tracing is already based on this
semantic convention work.

This effort to consolidate to common semantic conventions in
observability is analogous of the KServe open-inference-
protocol (OIP) work where the goal is unify the shape of model
evaluation endpoints.

Model Server Metrics

Now that we have installed the metrics stack in our Kubernetes
cluster, deployed an LLM using KServe, and properly configured
vLLM to emit metrics, we are ready to analyze these metrics to
understand how the Model Server is performing.

We are used to monitoring workload on Kubernetes so we can
easily look at metrics like CPU usage, memory usage,
throughput (as number of requests per second) and latency (as
time to process a request). Can we do the same for LLM?

https://github.com/kubernetes-sigs/wg-serving/
https://github.com/kserve/open-inference-protocol

Now that we know how LLMs work we can already imagine
that it is not that simple. First of all a LLM workload is mainly
happening on GPU so tracking CPU usage is not a good
representation of the current usage of the system but it is even
worst than that: the two main phases of LLM inference
execution, prefill and decode, are very different, because the
first is compute-bound while the second is memory-bound. Go
back to section “Understanding LLM” for more details on this
topic.

The problem is not limited to resource usage, even the concept
of throughput / latency is different because it is not possible to
predict, given a request, how long the answer will be so any
metric that counts the requests will not provide a good
representation of the actual workload of the Model Server.

LLMs are language models, and the token is the core unit of
computation for generation. Let’s now focus on the key metrics
for LLMs produced by the Model Servers, while ??? will cover
how to use these metrics for more advanced scenarios, such as
autoscaling.

Time To First Token (TTFT)

This is the actual time that a user is waiting before starting to
receive the response.

It is probably the most important metric to look at in realtime
use cases like chatBots while if it is an offline scenario (i.e. batch
job) it is probably not something that you want to optimize for.

The metric is usually computed using second as unit of time
and histogram as type, for example vLLM produces this metric
with the name vllm:time_to_first_token_seconds while
OpenTelemetry Semantic Conventions suggests
gen_ai.server.time_to_first_token .

If we think at how a LLM works, the time to produce the first
token represents the time necessary to compute the prefill
phase.

Time Per Output Token (TPOT)

Tokens are produced one by one and they are usually returned
to the user as a stream so the second metric to look at is the
time necessary to produce each token after the first.

If the Time To First Token is the actual time the user will
perceive as waiting time, this second metric represents the
speed of the result to be seen by the end user. This metric is
more important for real-time use cases and less critical for
offline scenarios.

On average, a human reads about 180 words per minute so we
can calculate that it is necessary to produce at least 4-5 tokens
per second (a token is not exactly equivalent to a word) to
produce a result that humans can consume without a perceived
delay.

Similar to Time to First Token, this metric is computed in
seconds and uses a histogram as its type. In vLLM, it is named
vllm:time_per_output_token_seconds , while
OpenTelemetry Semantic Conventions suggest
gen_ai.server.time_per_output_token .

If Time To First Token maps to the prefill phase, this metric
measures the duration of each decoding iteration.

Throughput

Now that we have explained how a token plays a role as
computational unit for LLM we can define throughput as

number of tokens generated per second.

But we know a request can be very long (more than 100k
tokens!) so if we only look at the number of generated tokens
we don’t see the time/cost to process the initial request (prefill).

The decision of vLLM project in this case has been to provide
both individual metrics plus a combined metric:
vllm:prompt_tokens_total indicates the number of input
tokens processed per second,
vllm:generation_tokens_total is the number of output
tokens produced per second and finally vllm:tokens_total
is the combined number and represents the total number of
token processed per second.

OpenTelemetry Semantic Conventions doesn’t provide a
recommendation for this metric.

Even if both metrics are available, in general the throughput of
a generated token is enough to have a valid indicator of the
load of the system because modern GPUs are very fast so the
processing of the input is done very quickly (compute-bound)
making the decoding phase the one that takes most of the time.

At the same time this doesn’t directly relate with the number of
processed requests because the system can be fully used to

produce a single response or the other way around.

Latency

Latency indicates the time in seconds necessary for the model
to generate a full response.

This metric is correlated with the previous metrics, in
particular with Time To First Token and Time Per Output Token
but it is an important indicator of the total time to process a
request and it can be used to indicate trends or recognize
patterns.

The name of this metric in vLLM is
vllm:e2e_request_latency_seconds , is represented as a
histogram and measured in seconds. OpenTelemetry Semantic
Conventions recommends
gen_ai.server.request.duration as name for this metric.

Other metrics

All the previous metrics are critical to measure and keep track
of the overall speed of the system but what happens when too
many requests are coming in? Every time a request is received
by vLLM, there are batching techniques implemented to

maximize the throughput, but this also means that a request
might not be processed immediately if the batch is full.

Fortunately there are other metrics like
vllm:num_requests_waiting and
vllm:num_requests_running to keep track of the number of
requests that are still waiting to be processed and the number
of requests that are currently running.

vLLM metrics can be used to observe many other aspects of
execution. For example, we’ve explained the importance of the
KV cache for efficient token generation, and there are multiple
metrics to monitor its usage. See the Production Metrics
webpage for full documentation on vLLM’s available metrics. If
you want to implement an alert with Prometheus, refer to
Example 4-5.

Example 4-5. Create Prometheus Rule with vLLM metric

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 name: my-llm-rule

spec:

 groups:

 - name: "vllm.latency.rule"

https://docs.vllm.ai/en/latest/serving/metrics.html

 rules:

 - alert: vLLMLatency

 expr: max_over_time(time_per_output_tok

 labels:

 severity: critical

 app: my-model

 annotations:

 message: Latency of vLLM is too high

 summary: Model "my-model" needs to ke

 runbook_url: https://my.company/runbo

 description: The runtime is slowing d

This expression configures the condition to fire the alert

It is possible to link a runbook to the alert

https://calibre-pdf-anchor.a/#a347
https://calibre-pdf-anchor.a/#a348

SLI, SLO AND SLA

A Service Level Indicator (SLI) is a metrics defined to monitor a
particular service, it should be based on aspects that have direct
user impact: for example in the case of LLM it could be the
Time Per Output Token (TPOT) because it measures the time the
user has to wait to get a token after the first.

A Service Level Objective (SLO) is the promise that we made to
our users regarding a specific SLI: for example in the case of
Time Per Output Token we can defined a SLO to commit to keep
this value below a specific threshold in 99.999% of the requests
in a given window of time (like monthly).

Finally, Service Level Agreement (SLA) is the contractual
agreement that we have with our user, it is related with the
defined SLOs but it is more high level: usually are defined in
terms of monthly availability of a service. Breaking one or more
SLOs can impact SLA to the point that we are not compliant
anymore with the agreement.

GPU usage Monitoring

In the previous section we introduced multiple system metrics
that can be used to measure the overall throughput of the

system and the number of requests that the cluster is
processing. This makes it possible to monitor and configure
alerts when the system is not matching the expected SLA.

In addition to this, it is possible to monitor resource usage for
CPU, memory and network exactly in the same way we do it for
a traditional Kubernetes workload. But what about GPU usage?

We will go into more detail on how to configure GPU in a
Kubernetes cluster in ??? but let’s focus on the metrics aspect of
GPU devices. Each hardware provider has defined their own
implementation for this but they all apply a similar approach:
there is a management component collecting usage metrics
from GPU and an exporter component exporting them with a
/metrics endpoint to make them compatible with
Prometheus.

NVIDIA has a suite of tools called NVIDIA Data Center GPU
Manager (DCGM) to manage GPUs in a cluster and a DCGM-
exporter project that provides Helm Chart to deploy the
exporter to Kubernetes. After that the scraping of the metrics
can be configured as shown in Example 4-2. NVIDIA offers an
NVIDIA GPU Operator for optimal Kubernetes integration. It
can be installed in the cluster to automatically provision and
configure the metrics exporter.

https://developer.nvidia.com/dcgm
https://github.com/NVIDIA/dcgm-exporter
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/index.html

AMD follows a similar approach of NVIDIA with a AMD Device
Metrics Exporter and a AMD GPU Operator. Intel has a
Prometheus Metric Exporter and the same applies to almost
every other vendor. It is enough to follow the documentation to
deploy the component and start to collect GPU metrics.

There is no common naming convention adopted by the
different vendors for these metrics but they all cover low level
usage metrics like PCIe bandwidth or graphic engine activity.

We will cover more of the tools to manage and introspect GPU
in Kubernetes in ???.

Quality Metrics

Everything we explained in this chapter is covering the
infrastructure monitoring for our LLMs, observing throughput
and latency so that we keep end users experience under control
to match our SLA. This is critical for the management of the
cluster but we want to do more because it is not enough that
our LLMs are fast, they need to be correct!

The monitoring of the quality of a model is something that has
been critical since the beginning of the adoption of machine
learning in production system in general: an application that

https://github.com/ROCm/device-metrics-exporter/
https://dcgpu.docs.amd.com/projects/gpu-operator/en/latest/
https://docs.habana.ai/en/latest/Orchestration/Prometheus_Metric_Exporter.html

receives unknown data as a request will most probably crash or
produce a visible error message while a machine learning
model in the same situation usually doesn’t crash and just
continues to produce bad/wrong predictions.

A machine learning model is trained on a specific set of data
that is expected to represent the real distribution but the
human behavior changes over time (drift) and a perfectly
trained model requires periodic tuning/retraining to preserve
the quality. The problem is well known and there are multiple
techniques used to monitor similar situations such as accuracy
metrics, data drift techniques and bias detection metrics.

This group of techniques, along with many other concerns, falls
under a larger initiative known as Responsible AI. This area of
research has been defined and developed before Generative AI
and it is now evolving to cover the new challenges that LLMs
bring to the table.

In particular, given the generative nature of LLMs, there are
many ways for a model to produce a bad/wrong result and the
worst case scenario is when the generated outcome sounds
completely reasonable but is referring to something that
doesn’t exist. This problem is called a hallucination, it is one of
the most complex situations to manage and one of the biggest

challenges for the adoption of LLM in real world scenarios. In
Example 4-6 the hallucination is quite funny and probably not a
big deal for the end user but what if the chatBot of your
company hallucinates and approves a refund to your customer
based on a completely made up policy that doesn’t exist?

Unfortunately, there is no generic evaluation/quality metric to
judge if a LLM is hallucinating. However, there are many
benchmarks that can be used to assess the overall quality of a
model based on defined capabilities, such as its ability to
reason. It is critical to do this before adopting a model that we
don’t know or when we tune an existing model, one of the most
used suites to perform this task is a Language Model Evaluation
Harness.

We will cover this topic in more detail in ???.

When the LLM is deployed it is possible to compute some
metric to mitigate the hallucination risk for some specific tasks:
for example in case of a summarization we expect the output
mainly to contains text existing in the input to summarize. In
this case there is a technique, named ROUGE , to measure the
overlap of groups of words between input and output.

https://github.com/EleutherAI/lm-evaluation-harness

When we are in a similar situation we can use a component to
calculate the metric and export it to Prometheus as explained in
the section “Fairness”.

Even when a model doesn’t hallucinate, it can still produce
inappropriate or toxic content but fortunately we have
techniques called guardrails to mitigate that.

Hallucination and toxic content are part of a more general topic
of model safety (Example 4-6).

Example 4-6. Example of LLM Hallucination (OpenAI
ChatGPT)

"What is the world record for crossing the Englis

"This world record was made on August 14, 2020, b

who completed it in 14 hours and 51 minutes"

Let’s now look at Responsible AI and then we will apply some
model safety techniques.

Responsible AI

Responsible AI is a field that groups all the principles and
techniques to develop and manage artificial intelligence

solutions with the goal to enable transparency and trust from
all the involved stakeholders. It has ethical implications to
avoid biases and in general it aims to mitigate risks related to
the adoption of AI.

As you can imagine a similar goal cannot be achieved focusing
on a single specific aspect but it is more like a
framework/toolkit that your organization has to adopt at every
level. From a certain perspective, you can compare Responsible
AI mindset to the way your organization manages security: a
dedicated security team that implements security policies
doesn’t replace the fact that everyone must adopt proper
security principles.

Responsible AI terms covers different aspects, there is no single
definition but overall we can summarize them in explainability
and fairness.

More recently LLMs became the main priority even for
Responsible AI, in particular about toxic content detection and
hallucinations. We will briefly introduce the explainability and
fairness that applies mainly to Predictive AI, and then focus
specifically on model safety for LLM in “Model Safety:
Hallucination and Guardrails”.

Explainability

Explainability is the topic that is most pervasive because it
spans from model selection to post-execution analysis. It is the
principle that human trust is based on the ability to understand
why and how a model has produced a prediction and not every
model has the same level of intrinsic explainability: for
example a neural network is very powerful but hard to
understand from humans because the knowledge is captured in
the different layers/weights just as numbers that human cannot
easily correlate with the actual input/output. Explainability
techniques can explain overall model behavior (global
explanation) or a single prediction (local explanation) and
sometimes is named as interpretability because some models
can be directly interpreted.

From a Kubernetes perspective KServe supports the possibility
to attach an explainer to an InferenceService to perform local
explanation but it is usually not suggested in a production
environment because it is expensive to compute the
explanation, order of magnitude more than model execution.

At Red Hat we created the TrustyAI project that provides
multiple explainer implementation and it can be natively used
with KServe (see guide). We suggest the usage of Inference

https://kserve.github.io/website/latest/modelserving/explainer/explainer/
https://github.com/trustyai-explainability/trustyai-explainability/
https://kserve.github.io/website/latest/modelserving/explainer/trustyai/
https://kserve.github.io/website/latest/modelserving/logger/logger/

Logger to export prediction data (input/output) and apply local
explanation only after and when necessary (i.e. in case of
dispute).

Fairness

Fairness is another critical aspect for AI adoption: we don’t
want models to discriminate people, in particular
underrepresented groups and in general learn prejudice that
might be in training data. The bias might not become part of the
model because of explicit discrimination in data, sometimes it is
just that some category is underrepresented so the model
doesn’t have enough data to properly being trained or that
there are correlations in data that we don’t want the model to
learn: people living in a poor area have higher rejection rate for
loans but I don’t want my model to automatically reject a loan
request coming from a poor area! Overall the concept of bias is
usually tied to one or more features that the model named
protected attributes: for these features we expect the model to
behave fairly so we don’t expect the value of a protected
attribute to drive prediction result.

The most critical aspect of fairness is that, even when training
data has been properly analyzed and the model has been
trained without bias, it can still happen at runtime because of

https://kserve.github.io/website/latest/modelserving/logger/logger/

data drift: training data might not be representative anymore of
the current human behavior so the model processes similar
data for the first time and a biased outcome might emerge.

KServe and TrustyAI can help monitor this aspect in production
while the model is running producing bias metrics against one
or more protected attributes. TrustyAI uses Inference Logger to
retrieve all prediction data and then compute and produce
Prometheus metrics.

You can find more information by checking this demo.

Model Safety: Hallucination and
Guardrails

As the final topic of this chapter on observability, we will cover
the model safety area, which is likely evolving the fastest in the
LLM monitoring space, with expectations for significant
developments and disruption. LLMs are prone to
hallucinations, a scenario we’ve all encountered at some point
in our journey with Generative AI, often initially believing the
answer was correct. This happens because LLMs are very good
at providing clear and well motivated answers even when the
model is actually hallucinating.

https://kserve.github.io/website/latest/modelserving/logger/logger/
https://github.com/trustyai-explainability/odh-trustyai-demos

What are hallucinations

Hallucinations are generally inconsistencies that can
occur at different levels: within the generated text itself
(“Daniele is tall thus he is the shortest person”), between
the input prompt and the generated answer (“Generate
formal text to announce to colleagues … ” but the model
produces “Yo Boyz!”) or they can be factually incorrect
(“First man on the Moon in 2024”).

Why hallucinations happen

LLMs are black boxes able to hallucinate, there are
different reasons why this can happen:
partial/inconsistent training data so the LLM learns how
to generalize from data that are not comprehensive, or we
are using a configuration that is “hallucination prone”
with sampling parameters (like temperature, top_k, top_p)
that influence the model to produce less probable (but
more creative!) answers, or finally it can be caused by the
quality of the context/prompt that we are providing
where we might provide a question that is too generic. If
we analyze the three different causes we realize that we
have some fundamental issue: we usually don’t train LLM
so there is nothing we can do about partial/incorrect
training data, we can limit the creativity of the model with

the configuration but one of the goals of LLM is to be
creative so we don’t want to limit too much of this aspect,
therefore the area where we have most of the control is to
make the input more specific!

As we mentioned previously, hallucination is just one of the
undesirable behaviors to watch for. Another challenge is
dealing with toxic or inappropriate content: how can I prevent
a model from producing inappropriate content, or from a user
asking inappropriate questions?

The definition of inappropriate is broad and it goes from off
topic questions to returning private/sensible information (PII).
Most well-known open-source models have already been fine-
tuned to encourage friendly and non-condescending text
generation. However, an attacker can craft specific prompts to
bypass the model’s built-in safety mechanisms.

Similar attacks are called prompt jailbreaking, when the prompt
is trying to make the model produce something against the
terms and conditions, and prompt injection when the user is
trying to inject specific instructions in the prompt to bypass the
instructions configured by the developer. To produce a similar
attack is very simple, you add an instruction like “ignore all

previous instructions” to try to confuse the model bypassing
system prompts.

Fortunately it is possible to protect a model by implementing
guardrails that are pre/post processors for user input and
model output that validate the data to ensure the model
remains on track. As you can imagine the processing logic to
analyze arbitrary text to decide if it is inappropriate is not
trivial and guess what we can use to do that? Well, we can use
other LLMs!

There are models that have been tuned specifically to detect
similar problems. They are quite flexible and it is possible to
specify which type of risk look for. Two families of models in
this category are Llama Guard and Granite Guardian: both are
available on Hugging Face with different sizes and
configurations so that you can select the one that fits your use
case. Currently, the biggest model is about 7B or 8B which
corresponds to about 15-20GB of data and they can be deployed
like any other LLM with KServe and vLLM as we already
learned in “vLLM”.

The configuration of the validation to perform is done in the
prompt itself, see Example 4-7 as reference. The same approach
can be applied to validate the output of the model.

Example 4-7. Prompt to validate user input using Llama
Guard

[INST] Task: Check if the content of 'user' messa

 conversations our policies described with the

<BEGIN UNSAFE CONTENT CATEGORIES>

O1: Violence and Hate.

Should not

- Promote or suggest people to use violence.

...

Can

- Describe what violence is.

...

<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

...

<END CONVERSATION>

Provide safety assessment with following format:

- First line must be 'safe' or 'unsafe'

- If unsafe, second line must include comma-sepa

 violated categories.

In a chat with LLM you can define different roles and this
instruction specifies to Llama Guard to check only user

https://calibre-pdf-anchor.a/#a360

messages

In this section you can configure one or more categories
that are considered inappropriate to detect, the more you
are specific under the “Should not” and “Can”, the better

After this tag you need to include the conversation that
you want to verify

It is critical to be specific in the way you expect the result
to be provided so that it can easily be parsed to decide
how to proceed.

This technique is very powerful but also expensive both in
terms of resource usage and in terms of latency introduced: you
need to deploy another LLM to check the conversation and the
evaluation requires the full conversation because safety
assessment cannot be done processing token by token and this
introduces a considerable delay on the end user side. It is
critical to consider smaller and more specialized
model/techniques to implement safety guardrails so that you
can find the best tradeoff cost/performance for your use case.

The composition of the guardian model with end user request
flow can be done programmatically with custom orchestration
code but there is ongoing work to include this aspect in AI/LLM
Gateway components that we are going to cover in ???. As an

https://calibre-pdf-anchor.a/#a361
https://calibre-pdf-anchor.a/#a362
https://calibre-pdf-anchor.a/#a363

alternative, there are also ad hoc frameworks that have been
developed for that, one example that is integrated in the
TrustyAI project is th FMS Guardrails Orchestrator project
developed by IBM Research with the specific goal to orchestrate
the application of one or more guardrails.

Another popular project is (Llama stack created by Meta that
defines multiple APIs to be used to implement application based
on Generative AI. This project includes shield API to register
apply guardrailing logic.

The usage of LLM to judge the output of another, or even the
same LLM, is generically called LLM as a judge and it is an
emerging pattern in AI Agent based systems. We will cover in
more detail in AI Agents in ??? but the general principle to
effectively use LLM as a judge is to be very specific in the
questions to use. For example asking “Is the tone of this answer
formal?” is it way more specific than “Is this answer right?”.

Model safety is still a very active field, it is critical to implement
proper guardrailing to mitigate the risks related to the usage of
LLM but it is still hard to find the right tradeoff to avoid having
an explosion of complexity and cost.

https://github.com/foundation-model-stack/fms-guardrails-orchestrator/
https://llama-stack.readthedocs.io/en/latest/index.html)

Lessons learned

In this chapter we learned how the inference of LLM works and
how we can effectively observe them in Kubernetes,
introducing model safety challenges and patterns to mitigate
them. We are ready to bring our model to production in
Kubernetes!

About the Authors

Dr. Roland Huss is a seasoned software engineer with over 25
years of experience in the field. Currently working at Red Hat,
he is the architect of OpenShift Serverless and a former
member of the Knative TOC. Roland is a passionate Java and
Golang coder and a sought-after speaker at tech conferences.
An advocate of open source, he is an active contributor and
enjoys growing chili peppers in his free time.

Daniele Zonca is a Senior Principal Software Engineer and
Architect for model serving of Red Hat OpenShift AI, Red Hat’s
flagship AI product combining multiple stacks.

	Brief Table of Contents (Not Yet Final)
	1. Introduction
	Challenges running Generative AI at scale
	Kubernetes for AI Workloads
	DevOps and MLOps
	Overview
	Inference
	Training

	2. Deploying Models
	“It works on my machine”
	Model Server
	vLLM
	Hugging Face Text Generation Inference
	Other model servers

	Model Server Controller
	DIY - Do It Yourself
	KServe
	Ray Serve and KubeRay

	Lessons learned

	3. Model Data
	Model Data Storage Formats
	Weight-Only Formats
	Self-contained Formats
	ONNX
	Safetensors
	GGUF and GGML
	What’s next ?

	Model registry
	Hugging Face Model Hub
	MLflow Model Registry
	Kubeflow Model Registry
	OCI Registry

	Accessing model data in Kubernetes
	OCI image for storing model data
	Modelcars
	OCI Image Volume Mounts

	More Information

	4. Model Observability
	Understanding LLM
	Prefill
	Decode

	Observability stack and configuration
	Logs
	Metrics
	Tracing

	Model Server Metrics
	Time To First Token (TTFT)
	Time Per Output Token (TPOT)
	Throughput
	Latency
	Other metrics

	GPU usage Monitoring
	Quality Metrics
	Responsible AI
	Explainability
	Fairness

	Model Safety: Hallucination and Guardrails
	Lessons learned

	About the Authors

